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Abstract—This paper presents the development and evaluation
of different machine-learning models applied to classify objects
in high-voltage transmission lines using depth data captured by
a RealSense D415 camera. Four models, k-Nearest Neighbors
(kNN), Decision Tree, Neural Network (NN), and AdaBoost
(AB), were tested using simulated and real data collected in a
laboratory environment. The results show that the kNN and NN
models achieved robust performance, while the Decision Tree
model faced significant limitations due to excessive nodes and
the AB model struggled with the real-world data. Moreover, tests
with real data revealed noise in the images, which affected model
performance. This study also highlights the feasibility of using
depth cameras for autonomous inspection tasks, potentially re-
ducing costs and enhancing safety in high-voltage environments.

Keywords-RealSense; Machine Learning; Object Classification;
Transmission Lines; Autonomous Inspection.

I. INTRODUCTION

Inspecting high-voltage power lines is critical for ensuring
the safety and efficiency of electrical grids, as these structures
carry large amounts of energy over long distances and are
exposed to extreme weather conditions. Traditional inspection
methods, such as manual climbing and drone-based monitor-
ing, have significant limitations: while drones offer agility, they
are constrained by battery life and weather conditions, whereas
manual inspections, though precise, are costly and hazardous.
Key challenges include monitoring cable temperature, detect-
ing nearby obstacles, and assessing structural wear to prevent
failures and reduce maintenance costs.

Robotic automation has emerged as a promising solution,
enabling safer and more efficient inspections. However, a
robot must overcome obstacles such as support towers and
irregular structures to traverse an entire power line. Various
approaches have been proposed, including modular robots with
specialized locomotion units [1], transposition mechanisms
[2], and caterpillar-based robots capable of climbing jumpers
at 80° inclines [3]. Despite these advances, human operator in-
tervention remains necessary, highlighting the need for greater
autonomy.

Furthermore, a reliable electricity supply, directly impacted
by Transmission Line (TL) maintenance, is essential for socio-
economic development. Current inspections rely predomi-
nantly on visual and manual methods, which are prone to
human error and subjectivity, leading to increased service

interruptions and inefficient asset management. Thus, this
study proposes a predictive aerial inspection system com-
bining advanced technologies—such as thermal, spatial, and
reflectance sensing—with artificial intelligence to optimize TL
monitoring. The central hypothesis is that this multimodal
approach will improve the detection of critical issues—such
as cable wear, vegetation encroachment, and structural anoma-
lies—reducing operational costs and preventing power out-
ages.

This paper explores innovative solutions for autonomous
power line inspection, discussing technical challenges, recent
advancements, and the feasibility of an Artificial Intelligence
(AI)-supported multimodal system to overcome the limitations
of traditional methods. The second section reviews the state of
the art and identifies research gaps in this field. The third sec-
tion describes the developed system architecture. The fourth
section outlines the requirements for experimental evaluation.
The fifth section analyzes feature extraction methods. The
sixth section presents discussions and conclusions.

II. RELATED WORK

Autonomous inspection requires accurate detection and
classification of components using depth sensors and computer
vision. Pouliot et al. [4] validated the performance of the
UTM-30LX Light Detection and Ranging (LiDAR) sensor
for object identification and diameter estimation. The sensor
was mounted at a 45° angle under the robot, collecting 49
measurements per scan with a minimum detection distance of
0.9 meters. Their approach identified object edges and esti-
mated diameter and distance, though no classification model
was implemented.

Qin et al. [5] employed a LiDAR sensor to generate a
3D point cloud of transmission lines, isolating a single cable
and using 3D region-growing segmentation for object classi-
fication. Their method achieved 90.6% classification accuracy
with 98.2% precision.

Vision-based approaches have also been explored. Song et
al. [6] detected broken spacers using an Red, Green, Blue
(RGB) camera and morphological operations, segmenting the
spacer region to determine structural integrity. Zhu et al. [7]
classified dampers, spacers, and clamps using a structured
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Support Vector Machine (SVM) model, achieving an accuracy
of 96% for clamps and over 92% for other components.

These studies highlight the feasibility of autonomous in-
spection through depth sensing and computer vision. There-
fore, this project develops a real-time object classification
model for transmission lines using depth camera data from a
RealSense D415. The model must operate efficiently within
the robot’s embedded system constraints while managing
concurrent motion and sensor control.

III. SYSTEM ARCHITECTURE

This work is part of a broader project focused on developing
a fully autonomous robot for transmission line inspection. The
robot can traverse lines, overcome obstacles, and efficiently
collect data. In this context, object classification is essential
for enabling the robot to recognize and appropriately respond
to various components of the transmission line infrastructure,
such as insulators, dampers, and markers.

The camera was mounted on the robot, with objects po-
sitioned in front of it for data collection. The acquired data
was collected through direct communication with the Robot
Operating System (ROS), an open-source platform providing
tools and libraries to streamline robotic system development,
facilitating flexible integration of hardware, sensors, and con-
trol algorithms. The robot in development features two claws
for controlling speed and a body responsible for executing
obstacle-overcoming maneuvers. The robot’s specifications
are detailed in [8]. The overall operation of the system is
illustrated in Figure 1.

Figure 1. Operation diagram.

A. RealSense D415

The Intel RealSense D415 is a depth camera with stereo-
scopic infrared sensors for depth detection, widely used in
robotics and automation. It captures depth maps with a reso-
lution of 1280 × 720 and a field of view of 65° × 40°. The
camera has a depth accuracy of less than 2% at 2 meters
and a frame rate of up to 90 fps. Its balance of resolution
and accuracy makes it suitable for object classification in
transmission lines.

B. Object Classes to Be Detected

In this project, the object classes to be detected include:

• Polymeric Insulators: Devices used to isolate conductors
in high-voltage lines are essential for ensuring the safety
and efficiency of electrical systems.

• High-Voltage Line Markers: Visual markers placed
on high-voltage lines to improve visibility and reduce
accident risks.

• Dampers: Devices designed to mitigate vibrations and
shocks in transmission systems and line supports.

• No Obstacles: Scenarios where no objects are detected
in front of the robot, a key condition for its operation.

The comprehensive set of objects analyzed and detected
within the scope of this study is illustrated in Figure 2.

Figure 2. Objects to Be Detected.

IV. REQUIREMENTS FOR EXPERIMENTAL EVALUATION

Two primary data analyses were conducted for the devel-
opment of this project. Each analysis took place in different
environments and had specific objectives to evaluate the fea-
sibility and performance of the object classification model for
transmission lines using the RealSense camera. The procedures
and environments used in each step are detailed below.

A. Simulation-Based Problem Modeling and Analysis

The simulation aimed to replicate the realistic operating
conditions of the robot on a high-voltage transmission line as
closely as possible. Accordingly, the RealSense camera was
positioned identically to its final deployment setup—mounted
atop the robot, which was fixed to the simulated cable. The
objects in the simulation were modeled with high fidelity to
their real-world counterparts, matching both dimensions and
shapes (see Figure 3).

Figure 3. Components of the transmission line used in the simulation.

During the simulation, the robot was moved along the cable
linearly and constantly, simulating the scenario where the robot
traverses the transmission line under real-world conditions.
The camera capture rate was set to 10 Hz. The RealSense
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camera was configured to capture depth information up to 5
meters away, using a resolution of 1280x720 pixels, returning
grayscale images to the code, where each pixel represented
the depth measured for that position, as shown in Figure 4.

Figure 4. Depth image captured by the RealSense camera during the
simulation.

The depth data collected by RealSense was saved in Portable
Network Graphics (PNG) format due to the high fidelity
this format offers in preserving the visual details necessary
for subsequent analyses. The images generated during the
simulation were used to feed the machine learning model,
serving as the basis for training and evaluating the system.

B. Real-System Validation and Performance Analysis

The second stage of the project was conducted in a lab-
oratory environment. For this experiment, a section of a
transmission line was set up and divided into two segments,
each 5 meters long, where typical high-voltage line objects
such as insulators, markers, and dampers were fixed. These
objects were arranged along the segments to closely resemble
their placement in real lines, with the aim of maintaining as
much fidelity as possible with the field conditions, as shown
in Figure 5.

Figure 5. Setup of the experiment in the laboratory with the RealSense
camera.

Due to space limitations in the laboratory, an adaptation was
necessary for the position of the RealSense camera. Instead of
being positioned above the line, as it would be in the real
scenario, the camera was mounted on the bottom of the robot,
and the data was collected as if the line were upside down.
This adaptation allowed the camera to capture the objects
like it would in the field, albeit with the orientation inverted.
As in the simulation, the robot was controlled linearly and
constantly, ensuring uniform data collection along the line
segments. For this experiment, the RealSense camera was
configured to operate at 15 Hz, returning grayscale images
to the code, as illustrated in Figure 6.

As in the simulation, the depth data captured by the Re-
alSense camera was stored in PNG format, preserving the

Figure 6. RGB (for reference) and depth image captured by the RealSense
camera in the laboratory.

necessary details for subsequent analysis and machine learning
applications.

C. Simulated and Real Experimental Data Processing

The data was divided into two categories: raw data, which
represented the originally captured images, and processed
data, which underwent preprocessing using a simple edge
detection algorithm, as illustrated in Figures 7-12.

Figure 7. Algorithm applied to the simulated marker image.

Figure 8. Algorithm applied to the simulated damper image.

Figure 9. Algorithm applied to the simulated insulator image.

Figure 10. Algorithm applied to the real marker image.
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Figure 11. Algorithm applied to the real damper image.

Figure 12. Algorithm applied to the real insulator image.

Data processing aimed to rapidly and efficiently simplify
the images, eliminating the requirement to execute a more
complex model to accomplish this task. For this purpose,
an edge detection Algorithm 1 was used. This algorithm is
efficient and fast, capable of highlighting the leading edges in
the grayscale depth images. It calculates the depth intensity
difference between adjacent pixels horizontally and vertically.
Extreme values are not wished; the edge detection result is
limited to a maximum value of 255.

Algorithm 1 Edge Detection Algorithm
1: for for each row i of the image, from bottom to top do
2: for for each column j, from right to left do
3: gray_index = i× img_width+ j
4: if i == 0 or j == 0 then
5: Set img[gray_index] = 0
6: else
7: Horizontal difference:

diffx = img[gray_index]− img[gray_index− 1]
8: Vertical difference:

diffy = img[gray_index] − img[gray_index −
img_width]

9: Magnitude of difference:
derivative =

√
diff2

x + diff2
y

10: Set:
11: img[gray_index] = min(derivative, 255)
12: end if
13: end for
14: end for

In addition to simplifying the images, this method of de-
riving the image also helps normalize the data. Since the data
represents depth, the distance between elements of the same
object is constant, regardless of the distance from the camera
to the object. This means that even if the distance between
the camera and the object varies, the derivative of these
distances will not be affected, keeping the edges consistent.
This characteristic makes the method robust against variations

in the distance between the robot and the objects, ensuring
uniform edge detection independent of the camera’s position.
Furthermore, the algorithm allows for the visualization of
objects hidden in the images, making visible those that would
not be perceptible to the naked eye. Figure 13 illustrates
how data normalization affects visualization, clearly showing
previously visible objects.

Figure 13. Example of data normalization and visualization of hidden objects
(marker).

D. Organization of the Implemented Machine Learning Mod-
els

Due to the absence of a benchmark for this project, several
machine learning models were tested to determine the most
efficient for classifying objects on power lines. The models
evaluated were k-Nearest Neighbors (kNN), Decision Tree,
Neural Network, and AdaBoost.

The kNN model was configured with k = 6, Mahalanobis
distance, and distance-based weights. The neural network had
three hidden layers (128, 64, and 32 neurons), Rectified Linear
Unit (ReLU) activation, and used the Adam optimizer. The
AdaBoost classifier was implemented with the Samme. R
variant, suitable for multiclass classification. The decision tree
was also tested due to its interpretability and computational
efficiency.

1) Feature Extraction Using SqueezeNet: To enhance the
representativeness of the depth data, a feature extraction step
was implemented using SqueezeNet, a lightweight Convolu-
tional Neural Network (CNN) designed for efficient feature
extraction with low computational cost.

SqueezeNet was applied to grayscale depth images to extract
compact visual representations, which were then used as input
for the supervised learning models. This approach improved
classification efficiency by focusing on relevant image features
instead of raw data.

2) Feature Extraction Using Mean and Variance: As an al-
ternative to convolutional neural networks, a statistical feature
extraction approach using mean and variance of grayscale
depth images was applied.

The mean represents the average depth value in each
image, providing an estimate of object distance, while the
variance quantifies depth dispersion, capturing surface irregu-
larities. This method offers a computationally efficient way to
summarize image characteristics, facilitating classification in
resource-constrained environments.
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3) Training and Validation: The Orange software was used
for model training, a machine learning platform that offers a
visual interface for creating and evaluating models. The tests
were performed using 10-fold cross-validation.

V. ANALYSIS OF FEATURE EXTRACTION METHODS

This section presents the results obtained after training four
machine learning models using different feature extraction
methods from depth images. The approaches include statistical
features (mean and variance) and deep learning-based feature
extraction using SqueezeNet, which is applied to raw and
derivative images. The models were evaluated with simulation
and real sensor measurement data, allowing for a comparative
analysis of their performance under different conditions.

A. Evaluation Metrics

To assess model performance, we used several classification
metrics, including Area Under the Receiver Operating Charac-
teristic (ROC) Curve (AUC), Class Accuracy (CA), F1-Score,
Precision (Prec), Recall, and Matthews Correlation Coefficient
(MCC). These metrics provide a comprehensive evaluation
by considering different aspects of classification performance,
such as class balance, precision-recall trade-offs, and overall
correlation with proper labels.

B. Simulation Results

This subsection presents the results obtained for the ma-
chine learning models trained using the simulation data. The
results are divided based on the different types of images and
extracted features, including the raw image, the derived image,
and the mean and variance features.

1) Raw Image: The models were trained using the raw
depth images without any additional processing. The results
for the four tested models are presented in Table I.

TABLE I. RESULTS OF RAW SIMULATION IMAGES.

Model AUC CA F1 Prec Recall MCC
KNN 1.000 0.998 0.998 0.998 0.998 0.997
NN 1.000 0.997 0.997 0.997 0.997 0.996
Tree 0.995 0.993 0.993 0.993 0.993 0.990
AB 0.996 0.994 0.994 0.994 0.994 0.991

2) Derived Image: The models were trained using the
derived depth images, applying the edge detection technique
described earlier. The results are shown in Table II.

TABLE II. RESULTS OF DERIVED SIMULATION IMAGES.

Model AUC CA F1 Prec Recall MCC
KNN 1.000 1.000 1.000 1.000 1.000 1.000
NN 1.000 1.000 1.000 1.000 1.000 1.000
Tree 0.998 0.997 0.997 0.997 0.997 0.997
AB 0.999 0.999 0.999 0.999 0.999 0.998

TABLE III. RESULTS OF RAW SIMULATION IMAGES FEATURES.

Model AUC CA F1 Prec Recall MCC
KNN 0.985 0.927 0.926 0.927 0.927 0.902
NN 0.985 0.906 0.904 0.914 0.906 0.877
Tree 0.923 0.867 0.865 0.865 0.867 0.820
AB 0.913 0.870 0.870 0.870 0.870 0.825

3) Mean and Variance of Raw Image: The models were
trained using the mean and variance features extracted from
the raw images, and the results are presented in Table III.

4) Mean and Variance of Derived Image: The models were
trained using the mean and variance features extracted from
the derived images. The results for the four models tested are
presented in Table IV.

TABLE IV. RESULTS OF DERIVED SIMULATION IMAGES FEATURES.

Model AUC CA F1 Prec Recall MCC
KNN 0.990 0.963 0.963 0.964 0.963 0.950
NN 0.988 0.878 0.872 0.881 0.878 0.838
Tree 0.968 0.932 0.932 0.932 0.932 0.908
AB 0.957 0.936 0.936 0.936 0.936 0.913

C. Real Data Results

In this subsection, we present the results obtained for the
machine learning models trained using real data collected by
the sensor. The results are divided based on different types of
images and extracted features, including raw image, derived
image, and mean and variance features.

1) Raw Image: The models were trained using raw-depth
images without any additional processing. The results are
represented in Table V.

TABLE V. RESULTS OF RAW REAL IMAGES.

Model AUC CA F1 Prec Recall MCC
KNN 0.992 0.940 0.940 0.940 0.940 0.920
NN 0.996 0.958 0.958 0.958 0.958 0.943
Tree 0.848 0.747 0.747 0.748 0.747 0.661
AB 0.825 0.738 0.739 0.740 0.738 0.649

2) Derived Image: The models were trained with the de-
rived depth images, utilizing the previously described edge
detection technique, as presented in Table VI.

TABLE VI. RESULTS OF DERIVED REAL IMAGES.

Model AUC CA F1 Prec Recall MCC
KNN 0.991 0.948 0.948 0.948 0.948 0.930
NN 0.996 0.952 0.952 0.952 0.952 0.936
Tree 0.877 0.803 0.804 0.805 0.803 0.737
AB 0.875 0.813 0.814 0.814 0.813 0.749
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3) Mean and Variance of Raw Image: The models were
trained based on the mean and variance features obtained from
the raw images. The results for the four tested models are
displayed in Table VII.

TABLE VII. RESULTS OF RAW REAL IMAGES FEATURES.

Model AUC CA F1 Prec Recall MCC
KNN 0.926 0.752 0.751 0.752 0.752 0.667
NN 0.929 0.722 0.721 0.722 0.722 0.627
Tree 0.832 0.689 0.689 0.690 0.689 0.584
AB 0.785 0.680 0.679 0.678 0.680 0.570

4) Mean and Variance of Derived Image: The models were
trained using the mean and variance features extracted from
the derived images. It is showed in the Table VIII.

TABLE VIII. RESULTS OF RAW DERIVED IMAGES FEATURES.

Model AUC CA F1 Prec Recall MCC
KNN 0.942 0.780 0.779 0.778 0.780 0.704
NN 0.933 0.728 0.728 0.729 0.728 0.637
Tree 0.846 0.717 ee 0.717 0.717 0.621
AB 0.813 0.721 0.721 0.721 0.721 0.626

VI. DISCUSSIONS AND CONCLUSIONS

The results highlight significant differences in the model’s
performance between simulated and real-world data, mainly
due to variations in image capture conditions.

A. Difference Between Simulation and Real-World Data

In the simulation, the controlled environment with clean-
depth images led to near-perfect model performance, with
kNN and Neural Networks achieving an AUC of 1.000.
However, real-world data from the RealSense camera intro-
duced noise from lighting, reflections, and depth variations,
reducing the model’s accuracy. This discrepancy underscores
the challenge of adapting models trained in idealized con-
ditions to real-world scenarios, where sensor limitations and
environmental factors impact classification performance.

B. Laboratory Environment Limitations

Unlike those of a real power transmission line, the labora-
tory’s spatial and lighting constraints led to considerable noise
in the images captured by the RealSense camera, complicating
object identification. Additionally, the camera’s position at the
bottom of the robot, capturing data as if the transmission line
were upside down, introduced further discrepancies that would
not occur in a real-world inspection, potentially affecting
model performance.

C. Model Performance

While simple and interpretable, the Decision Tree model
became excessively large and complex in this project due to
the variations in simulated and real-world depth images. It
generated an impractical structure, losing its main advantage

of clear decision rules, especially when exposed to noise in
real-world data.

The k-Nearest Neighbors (kNN) model showed strong con-
sistency in both simulated and real-world data, with perfect
AUC (1.000) and a slight drop to 0.991 and 0.948 for
real-world data. kNN effectively handled noise, especially in
derived images, thanks to the Mahalanobis distance metric.

The Neural Network excelled in simulated data with an
AUC of 1.000 but also performed well on real-world data
(AUC of 0.996) despite noise. However, its higher compu-
tational cost compared to kNN could be a limitation for
embedded systems.

AdaBoost performed well on simulated data (AUC of 0.996
and 0.999 for raw and derived images) but struggled with
real-world data, with AUCs of 0.825 and 0.875. The model’s
performance was compromised by noise, leading to overfitting
and reduced generalization ability.
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