
Quantized Rank Reduction: A Communications-Efficient Federated Learning Scheme

for Network-Critical Applications

Dimitrios Kritsiolis and Constantine Kotropoulos
Department of Informatics

Aristotle University of Thessaloniki
Thessaloniki 54124, Greece

email: {dkritsi, costas}@csd.auth.gr

Abstract—Federated learning is a machine learning approach
that enables multiple devices (i.e., agents) to train a shared
model cooperatively without exchanging raw data. This technique
keeps data localized on user devices, ensuring privacy and
security, while each agent trains the model on their own data
and only shares model updates. The communication overhead is
a significant challenge due to the frequent exchange of model
updates between the agents and the central server. In this paper,
we propose a communication-efficient federated learning scheme
that utilizes low-rank approximation of neural network gradients
and quantization to significantly reduce the network load of
the decentralized learning process with minimal impact on the
model’s accuracy.

Keywords-federated learning; Tucker decomposition; SVD;
quantization.

I. INTRODUCTION

As artificial intelligence and machine learning evolve, new
computational paradigms are emerging to address the increas-
ing demand for privacy, efficiency, and scalability. One such
approach is Federated Learning (FL), a decentralized learning
technique that enables model training across multiple devices
or agents without requiring direct data sharing [1] [2]. In
FL, end devices train their model using local data and send
model updates to the server for aggregation rather than sharing
raw data. This approach enhances data privacy while allowing
the server to refine the global model based on updates from
multiple devices. FL is a key enabler of artificial intelligence
in mobile devices and the Internet of Things (IoT) [3].

One of the key challenges in FL is the significant com-
munications overhead, which does not scale efficiently as
the number of participating devices increases [4]. The just-
described issue becomes even more pronounced in deep learn-
ing, where models consist of voluminous parameters that must
be shared by each client with the server at every training
iteration. As a result, the communication bottleneck diminishes
the advantage of distributed optimization, slowing the overall
training process and reducing the efficiency gains expected
from decentralized learning [5] [6]. To address this issue, we
aim to compress and quantize the updates sent by clients,
thereby mitigating the effects of communication overhead
without significantly deteriorating the model’s performance.

Before explaining the compression and quantization tech-
niques, we formally introduce the distributed learning problem

[7] solved by FL, i.e.,

min
θθθ

f(θθθ) = min
θθθ

∑
c∈C

fc(θθθ) with fc(θθθ) :=

Nc∑
n=1

J(XXXc,n;θθθ),

(1)
where θθθ denotes the parameters of the central model being
trained, C is the set of clients participating in FL with |C| = C,
XXXc,n is the n-th data point of client c (which can be a feature
matrix or generally a feature tensor), Nc is the total number
of data points at client c, J(XXXc,n, θθθ) is the loss function used
in the FL setting and fc(θθθ) is the local loss associated with
client c and its data. The overall loss function we optimize is
f(θθθ).

Problem (1) is solved using gradient descent. The gradient
descent update at iteration k + 1 is given by

θθθk+1 = θθθk − α
∑
c∈C

∇fc(θθθ
k), (2)

where ∇fc(θθθ
k) is the local gradient of client c associated

with its data, and α is the learning rate. The sum term in
(2) is a distributed version of gradient descent, also known
as Federated Averaging [8]. Equation (2) implies that each
client communicates its local gradient to the server at each
training iteration. Depending on the quality of the network
connection of each client, a significant overhead is introduced
to the FL process. This overhead can surpass the computational
cost of training a model for the client. To minimize the data
transmission overhead on the distributed training process, we
propose to compress the gradient of the loss function, which is
reshaped to a matrix or tensor, into a more compact form utiliz-
ing a low-rank approximation [9] [10] [11] and then quantize
the resulting compact form to reduce further the volume of
the data to be transmitted at each iteration. The proposed
novel scheme leverages the low-rank approximation of neural
network gradients and established quantization algorithms.

The outline of the paper is as follows. Section II briefly
describes the preliminaries, i.e., gradient compression and
quantization. Section III details the proposed Quantized Rank
Reduction (QRR) scheme and discusses the experimental
results. Conclusions are drawn in Section IV. The code for
QRR can be found at [12].

112Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

II. PRELIMINARIES
A. Gradient Compression

Neural network gradients are expressed in matrix or vector
form [13]. Suppose we have a function fff : Rn → Rm that
maps a vector of length n to a vector of length m:

fff(xxx) =


f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fm(x1, . . . , xn)

 . (3)

The partial derivatives of the vector function are stored in the
Jacobian matrix ∂fff

∂xxx , with
(

∂fff
∂xxx

)
ij
= ∂fi

∂xj
:

∂fff

∂xxx
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 . (4)

In the FL context, Jacobian matrices, such as (4), are computed
by the clients using the backpropagation algorithm and sent
back to the server. The server aggregates them to train the
central model via gradient descent. For example, consider the
weights of a fully connected layer WWW ∈ RDout×Din and the
bias term bbb ∈ RDout×1 along with the scalar loss function
J(·) used by the neural network, where Dout is the size of
the fully connected layer output and Din is the size of the
input to that layer. After training on its data, each client will
derive a gradient reshaped as matrix ∂J

∂WWW ∈ RDout×Din , as
well as the gradient for the bias term ∂J

∂bbb ∈ RDout×1. These
gradients will be transmitted to the server to train the central
model.

Transmitting the gradients to the server can be slow, es-
pecially when training a model with many parameters. The
biggest communications overhead comes from ∂J

∂WWW and not
from ∂J

∂bbb . This is why we seek to compress ∂J
∂WWW by applying the

truncated Singular Value Decomposition (SVD), transmitting
only the SVD components to the server, and reconstructing
∂J
∂WWW on the server using the SVD components.

SVD is a matrix factorization technique that decomposes a
matrix AAA ∈ Rm×n into three matrices:

AAA = UUU ΣΣΣ VVV ⊤, (5)

where UUU is an m×m orthonormal matrix containing the left
singular vectors of AAA in its columns, ΣΣΣ is an m×n matrix with
the singular values σ1, σ2, . . . , σr, in descending order as its
diagonal entries, for r ≤ min(m,n) being the rank of matrix
AAA, and VVV is a n × n orthogonal matrix containing the right
singular vectors of AAA in its columns. We can approximate the
matrix AAA by keeping only the ν largest singular values:

AAA ≈ AAAν = UUUν ΣΣΣν VVV ⊤
ν , (6)

where UUUν ∈ Rm×ν , ΣΣΣν ∈ Rν×ν and VVV ν ∈ Rn×ν with ν < r.
The approximation error of AAA by AAAν is given by

||AAA−AAAν ||2F =

r∑
j=ν+1

σ2
j , (7)

Figure 1. Magnitude of the singular values of the gradient of a fully
connected layer.

where || · ||F denotes the Frobenius norm and σj , j > ν are
the truncated singular values.

The approximation of ∂J
∂WWW ∈ RDout×Din with a truncated

SVD is justified because such matrices are generally low-
rank and have a few dominant singular values [14]. This
was experimentally verified by plotting the magnitudes of
the singular values of a fully connected layer’s gradient in
Figure 1, where only a few of the 128 singular values are
significantly larger than 0.

Suppose we only transmit UUUν , VVV ν , and the diagonal entries
of ΣΣΣν . For the truncated SVD to be more communication-
efficient than transmitting the full matrix ∂J

∂WWW , the following
inequality must hold:

Dout · ν + ν +Din · ν < Dout ·Din. (8)

Factorization can also be applied to convolutional layers.
In a convolutional layer, the weights are represented by a 4-
dimensional tensor W ∈ RCout×Cin×H×W , where Cout is
the number of output channels, Cin is the number of input
channels and H×W is the size of the convolutional filter. The
bias terms are represented as a vector bbb ∈ RCout×1. To reduce
the communications overhead of transmitting the gradient of a
convolutional layer ∂J

∂W reshaped to a tensor, we factorize the
tensor using the Tucker decomposition [15], which has been
used for factorization and compression of neural networks [16]
[17].

The Tucker decomposition is a higher-order generalization
of SVD. It factorizes a tensor X ∈ RI1×I2×...×IN into a core
tensor G ∈ Rr1×r2×...×rN and a set of factor matrices FFF i ∈
RIi×ri , i = 1, . . . , N , where ri < Ii are the reduced ranks on
each mode. X is approximated as [18]:

X ≈ G×1 FFF 1 ×2 FFF 2 ×3 . . .×N FFFN , (9)

where ×n denotes the mode-n product of a tensor and matrix.
Given a tensor X ∈ RI1×I2×...×IN and a matrix FFF ∈ RJ×In

the mode-n product of X with FFF is denoted as Y = X×n FFF ,
where Y ∈ RI1×...×In−1×J×In+1...×IN has elements:

Yi1,...,in−1,j,in+1,...,iN =

In∑
in=1

Xi1,...,iN ·FFF j,in . (10)

113Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

When transmitting the gradient of a convolutional layer
reshaped to a tensor, ∂J

∂W ∈ RCout×Cin×H×W , with reduced
ranks for each mode r1, r2, r3, and r4, we only transmit the
core tensor and factor matrices. For the Tucker decomposition
to be more communication-efficient, the following inequality
must be true:

r1 · r2 · r3 · r4 + Cout · r1 + Cin · r2
+H · r3 +W · r4 < Cout · Cin ·H ·W. (11)

B. Gradient Quantization

To further reduce the communication overhead of the FL
setup, in addition to compressing the updates sent by the
clients to the server, we also quantize them. Quantizing the
gradients of each client leads to a modified version of (2)
called Quantized Gradient Descent [19]:

θθθk+1 = θθθk − α
∑
c∈C

Q
(
∇fc(θθθ

k)
)
, (12)

where Q
(
∇fc(θθθ

k)
)

is the quantized gradient update of client
c. Methods employing differential quantization of the gradients
have also been proposed [20] [21].

The quantization scheme we use resorts to the Lazily
Aggregated Quantized (LAQ) algorithm [22]. Specifically, in
LAQ, the gradient descent update is given by

θθθk+1 = θθθk − α∇k, with ∇k = ∇k−1 +
∑
c∈C

δQk
c , (13)

where ∇k is the aggregated quantized gradient updates at
iteration k, and δQk

c := Qc(θθθ
k)−Qc(θθθ

k−1) is the difference
of the quantized gradient updates of client c at iterations k and
k−1. The quantized gradient update of client c at iteration k is
Qc(θθθ

k), and it is computed using the current gradient update
∇fc(θθθ

k) and the previous quantized update Qc(θθθ
k−1):

Qc(θθθ
k) = Q

(
∇fc(θθθ

k), Qc(θθθ
k−1)

)
, (14)

where Q denotes the quantization operator. The operator Q
entails the following quantization scheme.

The gradient update ∇fc(θθθ
k) is quantized by projecting

each element on an evenly-spaced grid. This grid is centered at
Qc(θθθ

k−1) and has a radius of Rk
c = ||∇fc(θθθ

k)−Qc(θθθ
k−1)||∞,

where ||xxx||∞ = max(|x1|, . . . , |xn|) is the max norm. The i-th
element of the quantized gradient update of client c at iteration
k is mapped to an integer as follows

[qc(θθθ
k)]i =

⌊
[∇fc(θθθ

k)]i − [Qc(θθθ
k−1)]i +Rk

c

2τRk
c

+
1

2

⌋
, (15)

with τ := 1/(2β − 1) defining the discretization interval.
All [qc(θθθk)]i are integers in the range {0, 1, . . . , 2β − 1} and
therefore can be encoded by using only β bits. The difference
δQk

c is computed as

δQk
c = Qc(θθθ

k)−Qc(θθθ
k−1) = 2τRk

c Qc(θθθ
k)−Rk

c111, (16)

where 111 = [1 . . . 1]⊤. This quantity can be transmitted with
32 + β n bits instead of 32n bits. That is, 32 bits for Rk

c

and β bits for each of the n elements of the gradient update.

The computation requires each client to retain a local copy of
Qc(θθθ

k−1). The server can recover the gradient update of client
c, assuming it knows the number of bits used for quantization,
β, as

Qc(θθθ
k) = Qc(θθθ

k−1) + δQk
c . (17)

The discretization interval is 2τRk
c . Therefore, the quantization

error cannot be larger than half of the interval

||∇fc(θθθ
k)−Qc(θθθ

k)||∞ ≤ τ Rk
c . (18)

III. PROPOSED SCHEME

A. Quantized Rank Reduction

By combining compression and quantization, we propose a
new scheme for communication-efficient FL, namely the QRR.
The gradient descent step (2) becomes

θθθk+1 = θθθk − α
∑
c∈C

QRRc

(
θθθk

)
,

QRRc

(
θθθk

)
= C−1

(
Q
(
C
(
∇fc(θθθ

k)
)
,C

(
∇fc(θθθ

k−1)
)))

,
(19)

where Q is the quantization operator, C is the compression
operator, and C−1 is the decompression operator. Each client
applies the operators C and Q to compress and quantize its
gradient update, while the server receives the updates and
applies C−1 to decompress them and perform gradient descent.
C entails compressing the gradients using SVD or Tucker

decomposition. For the gradient of a fully connected layer of
client c at iteration k reshaped to a matrix ∂J

∂WWWk
c
∈ RDout×Din

we use a truncated SVD for compression

∂J

∂WWW k
c

≈ UUUk
c ΣΣΣk

c (VVV k
c)

⊤, (20)

where UUUk
c , ΣΣΣk

c and VVV k
c are the SVD components of ∂J

∂WWWk
c

retaining only the ν largest singular values.
In case the gradient update is a tensor, such as the gra-

dient of a convolutional layer ∂J
∂Wk

c
∈ RCout×Cin×H×W , we

compress it using the Tucker decomposition

∂J

∂Wk
c

≈ Gk
c ×1 (FFF 1)

k
c ×2 (FFF 2)

k
c ×3 (FFF 3)

k
c ×4 (FFF 4)

k
c . (21)

The compression is controlled by the parameter p, which
represents the percentage of the original rank that is retained.
For SVD, the new reduced rank is computed as

ν = ⌈p ·min(Dout, Din)⌉ . (22)

In the case of the Tucker decomposition, the reduced ranks of
the core tensor are computed as

r1 = ⌈p · Cout⌉ , r2 = ⌈p · Cin⌉ ,
r3 = ⌈p ·H⌉ , r4 = ⌈p ·W ⌉ .

(23)

For inequalities (8) and (11) to hold, we typically want p to
be small, i.e., p < 0.5.

The gradients of the bias terms ∂J
∂bbbkc

∈ RDout×1 are quan-
tized only without compression.

114Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

The operator Q is described in Section II-B. Each com-
ponent resulting from the factorization of the gradient up-
date using either SVD or Tucker decomposition is quantized
according to this scheme. Client c must store the previous
quantized components of its gradient update locally. For each
matrix ∂J

∂WWWk
c

it has to store Q(UUUk−1
c), Q(ΣΣΣk−1

c) and Q(VVV k−1
c).

For each gradient tensor ∂J
∂Wk

c
, it has to store Q(Gk−1

c) and
Q((FFF 1)

k−1
c), . . . , Q((FFF 4)

k−1
c). For each bias gradient vector

∂J
∂bbbkc

the previous quantized vector Q(∂J

∂bbbk−1
c

) must also be
stored. The parameter β is the number of bits used to encode
each element and controls the quantization accuracy.

The server receives each client’s gradient updates and
computes the current iteration’s quantized factor components
according to (17). Equation (17) requires that the server also
store each client’s previously quantized factors. Once the
server has the current quantized factors, it applies the operator
C−1 to reconstruct the gradient updates of each client. That is,
for each client c and each model parameter P in the clients’
gradient updates,

• if P =WWW k
c ∈ RDout×Din :

∂J

∂WWW k
c

≈ Q(UUUk
c) Q(ΣΣΣk

c)Q(VVV k
c)

⊤, (24)

• if P = Wk
c ∈ RCout×Cin×H×W :

∂J

∂Wk
c

≈ Q(Gk
c)×1 Q((FFF 1)

k
c)×2 Q((FFF 2)

k
c)

×3 Q((FFF 3)
k
c)×4 Q((FFF 4)

k
c),

(25)

• if P = bbbkc ∈ RDout×1 :

∂J

∂bbbkc
≈ Q(

∂J

∂bbbkc
). (26)

The server then uses the gradient approximations to perform
the distributed gradient descent.

B. Experimental Results

Experiments were conducted to compare the performance
of the proposed QRR with stochastic federated averaging,
referred to as Stochastic Gradient Descent (SGD), and with
the Stochastic LAQ (SLAQ) [22]. To measure the performance
of each method, we kept track of the loss and accuracy of
the model, as well as the number of bits transmitted by the
clients during each iteration. Since the SLAQ algorithm skips
uploading the gradient update of some clients based on their
magnitude, we also recorded the number of communications.
Next, we clarify the terms used in the experiments:

• By iteration, we mean a full round of FL, which consists
of the server passing the central model’s weights to the
clients, the clients computing their local mean gradient
over a single batch and sending it to the server, and the
server aggregating the clients’ gradients and updating the
central model.

• By communication, we refer to the data exchange from
the client to the server, i.e., when the client sends its local
gradient update to the server.

• By bits, we measure only the number of bits of the
gradient updates transferred from the clients to the server,
since the bits required to transmit the model weights from
the server to all the clients are constant and common
across all methods.

All the experiments used 10 clients and quantized the
compressed gradient updates using β = 8 bits. The learning
rate was α = 0.001, and the batch size was equal to 512.
For the SLAQ algorithm, the parameters used were D = 10,
ξ1, . . . , ξD = 1/D, and 8 bits for quantization.

The first experiment utilized the MNIST dataset [23] of
28 × 28 grayscale images of handwritten digits. A simple
Multi-Layer Perceptron (MLP) network was employed, com-
prising a hidden layer with 200 neurons, a Rectified Linear
Unit (ReLU) activation function, and input and output layers
of size 784 (28×28) and 10, respectively, with a cross-entropy
loss function. 60,000 training samples were randomly selected
and equally distributed among the 10 clients. A total of 10,000
test samples were used to evaluate the performance of the
central model. The results for 1000 iterations are presented in
Table I for various values of p in QRR.

QRR achieves an accuracy of around 1-2% lower than
SGD and SLAQ. However, it transmits 3.16-9.43% of the bits
transmitted by SGD and 14.8-44.05% of the bits transmitted
by SLAQ, depending on the choice of the parameter p. In
Figure 2, the loss, the gradient ℓ2 norm, and the accuracy are
plotted against each method’s number of iterations and bits.
QRR has a slower convergence rate with respect to (wrt) the
iteration number than SGD and SLAQ. The smaller p is, the
slower the loss convergence, as evidenced in Figure 2(a) since
we have less accurate reconstructions of the gradients with
smaller p values. However, performance wrt the number of bits
transmitted is better, as seen in Figures 2(b), 2(d), and 2(f),
i.e., a smaller loss, a smaller gradient ℓ2 norm, and higher
accuracy are measured for a fixed number of bits.

The second experiment used the same setup as the first,
with the difference that the MLP network was replaced by a
Convolutional Neural Network (CNN). The CNN consisted of
2 convolutional layers using 3×3 filters with 16 and 32 output
channels, respectively, a max pooling layer that reduced the
input size by half, and 1 fully connected layer. The activation
function used after each layer was the ReLU function, and the
loss function used was the cross-entropy loss.

Table II summarizes the results using the CNN. Figure 3
displays the evolution of the loss, gradient ℓ2 norm, and
accuracy wrt the number of iterations and bits. The curves for
loss and accuracy versus iterations or bits are similar to those
of the first experiment. QRR scores 1-3% lower in accuracy
but requires 2.75-7.84% of the bits of SGD and 13.52-38.52%
of the bits of SLAQ, depending on the choice of p.

In the third experiment, the CIFAR-10 dataset [24] was
used with a small, VGG-like [25] CNN consisting of three
convolutional blocks with 3×3 convolutions, ReLU activations,

115Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

TABLE I. RESULTS OF QRR COMPARED TO SLAQ and SGD FOR AN MLP APPLIED TO THE MNIST DATASET.

Algorithm # Iterations # Bits # Communications Loss Accuracy Gradient ℓ2 norm
SGD 1000 5.088× 1010 10000 0.376 89.92% 2.297

SLAQ 1000 1.089× 1010 8559 0.378 89.89% 2.026
QRR(p = 0.3) 1000 4.798× 109 10000 0.415 89.20% 1.945
QRR(p = 0.2) 1000 3.205× 109 10000 0.441 88.93% 2.846
QRR(p = 0.1) 1000 1.612× 109 10000 0.501 88.22% 1.866

TABLE II. RESULTS OF QRR COMPARED TO SLAQ and SGD FOR A CNN APPLIED TO THE MNIST DATASET.

Algorithm # Iterations # Bits # Communications Loss Accuracy Gradient ℓ2 norm
SGD 1000 1.302× 1011 10000 0.263 92.56% 21.154

SLAQ 1000 2.653× 1010 8151 0.251 92.70% 9.769
QRR(p = 0.3) 1000 1.022× 1010 10000 0.291 91.49% 19.287
QRR(p = 0.2) 1000 6.650× 109 10000 0.335 89.91% 42.026
QRR(p = 0.1) 1000 3.588× 109 10000 0.330 90.48% 30.455

(a) Loss vs. iterations (b) Loss vs. Bits

(c) Gradient ℓ2 norm vs. Iterations (d) Gradient ℓ2 norm vs. Bits

(e) Accuracy vs. Iterations (f) Accuracy vs. Bits

Figure 2. Loss, gradient ℓ2 norm, and accuracy plotted against the number
of iterations and bits for the MLP network and the MNIST dataset.

max pooling, and dropout layers, with the number of filters
increasing from 32 to 64 and then to 128. We used different
values of p to demonstrate that p can be chosen based on the
client’s connection speed and the amount of data transmitted
from that client. Evenly spaced values in [0.1, 0.3] were
assigned to the p parameter of each client. The experiment
ran for 2000 iterations, using a learning rate of 0.01 for the
first 1000 iterations to accelerate convergence, and then 0.001
for the remaining iterations to ensure stable training.

Table III shows that QRR achieves 8–9% lower accuracy
than SGD and SLAQ, while transmitting only 3.34% and
15.26% of the bits transmitted by SGD and SLAQ, respec-
tively. Figure 4 plots the loss, gradient ℓ2 norm, and accuracy
versus iterations or transmitted bits for the VGG-like CNN
on CIFAR-10. Although the low-rank approximation of the
gradients leads to reduced accuracy on this dataset, which is
more complex than MNIST, QRR remains useful for quickly

(a) Loss vs. Iterations (b) Loss vs. Bits

(c) Gradient ℓ2 norm vs. Iterations (d) Gradient ℓ2 norm vs. Bits

(e) Accuracy vs. Iterations (f) Accuracy vs. Bits

Figure 3. Loss, gradient ℓ2 norm, and accuracy plotted against the number
of iterations and bits for the CNN and the MNIST dataset.

reaching a deployable model state before switching to a more
accurate one, compared to less network-efficient methods such
as SGD or SLAQ.

Finally, the client-side overhead of QRR was measured in
the setup of the last experiment using SGD as a baseline. On
average, QRR needed 1.2× more memory and 3.82× more
computation time. For comparison, SLAQ required 13× more
memory and 1.08× more computation time.

IV. CONCLUSIONS

We have proposed a scheme that leverages the low-rank
approximation of neural network gradients and utilizes es-
tablished quantization algorithms to significantly reduce the
amount of data transmitted in an FL setting. The proposed
Quantized Rank Reduction scheme has slightly lower accuracy
than Federated Averaging or SLAQ, but it transmits only

116Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

TABLE III. RESULTS OF QRR COMPARED TO SLAQ and SGD FOR A VGG-LIKE CNN APPLIED TO THE CIFAR-10 DATASET.

Algorithm # Iterations # Bits # Communications Loss Accuracy Gradient ℓ2 norm
SGD 2000 3.52× 1011 20000 1.213 56.72% 6.246

SLAQ 2000 7.72× 1010 17548 1.242 55.73% 5.493
QRR 2000 1.17× 1010 20000 1.441 47.57% 5.088

(a) Loss vs. Iteration (b) Loss vs. Bits

(c) Gradient vs. Iteration (d) Gradient vs. Bits

(e) Accuracy vs. Iteration (f) Accuracy vs. Bits

Figure 4. Loss, gradient ℓ2 norm, and accuracy plotted against the number
of iterations and bits for the VGG-like CNN and the CIFAR-10 dataset.

a fraction of the bits required by the other methods. It
converges more slowly with the number of iterations, but faster
when considering the number of bits transmitted. There is
an added computational and memory overhead on both the
client and server sides. However, this scheme can prove helpful
in network-critical applications, where sensors or devices
participating in the distributed learning process are located in
remote locations with very slow network connections.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2017. [Online]. Available: https://arxiv.org/abs/1610.05492

[2] C. Zhang et al., “A survey on federated learning,” Knowledge-Based
Systems, vol. 216, p. 106775, 2021.

[3] W. Lim et al., “Federated learning in mobile edge networks: A com-
prehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 3, pp. 2031–2063, 2020.

[4] M. Asad et al., “Limitations and future aspects of communication costs
in federated learning: A survey,” Sensors, vol. 23, no. 17, p. 7358, 2023.

[5] P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations and Trends® in Machine Learning, vol. 14, no. 1-2, pp.
1–210, 2021.

[6] M. Li, D. G. Andersen, A. Smola, and K. Yu, “Communication efficient
distributed machine learning with the parameter server,” in Advances in
Neural Information Processing Systems, 2014, vol. 27, pp. 19—-27.

[7] Y. Arjevani and O. Shamir, “Communication complexity of distributed
convex learning and optimization,” in Advances in Neural Information
Processing Systems, 2015, vol. 28, pp. 1756––1764.

[8] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[9] H. Kim, M. U. K. Khan, and C.-M. Kyung, “Efficient neural network
compression,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 569–12 577.

[10] L. Liu and X. Xu, “Marvel: Towards efficient federated learning on IoT
devices,” Computer Networks, vol. 245, p. 110375, 2024.

[11] Y. Liu and M. K. Ng, “Deep neural network compression by Tucker
decomposition with nonlinear response,” Knowledge-Based Systems, vol.
241, p. 108171, 2022.

[12] “Quantized rank reduction: A communications-efficient federated
learning scheme for network-critical applications,” [retrieved: May 22,
2025]. [Online]. Available: https://github.com/Kritsos/QRR-code

[13] K. Clark, “Computing neural network gradients,” Stanford University,
August 2018, Notes.

[14] S. Oymak, Z. Fabian, M. Li, and M. Soltanolkotabi, “Generalization
guarantees for neural networks via harnessing the low-rank structure
of the Jacobian,” 2019. [Online]. Available: https://arxiv.org/abs/1906.
05392

[15] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[16] G. G. Calvi, A. Moniri, M. Mahfouz, Q. Zhao, and D. P. Mandic,
“Compression and interpretability of deep neural networks via Tucker
tensor layer: From first principles to tensor valued back-propagation,”
2019. [Online]. Available: https://arxiv.org/abs/1903.06133

[17] J.-T. Chien and Y.-T. Bao, “Tensor-factorized neural networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 29, no. 5,
pp. 1998–2011, 2017.

[18] L. De Lathauwer, Signal Processing Based on Multilinear Algebra.
Katholieke Universiteit Leuven, 1997.

[19] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, 2017, vol. 30,
pp. 1707––1718.

[20] K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik, “Distributed
learning with compressed gradient differences,” 2023. [Online].
Available: https://arxiv.org/abs/1901.09269

[21] N. Tonellotto, A. Gotta, F. M. Nardini, D. Gadler, and F. Silvestri, “Neu-
ral network quantization in federated learning at the edge,” Information
Sciences, vol. 575, pp. 417–436, 2021.

[22] J. Sun, T. Chen, G. B. Giannakis, Q. Yang, and Z. Yang, “Lazily
aggregated quantized gradient innovation for communication-efficient
federated learning,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 4, pp. 2031–2044, 2020.

[23] L. Deng, “The MNIST database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[24] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” University of Toronto, Tech. Rep., 2009. [Online]. Available:
https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.pdf

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2015. [Online]. Available: https:
//arxiv.org/abs/1409.1556

117Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

https://arxiv.org/abs/1610.05492
https://github.com/Kritsos/QRR-code
https://arxiv.org/abs/1906.05392
https://arxiv.org/abs/1906.05392
https://arxiv.org/abs/1903.06133
https://arxiv.org/abs/1901.09269
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

	INTRODUCTION
	PRELIMINARIES
	Gradient Compression
	Gradient Quantization

	PROPOSED SCHEME
	Quantized Rank Reduction
	Experimental Results

	Conclusions
	References

