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Abstract—This study aimed to predict current and future
issues in high-voltage-transmission lines using an integrated,
specially designed multimodal-robotic sensor system for inspection.
The system comprises several distinct sensors employed for the
analysis of specific spectrums, such as, thermal, acoustic, spatial,
visual, spectroradiometric, and referencing. Information obtained
from different viewpoints and interfaces at different times are
standardized and correlated to obtain composite-inspection data.
This sensor (coupled to a cable-driven robotic platform) is intended
to execute autonomous inspection of transmission elements by
working over the power lines.

Keywords-inspection; multimodal; robot.

I. INTRODUCTION

Power-grid functionality is reliant on electric-transmission-
line integrity and reliability. Transmission lines are the back-
bone of electricity-distribution networks and are susceptible to
threats ranging from environmental to human-induced disrup-
tions. Weather-related events alone account for a significant
proportion of transmission-line failures, underscoring the need
for robust inspection protocols.

Proactive, inspection strategies can enhance the reliability
of the power-transmission infrastructure and contribute to cost
savings and operational efficiency. Investments in preventive
maintenance (including routine transmission-line inspections)
yield substantial returns by reducing outage durations, averting
system failures, and minimizing associated economic losses.
Advanced inspection technologies, such as Unmanned Aerial
Vehicle (UAVs) [1]; light detection and ranging (LiDAR) [2];
and thermal imaging [3], facilitate comprehensive assessments
of line components and prompt identification of defects and
vulnerabilities [4], [5].

Traditionally, these inspections have relied on manual, visual
assessments and single-sensor technologies such as infrared
cameras or optical sensors. However, recent advancements in
sensor technology have facilitated the development of multi-
modal sensors that can integrate multiple sensing capabilities
into a single system—enhancing the effectiveness, accuracy,
and efficiency of power-line inspections.

This integration allows for comprehensive data collection
from different perspectives, allowing detection of potential
issues, with greater accuracy [6]–[8]. For instance, in electrical
systems, thermal imaging can detect hotspots (indicating

potential overheating or electrical faults), whereas optical cam-
eras provide high-resolution images for the visual inspection
of physical damage or anomalies. LiDAR generates three-
dimensional (3D) models of power lines and the surrounding
vegetation, helping to identify encroachments and structural
issues. Acoustic sensors detect partial discharge and other such
signals, indicative of electrical malfunctions. By leveraging
these diverse, sensing capabilities, multimodal sensors can
identify a greater range of defects and conditions relative to
single-sensor systems.

The integration of multiple sensing modalities enhances the
accuracy and reliability of inspections [9], [10]. Each sensor
type has its own strengths and limitations, and combining
them mitigates the individual weaknesses. For example, optical
cameras may be impeded by poor lighting conditions; how-
ever, thermal imaging can still detect issues under low-light
conditions. Similarly, LiDAR can penetrate foliage to some
extent, providing a clearer view of the power-line surroundings
than optical cameras alone. Moreover, the fusion of data from
different sensors allows for the cross-verification of findings,
reducing false positives and negatives [11]. This redundancy
ensures that the detected anomalies are genuine, enabling more
reliable, maintenance decisions and actions.

With a multimodal sensor-equipped drone or vehicle, a
single pass can gather comprehensive data, reduce inspection
times, and reduce labor costs [12], eliminating the need for
multiple passes. The high level of detail and accuracy provided
by multimodal sensors leads to earlier detection of potential
issues, preventing minor problems from escalating into major
failures. Proactive-maintenance reduces downtime and repair
costs, contributing to cost-effective, power-line management.

Power-line inspection is hazardous and often requires per-
sonnel to work at significant heights or close to high-voltage
equipment. The use of multimodal sensors that are mounted
on drones or robotic systems, reduces the need for human
inspectors to operate in dangerous environments [13]–[15]
and permits inspections in inaccessible and hazardous areas.
The diverse data collected by multimodal sensors are ideal
for integration with advanced analytics and machine-learning
algorithms. By analyzing both historical and real-time data,
these systems can predict potential failures and proactively
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recommend preventive-maintenance actions, thereby enhancing
the overall reliability and resilience of the power grid.

This paper presents a novel, multimodal sensor coupled to an
autonomous inspection robot (moving over an electric cable) for
transmission-line inspection. The multispectral sensor integrates
several perception sources to produce a unique inspection map.

The paper is organized into five sections. Section 2 discusses
the concept of LaRa autonomous inspection robot. Section 3
discusses the proposed approach for MultiSpectrum sensor inte-
gration. Section 4 explains the experimentation and evaluation.
Finally, Section 5 shows the conclusions.

II. LaRa: AUTONOMOUS ROBOT FOR MULTI-MODAL
PREDICTIVE INSPECTION OF HIGH-VOLTAGE

TRANSMISSION LINES

The mobile robot autonomously performs inspections by
traveling directly over the electrical cables. The autonomous
robot for the multimodal predictive inspection of high-voltage
transmission lines (LaRa) is designed to attach to the cable
and move with precision, carrying the multimodal inspection
system, as shown in Figure 1.

Figure 1. The LaRa robot.

Two wheels are used to ensure support on the electrical cable:
one wheel is free, and the other is driven by a servomotor.
The third wheel is part of a connecting rod–crank system that
moves the non-actuated wheel toward the cable, maintaining a
clamping pressure similar to that of a robotic claw. This wheel
can also move linearly away from the cable, allowing the robot
to be removed and perform obstacle suppression maneuvers.

The cable-gripper system is mounted on a structure consist-
ing of two parallel plates separated by fixed spacers, as shown
in Figure 2. Between these plates, a connecting rod–crank
system moves the fixing wheel at the bottom of the cable. The
motors are fixed to the front part of the claw, which interferes
with the stabilization of the system on the cable, leading to
rotation around the cable and potential falls.

The LaRa robot features a lower luggage rack fixed with two
articulated arms to ensure that the weight is always directed
toward the gravitational force at the center of the cable gripper.
The luggage rack houses the electronic control system, motor
power, control system, and battery of the robot.

Figure 2. Cable-gripper system in action.

The center of mass of the system is aligned with the cable
center, which is achieved by introducing two counterweight
arms. One of these arms also serves as a support for the
attachment of the multimodal inspection sensor.

III. THE ARCHITECTURE OF MultiSpectrum SENSOR

The MultiSpectrum sensor comprised several sensors, spe-
cially designed to evaluate electric faults (Figure 3). All the
sensors were integrated into a stacked inspection map. This
approach was detailed further in an earlier study [16].

Figure 3. Modules of LaRa robot.

Figure 4 illustrates the integration of various sensor modules
within the multispectral system designed for robotic inspection
of transmission lines. This multimodal-sensor suite comprises
several interconnected components, each serving a distinct
function to ensure comprehensive monitoring and analysis of
transmission line conditions.

Figure 4. Integration of sensor modules.

The Real-Time Kinematic (RTK) Global Navigation Satellite
System (GNSS) receiver provides geospatial data, enabling

119Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications



precise location tracking by robot inspectors. It connects via a
Universal Serial Bus (USB) for data transmission and supports
LoRa communication for long-range, low-power wireless
connectivity aimed at RTK accuracy.

The spectral camera, equipped to capture a wide range of
wavelengths, offers a detailed analysis of the material properties
of the transmission lines and communicates with the central
system through a high-definition multimedia interface to ensure
high-quality data transfer; the aim was to analyze the proximity
of the electric elements to vegetation.

The Red-Green-Blue (RGB) camera captures standard color
images essential for visual inspection. It interfaces with the
system using a Camera Serial Interface (CSI), that feeds directly
into the Graphics Processing Unit (GPU) classifier for real-time
image processing.

The thermal camera detects heat signatures and hotspots and
identifies potential overheating issues or faults. It uses an RCA
connection coupled with a transceiver to convert and transmit
data through USB.

The depth camera provides 3D data, crucial for assessing the
spatial relationships and physical conditions of transmission
lines and their surrounding environment. It connects using a
USB.

A Time-of-Flight (ToF) sensor measures the time required
for a light signal to reflect from the object. It provides precise
distance measurements and communicates with the system via
USB. Sensor calibration and global referencing are crucial.

The acoustic camera captures sound waves to detect anoma-
lies that may not be visible or detectable through other sensors,
and is integrated into the system using an Ethernet connection
for reliable data transfer.

A. Multi-modal sensing

Integrating multimodal sensors involves combining data from
various sensors to understand the environment or system com-
prehensively and accurately. The integration process leverages
the strengths of each sensor type, compensating for individual
sensor weaknesses and providing a richer dataset. The key
to successful multimodal sensor integration lies in effective
data fusion. Data-fusion algorithms combine information from
different sensors to produce more accurate, reliable, and
coherent information. This process often involves synchronizing
data streams, spatially and temporally aligning data, and
filtering noise.

The challenges in multimodal sensor integration include en-
suring interoperability between different sensor types, managing
large volumes of data, and maintaining real-time processing
capabilities. Ensuring interoperability involves addressing vari-
ous technical and operational issues because different sensors
often have distinct communication protocols, data formats,
and sampling rates. To integrate these sensors seamlessly, a
common framework or middleware is required to translate and
standardize the data from each sensor type.

The Petri net flow for the multispectral sensor system illus-
trates the comprehensive workflow involved in the multimodal
inspection of transmission lines, as shown in Figure 5. The

process begins with the system in a ready state (p1), which
is initialized and prepared for inspection. Upon starting the
inspection (t1), the system waits for inputs from various sensors,
including spectral (p2), depth (p3), RGB (p4), thermal (p5),
distance (p6), ToF (p7), GNSS (p8), and acoustic (p13) data.

Each type of sensor input underwent specific acquisition and
processing steps. The spectral images were filtered (t9) and
registered (t15) to align them accurately, resulting in a filtered
spectral image (p9) and registered spectral image (p16). The
depth images were resized (t10) and warped (t16) to correct any
distortions, producing a resized depth image (p10) and depth
layer (p17). The RGB images were classified (t11) to identify
relevant features, resulting in a classified RGB image (p11). The
thermal images were resized (t12), decomposed into component
parts (t17), and registered (t20) to align with the other sensor
data, resulting in a resized thermal image (p12), decomposed
thermal image (p18), and registered thermal image (p22). The
acoustic images were resized (t18), filtered to remove noise
(t21), and registered (t23) for accurate alignment, resulting in
an adjusted acoustic image (p19) and a filtered acoustic image
(p23).

After initial processing, the system combined and adjusted
the data layers. Spectral images were warped (t19) and
integrated into a spectral layer (p21), thermal images that
underwent thermal warping (t22) were integrated into a thermal
layer (p24), and acoustic images were warped (t24) and
integrated into an acoustic layer (t26). These processed layers
were stacked to form a comprehensive inspection map (p25).

The inspection map was further refined through georefer-
encing (p27) to ensure that the data were accurately mapped
to real-world coordinates. The final outputs of this process
included detailed inspection maps (p28) that provided a
thorough overview of the inspection results and geospatially
contextualized data, indicating the precise locations of the
inspected areas (p29).

B. Global localization of multi-modal inspection

The multispectral sensor employs an RTK-GNSS to ensure
the correct localization of electric components and to allow
correlation between different inspections. The RTK GNSS
employs a stationary base station and LaRa robot (i.e., rover)
to obtain highly accurate positioning data with centimeter-
level accuracy. The base station measures signals from the
GNSS satellites and calculates the errors caused by atmospheric
conditions, satellite-orbit inaccuracies, and other factors. These
corrections are sent to the LaRa robot in real-time, through a
communication link (LoRa), allowing it to adjust its calculations
and achieve higher accuracy. The LaRa robot then applies these
corrections to improve positional accuracy, as illustrated in
Figure 6.

Figure 7 illustrates the process of integrating sensor data for
locating the nearest power pole on a transmission line. The
process begins by measuring distances using ToF and depth
sensors to accurately measure nearby objects. The system
then computes the nearest point relative to the sensor. The
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Figure 5. Petri-Net of of Multi-modal sensing of MultiSpectrum sensor.

Figure 6. Scheme of global localization through RTK GNSS.

Figure 7. Transformation from local to global coordinates.

RTK-GNSS coordinates of the inspection sensor are acquired,
providing its geographic position.

The nearest point, initially in the East-North-Up (ENU) co-
ordinates (a local Cartesian coordinate system), was converted
to geodetic coordinates (latitude, longitude, and altitude). The
system identified the nearest power pole on the transmission
line by matching it to a map or a database of pole locations.
Finally, an inspection map was assigned to the identified power-
transmission pole, which linked the sensor data to a specific
location in the transmission infrastructure.

This process effectively integrates local measurements and
global positioning to precisely locate power poles for inspection
and correlates them with previous inspections, allowing for the
prediction of future behaviors.

C. Object classification and recognition

Here, the objective was to develop a device capable of
detecting key elements (such as insulators, transmission towers,
and dampers) along transmission lines, in real-time, utilizing
local processing with energy consumption compatible with
battery-usage. Initially, the primary component of the device
was defined as a tool capable of detecting objects in an image
with high reliability. The eighth (state-of-the-art) version of
the YOLO (You Only Look Once) neural-network architecture
(YOLOv8) was selected owing to its optimization ease and
flexibility of application. YOLOv8 is provided through an
SDK maintained in the Ultralytics library and features a simple
Python interface that facilitates the configuration of network
parameters and training procedures [17].

To enable the near-real-time processing of a neural network
such as YOLO, it is necessary to have hardware, capable
of supporting the parallel processing of the network layers.
An NVIDIA Jetson Nano B01 with 4GB of random-access
memory was selected because of its compact size, low-energy
consumption, and graphical-acceleration capabilities. Their
applications are further supported by multiple interfaces with
other devices and peripherals. By utilizing the MIPI CSI input,
it is possible to attach a Raspberry Pi V2 camera designed
for embedded systems (with reduced energy consumption and
weight) for environmental image capture. Additionally, the
UART TTL serial-interface pins enabled communication be-
tween the detection device and other computers using an FT232
Serial-USB converter. For training, approximately 540 images
were selected from photos and videos of transmission-line,
drone inspections. The images were labeled with rectangular
annotations. The classes were named after the key elements:
Transmission Tower, Insulator, Damper, and Transformer. The
training was performed using 200 epochs, a batch size of 16
samples, and an image size of 640 × 640 pixels.

The training results were visualized in a confusion matrix
(shown in Figure 8). A high accuracy for transmission towers
and isolators, with true-positive rates of 90% and 88%,
respectively, can be seen. The Damper class had a lower true
positive rate of 64%, and the Transformers were correctly
classified at 85%.

The training was also evaluated using a bar chart (Figure
9), which illustrates the distribution of instances for four
classes: Damper, Isolator, Transmission Tower, and Transformer.
The Damper class had the fewest instances, with fewer
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Figure 8. Confusion matrix of training.

than 500 examples, indicating that this class was relatively
underrepresented in the dataset. In contrast, the Isolator class
had the highest number of instances, with approximately 3000
examples, suggesting that the model had more data to learn
from for this class, potentially leading to higher prediction
accuracy. The Transmission Tower class had a moderate number
of instances, approximately 1500, providing a balanced amount
of data for model training compared with the others. The
Transformer class had the fewest instances after the damper,
with fewer than 500 examples, which, like the Damper class,
might have affected the ability of the model to accurately
predict this class.

Figure 9. Instances of training.

Figure 10 presents two graphs tracking the mean average
precision at IoU = 0.50 (mAP50) and mAP at IoU = 0.95
(mAP95) metrics over 200 training epochs. The mAP50 graph
demonstrated rapid initial improvement from around 0.30 to
approximately 0.83, indicating that the model quickly learns to
detect objects with moderate IoU thresholds. The curve then
showed a more gradual increase as the training progressed,
stabilizing at approximately 0.83. This suggests that the model
achieved high precision for easier detection and maintained
consistent performance towards the end of the training period.

The mean Average Precision (mAP) in the range 0.50
< Intersection over Union (IoU) < 0.95 (mAP50-95) graph
starts lower, around 0.20, but steadily increases throughout the
training process, reaching approximately 0.56. This reflected

Figure 10. Training accuracy analysis.

the growing ability of the model to handle more challenging
detection scenarios, although with a slower improvement
compared with the mAP50 metric. The gradual rise and final
values indicated that while the model performed well, its
precision decreased as the IoU threshold increased. The output
of evaluation of object classification can be seen in Figure 11.

Figure 11. Evaluation of object classification.

IV. MULTI-MODAL INSPECTION

Multi-modal inspection is consolidated into a comprehensive
multi-layer inspection map with global referencing for a specific
transmission tower. Each layer of the map represents a distinct
spectrum of analysis for the transmission line elements, as
illustrated in Figure 12.

The first layer utilizes visual analysis to identify visible
faults in high resolution and recognize power line elements.
This identification is performed using object classification and
recognition methods and serves as a foundation for subsequent
layers. The second layer employs depth spectrum analysis,
enabling volumetric inspection of elements and spatial correla-
tion. The third layer is dedicated to thermal analysis, detecting
anomalies in thermal profiles and identifying hotspots. The
fourth layer focuses on acoustic spectrum analysis, examining
distortions in the acoustic response of elements to diagnose
malfunctions such as breaks, wear, and the corona effect. The
fifth layer analyzes the vegetation spectrum, evaluating the
proximity of vegetation to the elements and its potential to
cause electrical arcs.

V. CONCLUSIONS

This paper presents a multispectral-sensor system for the
multimodal-robotic inspection of high-voltage-transmission
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Figure 12. Multi-Modal inspection map.

lines. The system integrates various sensors — thermal,
acoustic, spatial, visual, spectroradiometer, and referencing
— to enable the accurate prediction of current and future issues.
Standardizing and correlating data from these sensors provides
comprehensive inspection results, enhancing the accuracy and
reliability of power-line maintenance.

A key feature of the multispectral sensor is the RTK-
GNSS, which ensures precise localization with centimeter-
level accuracy and is crucial for correlating data from different
inspections. The system employs a stationary base station and
LaRa robot to provide real-time corrections, thereby improving
the positional accuracy of the electric components along the
transmission lines. Additionally, the device uses the YOLOv8
neural network for the real-time detection of elements such as
insulators, transmission towers, and dampers, chosen for its high
reliability and ease of application. The training and evaluation
of the YOLOv8 model highlighted potential accuracy variations
based on the class representation. Overall, the multispectral-
sensor system, with its advanced integration of RTK-GNSS and
YOLOv8, offers a state-of-the-art solution for the autonomous
and efficient predictive inspection of power lines.
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