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Abstract—To address the growing challenges posed by Cyber
threats, anti-malware organizations have increasingly turned
to Machine Learning (ML). In recent years, machine learning
algorithms have become indispensable for solving complex classifi-
cation problems, outperforming traditional statistical methods by
capturing intricate patterns in high dimensional data. However,
selecting the optimal model requires rigorous evaluation in
multiple performance metrics while ensuring stability across
different data splits. In this study, we conducted a comprehensive
assessment of eight machine learning algorithms. Random Forest
(RF), Extreme Gradient Boosting (XGBoost), Support Vector
Machine (SVM), Logistic Regression (LR), Naive Bayes, Light
Gradient Boosting Machine (LightGBM), Decision Tree (DT), and
k-Nearest Neighbors (KNN) using stratified 5-fold cross-validation.
Our results reveal that RF, LightGBM, DT, and KNN achieve
exceptional performance, with identical near-perfect scores in
accuracy (0.9918), precision (0.9920), recall (0.9918), F1 score
(0.9918) and Area Under the Receiver Operation Characteristic
Curve (AUC-ROC) (0.9998), along with remarkably low variance
(10−6 to 10−8), demonstrating unparalleled robustness. The study
highlights the superiority of tree-based ensembles and KNN in
achieving high predictive power and stability, whereas classical
algorithms such as logistic regression and naive Bayes lag. Despite
XGBoost’s reputation, its performance here is eclipsed by simpler
tree-based methods. Our analysis underscores the importance of
considering variance when evaluating model selection, particularly
for critical applications where stability is paramount, and provides
actionable insights for practitioners seeking reliable, high-accuracy
classifiers.

Keywords-machine learning; malware detection; classification;
model comparison; model evaluation.

I. INTRODUCTION

Cyber threats such as malware have become a significant
challenge to digital security in recent years, affecting individ-
uals, organizations, and critical infrastructure worldwide. As
these threats evolve and become increasingly sophisticated,
traditional signature-based detection methods are becoming
less effective [1]. In response, Machine Learning (ML) has
emerged as a powerful tool to automate malware detection,
offering the ability to classify large volumes of data to identify
patterns that might otherwise go unnoticed [2].

However, despite the growing use of machine learning, select-
ing the most appropriate algorithm for malware classification
remains a difficult task due to the complexity of the data and the
need for high accuracy and stability of the model in different
data splits [3]. To address this challenge, this study conducts
a comprehensive evaluation of eight widely used machine
learning algorithms for malware detection, including Random
Forest, Extreme Gradient Boosting (XGBoost), Support Vector
Machine (SVM), Logistic Regression, Naive Bayes, Light
Gradient Boosting Machine (LightGBM), Decision Tree, and
k-Nearest Neighbors [4]–[6]. These models are assessed using
5-fold stratified cross-validation to ensure robust performance
estimation across multiple data splits [7]. The evaluation
is based on key performance metrics, including accuracy,
precision, recall, F1 score, AUC-ROC, and variance, allowing
a detailed comparison of the predictive power and stability of
each model [4], [8].

For our experiments, we leverage a refined version of
the Microsoft Malware Classification Challenge (BIG 2015)
dataset [9], which contains feature-engineered representations
of malware binaries [10]. The dataset encapsulates both
static features, such as Portable Executable (PE) headers
and entropy profiles, and dynamic features, including API
call sequences and assembly opcode distributions [11]. These
features enable robust classification of malware into distinct
families. By analyzing attributes such as section-wise entropy
differences ent_q_diffs, importing table dependencies
(Imports) and opcoding frequencies, we aim to develop an
interpretable machine learning model for malware detection
[12]. The dataset’s rich feature space not only facilitates
accurate classification but also enables anomaly detection,
providing insights into evolving malware evasion techniques
[13].

The primary objective of this study is to identify the most
effective machine learning model for malware classification
by balancing predictive accuracy with model stability. While
ensemble based methods, like Random Forest and XGBoost, are
known for their strong predictive capabilities, their performance
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must be assessed in comparison to simpler models, like
Decision Tree and KNN, which may offer competitive results
with lower computational cost. Furthermore, we explore the role
of variance-aware evaluation, which is crucial in cybersecurity
applications where model reliability across different datasets is
essential. Our findings reveal that RF, LightGBM, DT, and KNN
achieve near-perfect classification performance with minimal
variance, demonstrating their robustness in malware detection
tasks. In contrast, XGBoost and SVM exhibit slightly lower
accuracy and higher variance, while LR and Naive Bayes
perform moderately, struggling to capture complex decision
boundaries in the data. These insights provide valuable guidance
for researchers and practitioners in cybersecurity, helping them
select reliable models for malware classification.

The structure of the paper is as follows. Section II reviews
related work in machine learning-based malware detection.
Section III briefly introduces the eight ML models utilized
in this work. Section IV depicts the modeling procedure and
results for the malware detection. Section V discusses the
findings. We conclude with Section VI.

II. RELATED WORK

The application of machine learning in cybersecurity, partic-
ularly for malware detection, has gained significant attention
in recent years. Salem et al. [1] provided a comprehensive
review of Artificial Intelligence (AI)-driven detection tech-
niques, highlighting the evolution from traditional signature-
based methods to sophisticated machine learning approaches.
Similarly, Dasgupta et al. [2] conducted an extensive survey on
machine learning applications in cybersecurity, emphasizing
the critical role of automated detection systems in addressing
the growing complexity of cyber threats.

Several studies have focused on comparative analysis of
machine learning algorithms for malware classification. Rahul
et al. [4] analyzed various machine learning models for
malware detection, demonstrating the effectiveness of ensemble
methods in capturing complex malware behavior patterns.
Singh and Singh [5] assessed supervised machine learning
algorithms using dynamic API calls, providing insights into
the importance of feature selection and extraction techniques.
Their work highlighted the challenges of balancing accuracy
with computational efficiency in real-time detection systems.

The Microsoft Malware Classification Challenge dataset
[11] has served as a benchmark for numerous studies in this
domain. Aslan and Samet [9] provided a comprehensive review
of malware detection approaches, categorizing methods into
static, dynamic, and hybrid analysis techniques. Ghouti and
Imam [10] specifically focused on malware classification using
compact image features and multiclass support vector machines,
demonstrating the potential of visual representation techniques.
More recently, Connors and Sarkar [12] explored machine
learning approaches for detecting malware in PE files, while
Lin and Chang [13] addressed the interpretability challenges in
ML-based automated malware detection models. These studies
collectively underscore the ongoing evolution of machine
learning techniques in cybersecurity applications, setting the

foundation for our comprehensive comparative analysis of eight
state-of-the-art algorithms.

III. METHODS

Classification algorithms, a cornerstone of machine learning,
have demonstrated exceptional performance across various
domains, including cybersecurity applications such as malware
detection [3], [14]. Beyond cybersecurity, these algorithms play
a crucial role in disease diagnosis [15], where they help detect
conditions like cancer [16], [17], diabetes [18], [19], and car-
diovascular diseases [20] through medical imaging and clinical
data analysis [21]. In finance, classification models are widely
used for fraud detection, identifying suspicious transactions and
preventing financial crimes [22]. Additionally, they contribute
to spam filtering in email systems, sentiment analysis in natural
language processing, and customer churn prediction in business
analytics [23]. The versatility and effectiveness of classification
algorithms make them indispensable across diverse fields where
pattern recognition and decision making are essential. This
study evaluates eight state of the art classification models,
namely, Random Forest (RF), XGBoost, LightGBM, Support
Vector Machine (SVM), Logistic Regression, Naive Bayes,
Decision Tree, and k-Nearest Neighbors (KNN) to predict
malware classes using static and dynamic features. Performance
is assessed via five metrics: Accuracy, Precision, Recall, F1-
Score, and AUC-ROC, with variance analysis across stratified
5-fold cross-validation to quantify stability.

Given a labeled dataset D = {(xi, yi)}ni=1 where xi

represents feature vectors (e.g., API calls, entropy values) and
yi ∈ {0, 1} denotes benign/malicious labels, we formalize each
model’s prediction ŷ for a new sample x.

A. Random Forest

RF is an ensemble method that aggregates predictions from
multiple decision trees, reducing overfitting through majority
voting. For malware detection, it has proven to be effective
[6].

ŷ = mode
(
{fi(x)}Ni=1

)
, (1)

where fi is the i-th tree’s prediction, and N is the total number
of trees in Equation (1). RF excels at handling high-dimensional
feature spaces (e.g., API call sequences).

B. XGBoost

XGBoost iteratively improves predictions by combining
weak learners (decision trees) with gradient descent optimiza-
tion.

ŷ =

N∑
i=1

γifi(x), (2)

where γi is the learning rate. XGBoost’s regularization (L1/L2
penalties) mitigates overfitting, critical for imbalanced malware
datasets.
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C. LightGBM

LightGBM uses histogram-based splitting for efficiency,
optimizing memory usage for large-scale malware data.

ŷ =

N∑
i=1

αifi(x), (3)

where αi weights leaf outputs. Its Gradient-based One-Side
Sampling (GOSS) is ideal for sparse features (e.g., n-gram
opcodes).

D. Support Vector Machine

SVM finds the optimal hyperplane to separate malware
benign classes via maximum margin optimization.

ŷ = sign
(
wTϕ(x) + b

)
, (4)

where ŷ is the predicted class label for a given input x, w is the
weight vector learned by the SVM during training, wT denotes
the transpose of the weight vector w, ϕ(x) is a non-linear
transformation of the input vector x into a higher-dimensional
feature space, performed using a kernel function, b is the bias
term that shifts the decision boundary, and sign(·) is the sign
function, which returns +1 if the argument is positive and
−1 if it is negative. The kernel function ϕ(·) enables SVM
to handle non-linearly separable data by implicitly mapping
inputs into a high dimensional space. A common choice is the
Radial Basis Function (RBF) kernel. The effectiveness of SVM
is highly dependent on the scaling of features, as it ensures
that each feature contributes proportionally to the boundary of
the final decision.

E. Logistic Regression

A linear model for probabilistic classification

ŷ = I
(

1

1 + e−(wTx+b)
≥ 0.5

)
(5)

where I(·) is the indicator function. It is Interpretable but
limited to linear feature relationships.

F. Naive Bayes

Naive Bayes is a probabilistic classifier that Leverages Bayes’
theorem with feature independence assumptions.

ŷ = argmax
y

P (y)

d∏
j=1

P (xj | y), (6)

where ŷ is the predicted class label for a given input instance,
y represents a possible class label (e.g., malware or benign),
P (y) is the prior probability of class y, xj is the j-th feature
of the input vector x, P (xj | y) is the conditional probability
(likelihood) of observing feature xj given class y, d is the total
number of features in the input, and argmax selects the class
label y that maximizes the posterior probability. Naive Bayes
is computationally efficient and effective for high-dimensional
data. However, its performance can degrade when features are
highly correlated, such as in the case of dependent API calls
in malware behavior analysis.

G. Decision Tree

A single tree recursively partitions the feature space.

ŷ = f(x; θ), (7)

where θ denotes split thresholds. It is prone to overfitting but
useful for interpretability.

H. k-Nearest Neighbors

The k-Nearest Neighbors (KNN) algorithm classifies samples
based on majority labels of the k closest training instances.

ŷ = mode ({yi | xi ∈ Nk(x)}) , (8)

where Nk(x) are the k-nearest neighbors. Sensitive to feature
scaling and distance metrics (e.g., Hamming distance for binary
features).

I. Performance Metrics

Five metrics evaluate model performance, with variance
calculated across folds.

1. Accuracy is the proportion of correct predictions over
total predictions [24].

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

where TP (True Positives) represents the number of correctly
predicted positive instances; TN (True Negatives) is the number
of correctly predicted negative instances; FP (False Positives)
is the number of negative instances incorrectly predicted as
positive; and FN (False Negatives) is the number of positive
instances incorrectly predicted as negative [25].

2. Precision is the proportion of correctly predicted positive
instances among all predicted positives [24].

Precision =
TP

TP + FP
(10)

3. Recall is the proportion of actual positive instances that
were correctly identified [24].

Recall =
TP

TP + FN
(11)

4. The F1-Score is the harmonic mean of precision and
recall [24].

F1 = 2× Precision × Recall
Precision + Recall

(12)

5. AUC-ROC (Area Under the Receiver Operating Character-
istic Curve) plots True Positive Rate (Sensitivity) against False
Positive Rate (1-Specificity) across all classification thresholds.
The closer the curve approaches the top-left corner (0,1), the
better the model’s discriminative ability [26].

6. The variance of each performance metric is calculated
across cross-validation folds to assess the model’s stability. A
lower variance indicates a more consistent and reliable model,
while a higher variance suggests performance fluctuations
across different training sets [27].
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TABLE I
RESULTS OF MODELS.

Model Accuracy Accuracy Variance Precision Precision Variance Recall Recall Variance F1-Score F1-Score Variance AUC-ROC AUC-ROC Variance

Random Forest 0.991833 2.57E-06 0.991972 2.39E-06 0.991833 2.57E-06 0.991814 2.57E-06 0.999819 1.90E-08

XGBoost 0.979296 9.65E-06 0.980132 8.70E-06 0.979296 9.65E-06 0.938477 0.000201884 0.999429 2.57E-08

SVM 0.979296 9.65E-06 0.980132 8.70E-06 0.979296 9.65E-06 0.938477 0.000201884 0.999429 2.57E-08

Logistic Regression 0.938575 0.000206963 0.943028 0.000117831 0.938575 0.00020696 0.938477 0.000201884 0.976317 3.25E-05

Naive Bayes 0.938575 0.000206963 0.943028 0.000117831 0.938575 0.00020696 0.938477 0.000201884 0.976317 3.25E-05

LightGBM 0.991833 2.57E-06 0.991972 2.39E-06 0.991833 2.57E-06 0.991814 2.57E-06 0.999819 1.90E-08

Decision Tree 0.991833 2.57E-06 0.991972 2.39E-06 0.991833 2.57E-06 0.991814 2.57E-06 0.999819 1.90E-08

KNN 0.991833 2.57E-06 0.991972 2.39E-06 0.991833 2.57E-06 0.991814 2.57E-06 0.999819 1.90E-08

IV. EXPERIMENTAL RESULTS

A. Dataset and Experimental Setup

The experiments were conducted using a refined version
of the Microsoft Malware Classification Challenge (BIG
2015) dataset [9]. The dataset contains 21,741 samples with
balanced class distribution across nine malware families and
benign files. Feature engineering yielded 2,381 static features
including PE header information, entropy profiles, import table
dependencies, and assembly opcode frequencies. All models
were evaluated using stratified 5-fold cross-validation to ensure
robust performance estimation across different data splits [28].

B. Performance Evaluation Results

Table I presents the comprehensive performance evaluation
of eight machine learning models across five key metrics. The
results reveal distinct performance tiers among the evaluated
algorithms.

Tier 1 - Exceptional Performers: RF, LightGBM, DT, and
KNN achieved identical near-perfect performance with accuracy
of 0.9918, precision of 0.9920, recall of 0.9918, F1-score of
0.9918, and AUC-ROC of 0.9998. These models demonstrated
remarkably low variance (10−6 to 10−8), indicating exceptional
stability across cross-validation folds.

Tier 2 - Strong Performers: XGBoost and SVM achieved
accuracy of 0.9793 with identical performance metrics. While
still demonstrating strong classification capability, these models
showed slightly higher variance (≈ 10−6) compared to Tier 1
performers.

Tier 3 - Moderate Performers: Logistic Regression and
Naive Bayes exhibited lower accuracy (0.9386) and signifi-
cantly higher variance (≈ 10−4), indicating less consistent
performance across different data splits.

C. Statistical Significance and Stability Analysis

The variance analysis reveals critical insights into model
reliability [29]. The exceptionally low variance (< 10−6)
observed in RF, LightGBM, DT, and KNN indicates these
models maintain consistent performance regardless of train-
ing data variations—a crucial requirement for cybersecurity
applications [27].

In contrast, the higher variance exhibited by Logistic
Regression and Naive Bayes (≈ 10−4) suggests potential

instability when deployed across different malware datasets or
network environments. This stability assessment is particularly
important in cybersecurity where reliable performance across
diverse threat landscapes is essential.

V. DISCUSSION

A. Model Performance Analysis and Implications

The superior performance of tree-based ensemble methods
(Random Forest, LightGBM) and the Decision Tree can
be attributed to their ability to capture complex, non-linear
feature interactions inherent in malware behavior patterns [30].
These models effectively handle the high-dimensional feature
space (2,381 features) without suffering from the curse of
dimensionality.

Ensemble Method Advantages: Random Forest’s bootstrap
aggregating reduces overfitting while maintaining high accuracy.
LightGBM’s Gradient-based One-Side Sampling (GOSS) effi-
ciently handles sparse features common in malware detection,
such as n-gram opcodes and API call sequences.

KNN’s Unexpected Success: The exceptional performance
of KNN (identical to ensemble methods) suggests that malware
and benign samples form distinct, well-separated clusters in
the feature space. This clustering behavior indicates that the
extracted features effectively capture discriminative patterns
between malware families and benign software.

XGBoost Underperformance: Despite its reputation for
strong performance, XGBoost’s lower F1-score (0.9385)
compared to simpler tree-based methods suggests potential
overfitting or suboptimal hyperparameter configuration. This
highlights the importance of hyperparameter optimization
using techniques such as GridSearchCV or Randomized-
SearchCV [31].

B. Linear Model Limitations

The moderate performance of Logistic Regression and Naive
Bayes stems from their fundamental assumptions that are
incompatible with malware detection requirements. Logistic
Regression assumes linear decision boundaries, which cannot
adequately model the complex, non-linear relationships between
malware features and class labels. Similarly, Naive Bayes relies
on the feature independence assumption, which is violated in
malware analysis where features such as API call sequences
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and opcode patterns exhibit strong dependencies. However,
these models offer computational efficiency and interpretability
advantages, making them suitable for resource-constrained
environments or scenarios requiring explainable decisions.

C. Practical Deployment Considerations

Computational Complexity: While ensemble methods pro-
vide superior accuracy, they introduce computational overhead.
Real-time malware detection systems may require model
optimization or hardware acceleration for practical deployment.

Scalability Analysis: KNN’s instance-based learning re-
quires storing all training samples, making it memory-intensive
and computationally expensive for large-scale deployments.
Despite its excellent accuracy, scalability concerns limit its
practical applicability.

Model Selection Recommendations: For production envi-
ronments, Random Forest and LightGBM offer the optimal
balance of accuracy, stability, and computational efficiency.

D. Challenges and Limitations

Several challenges were encountered during this study:
Feature Engineering Constraints were evident as this study

relied primarily on static features extracted from malware
samples. Incorporating dynamic behavioral features such as
API call sequences and network traffic patterns could further
enhance classification performance.

Dataset Generalization presents another concern since while
the Microsoft dataset provides a solid foundation, real-world
malware detection faces continuously evolving threats. Future
work should evaluate model performance on contemporary
malware samples and emerging attack vectors.

Class Imbalance Considerations must also be addressed,
as although our refined dataset maintains balanced class distri-
bution, real-world scenarios typically exhibit significant class
imbalance where benign samples vastly outnumber malware
instances. Addressing this through cost-sensitive learning or
advanced sampling techniques represents an important future
direction.

Hyperparameter Optimization limitations were apparent
since the current study employed default hyperparameters
for most algorithms. Systematic hyperparameter tuning using
GridSearchCV or RandomizedSearchCV could potentially
improve performance, particularly for XGBoost and SVM
models.

E. Future Research Directions

Future investigations should explore several promising direc-
tions. Deep learning integration through evaluating Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) for malware detection represents a natural evolution
of this work. Dynamic feature incorporation by including
behavioral analysis features such as API call sequences and
runtime behavior patterns could significantly enhance detec-
tion capabilities. Adversarial robustness assessment against
malware samples specifically designed to evade detection
systems presents a critical research challenge. Additionally, real-
time performance optimization through developing lightweight

model variants suitable for edge computing and real-time detec-
tion systems would address practical deployment requirements
in cybersecurity environments.

VI. CONCLUSION

This study systematically evaluated eight machine learning
models for malware detection using stratified 5-fold cross-
validation, assessing both accuracy and stability through
variance analysis. The results demonstrate clear performance
hierarchies among the evaluated algorithms with significant
implications for cybersecurity applications.

Tree-based models, particularly RF, LightGBM, DT, and
KNN, achieved exceptional performance with accuracy of
0.9918 and AUC-ROC of 0.9998, while maintaining minimal
variance (< 10−6). These models demonstrated remarkable
stability across data splits, effectively capturing complex
feature interactions in malware behavior patterns. Conversely,
Logistic Regression and Naive Bayes underperformed with
accuracy of 0.9386 and higher variance (∼ 10−4) due to their
linear assumptions, which fail to model complex malware
characteristics.

Notably, KNN’s exceptional performance suggests that
malware and benign samples form distinct clusters in the
feature space, validating our feature engineering approach.
XGBoost’s moderate F1-score (0.9385) indicates potential
overfitting, highlighting the importance of hyperparameter
optimization for gradient boosting algorithms.

For practical deployment, we recommend Random Forest and
LightGBM due to their optimal balance of accuracy, stability,
and computational efficiency. Our analysis emphasizes the
critical importance of variance-aware evaluation alongside accu-
racy metrics for cybersecurity applications, ensuring consistent
performance across diverse threat environments.

Future research should focus on integrating deep learning
approaches, incorporating dynamic behavioral features, and
developing adversarial robustness against evolving evasion
techniques to advance practical malware detection capabilities.
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