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Abstract—This paper presents a Simultaneous Localization 
And Mapping (SLAM) and Moving Object Tracking (MOT) 
method using a small and lightweight solid-state Light Detection 
And Ranging (LiDAR) attached to a rider helmet for 
micromobilities, such as bicycles, e-bikes, and e-kick scooters. 
Distortions in LiDAR point cloud data caused by the movement of 
the micromobility and head motion of the rider are corrected 
using the data from LiDAR and inertial measurement unit via a 
quaternion unscented Kalman filter. The corrected LiDAR point 
cloud data are classified into three classes: 1) point cloud data 
related to stationary objects, such as buildings and trees, 2) those 
related to road obstacles, such as curb stones and road debris, and 
3) those related to moving objects. The point cloud data related to 
stationary objects and road obstacles are used for environment 
mapping using normal distributions transform SLAM, whereas 
the point cloud data related to moving objects are used for MOT 
using Kalman filter. Results from experiments conducted at our 
university campus demonstrate the effectiveness of the proposed 
method. 

 Keywords—helmet LiDAR; solid-state LiDAR, SLAM; moving-
object tracking; distortion correction; quaternion UKF; 
micromobility. 

I. INTRODUCTION 
In recent years, many studies have been conducted on active 

safety and automated driving of vehicles in Intelligent 
Transportation Systems (ITS) [1]. An important technology for 
active safety and automated driving of vehicles is Simultaneous 
Localization and Mapping (SLAM) to build an environment 
map using vehicle-mounted sensors, such as Light Detection 
And Ranging sensors (LiDARs) and cameras. Another 
important technology is Moving Object Tracking (MOT) to 
avoid collisions with surrounding moving objects. Accordingly, 
numerous SLAM and MOT (SLAMMOT) methods have been 
proposed [2]–[4].  

In a decarbonized society, micromobilities, such as bicycles, 
e-bikes, and e-kick scooters, attract attention as a means of short-
distance travel through urban regions [5]. Similar to ITS, active 
safety is necessary to reduce traffic accidents and increase the 
use of micromobilities. 

In our previous study [6], a SLAMMOT method based on 
information obtained from a LiDAR attached to the rider helmet 
for micromobility was proposed. In ITS, mechanical LiDARs, 
such as Velodyne and Ouster LiDARs, are widely used owing 
to their reliability and accuracy. The LiDAR used in our 

previous study for micromobility was bulky mechanical LiDAR, 
thus posing problems regarding practicality and usability. 

From the viewpoint of size and security, it is desirable to 
mount a small easily removable sensor on the micromobility 
handlebars or rider helmet. Modern technology includes a solid-
state LiDAR that is smaller and lighter than the mechanical 
LiDAR [7]. Solid-state LiDAR can substantially enhance active 
safety in micromobility. Recently, various studies have been 
conducted on SLAM and MOT methods using solid-state 
LiDAR [8]–[11] in ITS and mobile robotics. However, to the 
best of our knowledge, there are no studies that tackle 
SLAMMOT using solid-state LiDAR for micromobility 
application. 

Therefore, this paper presents a SLAMMOT method using a 
small and lightweight solid-state LiDAR attached to the rider 
helmet for micromobility． 

The LiDAR point cloud data within the sampling period 
cannot be captured simultaneously because LiDAR captures 
measurements by scanning a laser beam. Therefore, when the 
micromobility is moving or the rider head swings, the acquired 
LiDAR point cloud data are distorted, which deteriorates the 
SLAMMOT accuracy. 

Distortion in LiDAR point cloud data can be corrected by 
estimating the LiDAR self-pose in a shorter time than the 
LiDAR sampling period. Most conventional methods for 
distortion correction were based on linear interpolation and its 
variants of the LiDAR self-pose obtained at every acquired 
LiDAR sample [12][13]. In [14][15], distortion correction 
methods using the Extended Kalman Filter (EKF) and 
Unscented Kalman Filter (UKF) [16] were proposed to improve 
distortion correction. In our previous studies, Euler angles (i.e., 
roll, pitch, and yaw angles) were used to represent the LiDAR 
posture. When driving a micromobility, the head posture often 
changes considerably during safety confirmations, such as right-
left and up-down confirmations. Such large head motions of the 
rider may deteriorate the accuracy of distortion correction using 
Euler angle-EKF and UKF.  

This problem can be addressed using a quaternion instead of 
Euler angles as the angle representation. To accurately perform 
SLAMMOT even under large motions of the rider head, this 
paper proposes a quaternion-UKF-based distortion correction 
method. The remainder of this paper is organized as follows. 
Section II describes the experimental system. Section III 
presents an overview of SLAMMOT. Section IV explains the 
proposed distortion correction method for LiDAR point cloud 
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data, and Section V presents the classification method for these 
data. Section VI illustrates the effectiveness of the proposed 
method through experiments. Section VII presents our 
conclusions and future works. 

II. EXPERIMENTAL SYSTEM 
The overview of the experimental helmet is shown in Figure 

1. A MEMS solid-state LiDAR (Livox Mid-360) and Inertial 
Measurement Unit (IMU) (Xsens Mti-300) are mounted on the 
helmet. The weight of the LiDAR is 265 g. As shown in Figure 
2, the LiDAR has a maximum range of 40 m, horizontal and 
vertical Field-Of-View (FOV) of 360° and 59°, respectively, 
and resolution of 1.4°. The LiDAR acquires 96 measurement 
points every 0.48 ms. The sampling period of LiDAR 
measurements for SLAMMOT is set to 0.12 s in this study. 
Approximately 20,000 measurements can be obtained per 
LiDAR sampling period.  

Measurements of attitude (i.e., roll and pitch angles) and 
angular velocity (i.e., roll, pitch, and yaw angular velocities) are 
obtained from the IMU every 10 ms. The errors in attitude and 
angular velocity are less than ±0.3° and ±0.2°/s, respectively. 

III. OVERVIEW OF SLAMMOT 
The SLAMMOT process is shown in Figure 3. First, 

distortion in LiDAR point cloud data caused by the motion of 
the micromobility and rider head is corrected. Next, the self-
pose (i.e., three-dimensional (3D) position and attitude angle) of 
the rider helmet is calculated by Normal Distributions 
Transform (NDT) scan matching [17].  

As shown in Figure 4, two coordinate systems are defined: 
world coordinate system (Ow-xwywzw) fixed to the ground and 
helmet coordinate system (Oh-xhyhzh) fixed to the LiDAR. For 
simplicity, the helmet and LiDAR poses are considered to 
coincide. In the helmet coordinate system, a 3D voxel map with 
a cell size of 0.2 m per side is set. The LiDAR point cloud data 
acquired in one sampling period are mapped onto a voxel map 
and downsized using a voxel grid filter. In subsequent  

 

 
Figure 1.  Overview of the experimental helmet equipped with LiDAR and IMU. 

 

            
(a) Horizontal FOV                              (b) Vertical FOV 

Figure 2. LiDAR FOV. 

processing, the downsized point cloud data are used to estimate 
the helmet self-pose, and LiDAR point cloud data before 
downsizing are used for environment mapping and MOT. 

For the i-th (i = 1, 2, ... , n) measurement in LiDAR point 
cloud data, the coordinates in the world and helmet coordinate 
systems are denoted by phi = (xhi, yhi, zhi)T and pi = (xi, yi, zi)T, 
respectively. Thus, the following relation is obtained: 

( )
1 1

i hip p
Τ X

                             (1)  

where X indicates the position and attitude of the helmet, and T 
(X) denotes the corresponding homogeneous transformation 
matrix. 

In SLAM using NDT scan matching, a 3D voxel map with a 
cell size of 0.6 m per side is set in the world coordinate system. 
By superimposing the LiDAR point cloud data obtained at 
current time t (referred to as current point cloud data) and those 
obtained up to the previous time (t−1) (referred to as reference 
map), the helmet self-pose X at the current time is calculated. 
The current point cloud data are mapped onto the world 
coordinate system by performing a coordinate transformation 
using (1) and then merged into the reference map. 

Because LiDAR scans a laser beam, all point cloud data 
within one LiDAR sampling period cannot be obtained at a 
single location when the micromobility is moving or the rider  

 

 
Figure 3. SLAMMOT process. 

 

 
Figure 4.  Notation related to helmet motion. 
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head is swinging. Therefore, if all point cloud data within one 
LiDAR sampling period is transformed using the pose 
information of the helmet at the same time, distortion arises in 
the LiDAR point cloud data mapped onto the world coordinate 
system using (1). As distortion causes inaccurate results in 
SLAMMOT, distortion correction of LiDAR point cloud data is 
required. The proposed distortion-correction method using a 
quaternion UKF is described in the next section. 

Distortion-corrected LiDAR point cloud data are classified 
into measurements related to the road surface, road obstacles, 
stationary objects (e.g., buildings and trees) and moving objects 
(e.g., cars and pedestrians). Unevenness on road surfaces, such 
as obstacles on the road, ditches, and curbs, which can lead to 
falling accidents in micromobility, are detected as road obstacles. 
An environment map is built including stationary objects and 
road obstacles. LiDAR point cloud data related to moving 
objects (referred to as moving point cloud data) are used for 
MOT. The classification method is described in Section V. 

MOT is performed using our previous method [18]. The 
shape of a moving object is represented by a cuboid. The width 
and length of the object are extracted from moving point cloud 
data using the rotating caliper method [19], and the height of 
the object is determined from the height information in the 
moving point cloud data. A Kalman filter is applied to estimate 
the two-dimensional (2D) position and velocity of the moving 
object in the world coordinate system based on the centroid 
position of the extracted cuboid. When applying the Kalman 
filter, the object is assumed to be moving at an approximately 
constant velocity. In crowded environments, the rule-based data 
association method [18] is used to accurately match multiple 
moving objects with corresponding moving point cloud data. 

IV. DISTORTION CORRECTION OF LIDAR POINT CLOUD DATA 

A. Overview 
SLAMMOT is performed by mapping LiDAR point cloud 

data obtained in the helmet coordinate system onto the world 
coordinate system according to the helmet self-pose information. 
The self-pose is calculated every 120 ms (LiDAR sampling 
period) by NDT scan matching. However, all LiDAR point 
cloud data within the LiDAR sampling period cannot be 
captured simultaneously because LiDAR acquires 
measurements by scanning a laser beam. Consequently, when 
the micromobility is moving or the rider head is swinging, the 
LiDAR point cloud data mapped onto the world coordinate 
system are distorted. 

The distortion in LiDAR point cloud data is corrected by 
estimating the helmet self-pose at every LiDAR data 
acquisition instant in 0.4 ms interval. Distortion correction is 
based on a quaternion UKF using the self-pose calculated by 
NDT scan matching every 120 ms, as well as the attitude angle 
and angular velocity acquired from the IMU every 10 ms. 

B. State and Measurement Equations of Helmet  
As shown in Figure 4, in the helmet coordinate system, the 

quaternion [20] is defined by 0 1 2 3q q q qq i j k , where i, j, 
and k are the unit vectors along the xh, yh, and zh axes, 
respectively. The translational velocity of the helmet along the 
xh, yh, and zh axes is denoted by ( , ,x y zV V V ). The angular velocity 
(i.e., roll, pitch, and yaw angular velocities) captured from the 

IMU is denoted by ( , , ), and its bias is denoted by 
( , ,bias bias bias ).  

It is assumed that the translational velocity of the helmet is 
nearly constant in a short period. Hence, the state equation for 
helmet motion is given by: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 2 12 3 13
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where (x, y, z) is the position of helmet in the world coordinate 
system. 2

1 / 2
xx Va V w  , 2

2 / 2y Vya V w  , 3 za V
2 / 2

zVw  , 2 2 2
0 1 2 3b b b b  , 1 biasb w  , 2 biasb w  , 

and . 3 biasb w  . ( , , ,Vx Vy Vzw w w , , , ,
bias

w w w w ,
biasbias

w w  ) 
indicate disturbances (plant noise).  is the sampling period. rmn 
(m, n = 1, 2, 3) is element (m, n) of the following rotation 
matrix: 

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

2( ) 2( )
2( ) 2( )
2( ) 2( )

q q q q q q q q q q q q
q q q q q q q q q q q q
q q q q q q q q q q q q

R  (3) 

Noted that the angular velocities from the IMU are considered 
as a system input in (2). 

The attitude (i.e., roll and pitch angles) of the helmet, which 
is obtained from the IMU every 10 ms, is denoted by ( )tIMUz . The 
measurement equation of ( )tIMUz  is given by  

( )32

( ) ( )( )33

( )31

arctan

arcsin( )

t

t ttIMU IMU

t

r
r
r

z z                  (4) 
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where IMUz  represents the measurement noise. 
The helmet self-pose obtained by NDT scan matching every 

120 ms is denoted by ( )tNDTz . The measurement equation of ( )tNDTz  
is expressed as  

( )

( )

( )

( )32
( ) ( )

( )33

( )31

( )21

( )11

arctan

arcsin( )

arctan

t

t

t

t
t tNDT NDT

t

t

t

t

x
y
z

r
r
r
r
r

z z                (5)  

where NDTz  represents the measurement noise. 
Equations (2), (4), and (5) are represented in the vector form 

as follows: 

( 1) ( ) ( ) ( ), ,t t t tξ f ξ u w                               (6) 
( ) ( ) ( )[ ]t t tIMU IMU IMUz h ξ z                        (7) 
( ) ( ) ( )[ ]t t tNDT NDT NDTz h ξ z                        (8) 

where 0 1 2 3 4( , , , , , , , , , , , , , )T
x y z bias bias biasx y z q q q q q V V Vξ  

( , , )Tu , and ( , , , , , , ,
biasVx Vy Vzw w w w w w ww

, )
biasbias

Tw w . 

C. Distortion Correction Using Quaternion UKF  
The process of distortion correction of LiDAR point cloud 

data is shown in Figure 5. The LiDAR sampling period of 120 
ms is denoted by . The IMU sampling period of 10 ms and 
LiDAR data acquisition period of 0.48 ms are denoted by τIMU 
and Δτ, respectively. Hence, τ = 12τIMU  and τIMU = 21Δτ． 

Distortion in LiDAR point cloud data between times t and 
( 1)t , where t = 0, 1, …, is corrected in the following five 
steps: 

Step 1. State prediction in IMU sampling period τIMU 
The state estimate and its error covariance at time t

IM Uk , where k = 0, …, 11, are denoted by ( )
( )ˆ k
tξ  and ( )

( )
k

tΞ , 
respectively. As the dimensions of state variable ξ  and plant 
noise w in state equation (6) are 13 and 9, respectively, the 
following 22-dimensional augmented system of ( )

( )ˆ k
tξ  and 

( )
( )

k
tΞ  is defined: 

( )
( ) ( )ˆ ˆ[ ,0 ]a k T T T
t tξ ξ                                 (9) 
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( )
0

0

k
ta

t
Ξ

Ξ
Q

                                  (10) 

where Q is the covariance of plant noise w. 
From (9) and (10), 45 sigma points are calculated as 

follows: 

( ) ( )0
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a
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Figure 5.  Process of distortion correction. 

 
where ( )( )a

t iΞ  and ( ) 22( )a
t iΞ  are the i-th and (i-22) th 

column vectors, respectively, of the square root of ( )
a

tΞ . 
Hyperparameter is set to in this study. 

The state prediction at time ( 1) IMUt k  for the sigma 
points is calculated as  

( 1/ ) ( ) ( )
( ) ( ) ( ) ( ), ,k k k w k
t t t ti i iχ f χ χ u               (12) 

where ( )
( )

k
tiχ  and ( )

( )
w k

tiχ  are the components of the 13-
dimensional state variable and 9-dimensional plant noise, 
respectively, of the 22-dimensional sigma points obtained in 
(11).  

Therefore, state prediction ( 1/ )
( )ˆ k k
tξ  and its error covariance 

( 1 / )
( )

k k
tΞ at time ( 1) IMUt k  are given by  

 

44
( 1/ ) ( 1/ )

( ) ( )
0

44
( 1/ ) ( 1/ ) ( 1/ )

( ) ( ) ( )
0

ˆ

ˆ

k k k k
t ti i

i

Tk k k k k k
t t ti i

i

ξ χ

Ξ χ ξ
    (13) 

where 0 / (22 )  and / (44 2 )i  ( 0i ). 

Step 2. State estimate using angular information from IMU 
Attitude angle IMUz  is obtained from the IMU at time t

( 1) IM Uk . Then, the measurement prediction at time 
( 1) IMUt k  for sigma points in (11) is calculated as  

( 1/ ) ( 1/ )
( ) ( )[ ]k k k k
t tIMUi IMU iζ h χ                       (14) 

The measurement prediction and its error covariance at time 
( 1) IMUt k  are given by  

44
( 1/ ) ( 1/ )

( ) ( )
0

44
( 1/ ) ( 1/ ) ( 1/ )

( ) ( ) ( )
0

k k k k
t tIMU i IMUi

i

Tk k k k k k
t t tIMU i IMUi IMU IMU

i

ζ ζ

Z ζ ζ R
   (15) 

where RIMU is the covariance of measurement noise IMUz . 
The state estimate and its error covariance are then given by 

( 1) ( 1/ ) ( 1) ( 1/ )
( ) ( ) ( ) ( ) ( )

( 1) ( 1/ ) ( 1/ )
( ) ( ) ( ) ( ) ( )

ˆ ˆk k k k k k
t t t t tIMU IMUi

k k k k k T
t t t t tIMU

zξ ξ K ζ

Ξ Ξ K Z K
         (16) 
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where Kalman gain K is expressed as  
44

( 1/ ) ( 1/ ) ( 1/ ) ( 1/ ) ( 1/ ) 1
( ) ( ) ( ) ( ) ( ) ( )

0

ˆ ( )
Tk k k k k k k k k k

t t t t t ti i IMUi IMU IMU
i

K χ ξ ζ ζ Z   

(17) 

Of the state estimate ( 1)
( )ˆ k
tξ , the state estimate for the 

helmet self-pose is denoted by ( 1)
( )ˆ k
tX .  

Step 3. State prediction in LiDAR observation period Δτ 
Using self-poses ( )

( )ˆ k
tX  and ( 1)

( )ˆ k
tX , which are estimated at 

t IMUk  and t + ( 1) IM Uk , resepectively, self-pose 
( )

( , )ˆ k
t jX  at IMU jt k （ j = 1–21）  is given by the 

following interpolation formula: 
( 1) ( )

( ) ( )( ) ( )
( , ) ( )

ˆ ˆˆ ˆ
k k

t tk k
t j t

IMU

jX XX X               (18) 

Step 4. Coordinate transformation of LiDAR point cloud data  
The coordinates of the i-th measurement of LiDAR point 

cloud data obtained at IMU jt k  are denoted by ( )
( , )

k
t jhip  

in the helmet coordinate system and by ( )
( , )

k
t jip  in the world 

coordinate system. ( )
( , )

k
t jhip  can be transformed into ( )

( , )
k

t jip  
based on ( )

( , )ˆ k
t jX  and (1) as follows: 

( )( ) ( , ) ( , )( )
( , )ˆ( )

1 1

kk t j t ji k hi
t j

p pΤ X                    (19) 

Based on helmet self-pose (12)
( )ˆ tX  obtained at time 

( 1) ( 12 )IM Ut t , ( )
( , )

k
t jip  is transformed into *

( 1)thip  
at ( 1)t  as follows: 

* ( )
( 1) ( , )(12 ) 1

( )ˆ( )
1 1

k
t t jhi i

t
p pΤ X                (20) 

The above equation means that the coordinates of LiDAR 
point cloud data obtained between times t  and ( 1)t  can 
be transformed into those obtained at time ( 1)t . 

Step 5. State estimate using self-pose by NDT scan matching 
in LiDAR sampling period  

LiDAR point cloud data corrected in step 4 are used as 
current point cloud data at ( 1)t , and helmet self-pose 

NDTz  is calculated using NDT scan matching. Based on (16), 
state estimate (12)

( )ˆ tξ  and its error covariance (12)
( )tΞ  at time 

( 1)t  are obtained using IMU information. The state 
estimate and its error covariance are considered as a priori 
information, and the helmet state is estimated using pose 
mesurement NDTz  at time ( 1)t . 

First, 27 sigma points are obtained as follows: 
(12)

( 1) ( )0

(12) (12)
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Then, the measurement prediction at time ( 1)t  for the 
sigma points in (21) is calculated by: 

( 1) ( 1)[ ]t tNDTi NDT NDTiζ h χ                     (22) 

The measurement prediction and its error covariance at time 
( 1)t  are given by  

26

( 1) ( 1)
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26
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0
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i
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ζ ζ
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where 0 / (13 )  and / (26 2 )i  ( 0i ). RNDT is the 
covariance of the measurement error NDTz . 

The state estimate and its error covariance are then given by 

(0) (12)
( 1) ( ) ( 1) ( 1) ( 1)
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( 1) ( ) ( 1) ( 1) ( 1)

ˆ ˆt t t t tNDT NDT

T
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where Kalman gain K is expressed as 
26

(12) (12) 1
( 1) ( 1) ( ) ( 1) ( 1) ( )

0

ˆ ( )
T

t t t t t ti NDTi NDTi NDT
i
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 (25) 

V. CLASSIFICATION OF LIDAR POINT CLOUD DATA 
The current LiDAR point cloud data contain various 

measurements related to road surfaces, road obstacles, stationary 
objects, and moving objects. Therefore, they are classified, and 
the measurements related to stationary objects and road 
obstacles are used to build an environment map. The 
measurements related to moving objects are used for MOT. 

First, the current LiDAR point cloud data are classified into 
measurements related to the road surface, objects, and road 
obstacles, such as curbs and falling objects, using a ground-
plane fitting method [21]. 
 In the helmet coordinate system, a 2D polar grid map is set, 
as shown in Figure 6. LiDAR point cloud data are mapped onto 
the grid map. The cell size in the grid map depends on the 
distance from the LiDAR, such that the number of LiDAR point 
cloud datapoints occupied in each cell is comparable.  

In each cell, 20 LiDAR measurements with the lowest 
heights are extracted as candidate measurements related to road 
surfaces. Then, by applying principal component analysis to the 
candidate measurements, the plane represented by the following 
equation is estimated: 

A (x - xg) + b (y - yg) + c (z - zg) = 0                (26) 

where (a, b, c) is the eigenvector of the third principal  
 

 
Figure 6.  2D polar grid map. 
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component for the candidate measurements in each cell, and (xg, 
yg, zg) is the geometrical center of the candidate measurements. 

The normal distance L of each LiDAR point cloud datapoint 
to the estimated plane is calculated, and LiDAR point cloud data 
are classified as follows: 
・L < 0.1 m: LiDAR measurements related to road surfaces, 
・0.1 m ≤ L < 0.25 m: LiDAR measurements related to road 
obstacles, 
・L ≥ 0.25 m: LiDAR measurements related to objects. 

Then, the LiDAR measurements related to road obstacles are 
used to build a road obstacle map.  

LiDAR measurements related to objects extracted above 
comprise measurements related to stationary and moving 
objects. Therefore, the occupancy grid method is used to further 
classify the measurements related to objects into those of 
stationary and moving objects. 

A 2D orthogonal grid map (elevation map) with a cell size 
of 0.3 m per side is set in the world coordinate system. LiDAR 
measurements related to objects are mapped onto the elevation 
map. LiDAR measurements related to moving objects occupy 
the same cells for a short time, while those related to stationary 
objects occupy the same cells for a long time. Therefore, LiDAR 
measurements related to stationary and moving objects can be 
classified by measuring the cell occupancy time [18]. In this 
study, the threshold of occupancy time is set to 0.8 s. 

Then, LiDAR point cloud data related to stationary and 
moving objects are used for SLAM and MOT, respectively.  

VI. FUNDAMENTAL EXPERIMENTS 
An environment map is built by driving a micromobility 

(bicycle) on a roadway at our university campus, as shown in 
Figure 7. The distance traveled of the micromobility is 450 m, 
and its maximum speed is 15 km/h. At the locations indicated 
by the blue and yellow circles in Figure 7 (a), the rider moves 

his head in the right-left and rearward directions, respectively. 
At the location indicated by the green circle, the rider lowers his 
head to pick up an object placed on the road. In the experiments, 
LiDAR point cloud data are recorded, and SLAMMOT is 
executed offline on a laptop computer.  

Figure 8 shows the mapping results. The environment map 
is properly built the proposed method. To evaluate the mapping 
performance, experiments in the following three conditions are 
conducted. 
• Condition 1: Mapping using quaternion-UKF-based distortion 

correction (proposed method), 
• Condition 2: Mapping using Euler angle-UKF-based distortion 

correction (previous method in [15]), 
• Condition 3: Mapping without distortion correction. 

The performance of SLAM-based mapping is equivalent to 
that of self-pose estimation. Therefore, the error in the helmet 
self-position estimate at the goal position is obtained when the 
micromobility is driven. The micromobility was driven three 
times under each condition. Table I lists the results. The 
proposed method (condition 1) can build an environment map 
more accurately than the methods evaluated in conditions 2 and 
3. 

The micromobility was moved six times along the path 
shown in Figure 7 (a). Then, 219 moving objects (209 
pedestrians and 10 cars) were tracked. Table II shows the 
tracking result: the number of correct and incorrect tracking. 
From the results, our proposed method (condition 1) achieves 
the highest MOT accuracy. The reason for the false tracking is 
that the safety confirmation by the rider causes a large posture 
change in his head, which prevents accurate mapping of 
stationary point cloud data. Untracked objects are all people. 
This is due to the inability to both distinguish between people 
in close proximity and recognize pedestrians due to occlusions 
by trees and shrubbery, as shown in Figure 7 (b). 

 
 

     
(a) Top view.                                                                                                         (b) Side view in area 1. 

Figure 7. Photo of experimental environment. In (a), the red line indicates movement path of micromobility in roadway. 
 

   
(a) Overall map (top view).                                                                              (b) Enlarged map of area 1 (bird’s-eye view). 

Figure 8. Mapping results. The black and red dots indicate LiDAR point cloud data related to stationary objects and road obstacles, respectively.   
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TABLE I. ERROR OF POSITION ESTIMATE OF HELMET AT GOAL POSITION 

 Condition 1 Condition 2 Condition 3 
Run 1 1.57 m 2.32 m 3.01 m 
Run 2 0.43 m 0.91 m 1.52 m 
Run 3 2.16 m 2.19 m 23.8 m 

 
TABLE II. NUMBER OF CORRECT AND INCORRECT TRACKING 

 Condition 1 Condition 2 Condition 3 
Correct 
tracking 198 167 161 

False 
tracking 41 58 73 

Untracking 21 52 58 

 

VII. CONCLUSION AND FUTURE WORK 
This paper presented a SLAMMOT method using a small 

and lightweight solid-state LiDAR attached to the rider helmet 
of a micromobility. To improve the performance of SLAMMOT 
during motion of micromobility and rider’s head, the distortion 
in LiDAR point cloud data was corrected using a quaternion-
UKF-based method. Fundamental experiments conducted at our 
university campus confirmed the effectiveness of the proposed 
distortion correction method compared to the conventional Euler 
angle-UKF-based method. 

In this paper, the SLAMMOT experiments were confined to 
a controlled environment. Future studies will evaluate 
SLAMMOT accuracy under varying intensities of rider’s head 
motions and in more diverse urban environments with higher 
traffic. Since a single motion model (i.e., constant velocity 
model) of target objects was assumed in MOT, tracking 
performance degrades when object motion suddenly change, 
such as during sudden starts or stops. To improve the MOT 
performance, an interacting multimodel estimator will be 
implemented. In addition, improving the mapping accuracy will 
be considered based on the fusion of SLAM-based environment 
maps built by many micromobilities. 

In the experiments, LiDAR point cloud data were recorded, 
and SLAMMOT was executed offline on a laptop computer. 
Since micromobility applications require energy- and 
processing-efficient solutions, the computational cost (e.g., 
processing time and energy consumption) of SLAMMOT 
should be considered to assess feasibility in embedded systems. 
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