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Abstract—This paper presents a novel architecture for shadow 

removal that leverages semantic segmentation to divide the 

image into distinct regions: shadow areas, foreground areas, 

and shadow boundaries. To capture the intricate interactions 

among these regions, the model incorporates a self-attention 

mechanism. To tackle the persistent issue of shadow boundary 

residues found in existing models, this approach introduces a 

shadow feature fusion mechanism. This mechanism employs 

area attention to accurately blend features across different 

regions, enhancing the natural transition at shadow edges and 

improving shadow region restoration quality. Experimental 

results on public datasets validate the model’s effectiveness in 

shadow recovery and detail preservation, as evidenced by 

metrics such as Structural Similarity Index Measure (SSIM) 

and Root Mean Square Error (RMSE). Additionally, the model 

demonstrates strong generalization across various test settings, 

highlighting its practical applicability for shadow removal 

tasks. 

Keywords- Shadow removal; Area attention; Shadow region 

restoration; SSIM; RMSE. 

I. INTRODUCTION 
 

     In the past decade, deep learning has driven major 
advances in image processing, with models like 
Convolutional Neural Networks [1] and Vision Transformers 
[2] greatly improving the accuracy and efficiency of image 
analysis. 

Shadow removal remains a key challenge in image 
processing due to its impact on visual quality and algorithm 
performance. Shadows can distort object boundaries and 
colors, hindering tasks like object detection, face recognition, 
and scene parsing, especially in outdoor settings. Effective 
shadow removal is essential for improving both image clarity 
and recognition accuracy [3]. 

Shadow removal research faces key challenges, including 
limited and less diverse datasets like Image Shadow Triplets 
Dataset (ISTD) [4], SRD [5], and SBU [6], which hinder 
model robustness. Shadow variations caused by lighting and 
object interactions further complicate detection, especially 
when shadow and object colors are similar. This study aims to 
develop more accurate and adaptable deep learning-based 
shadow removal models to advance image processing 
applications. 
       This paper integrates Segment Anything Model (SAM) 
[7], Swin Transformer [8], and U-Net [9] with a selective 
shadow fusion mechanism to build an efficient shadow 

removal model. SAM provides zero-shot segmentation using 
pre-trained masks, the Swin Transformer captures global 
shadow context through window attention, and U-Net excels 
at restoring fine image details. Together, they enable accurate 
shadow detection and natural, high-quality shadow-free image 
reconstruction. 

The paper is organized as follows: Section 1 outlines the 
background and motivation for shadow removal. Section 2 
reviews related work and deep learning approaches. Section 3 
details the methodology, including experimental setup and 
model design. Section 4 presents and analyzes the results. The 
final section summarizes key findings and future directions. 

II. RELATED WORK 

A. Related Reseach 

In recent years, shadow removal has advanced through 

both physical modeling and deep learning techniques. 

STacked Conditional Generative Adversarial Network (ST-

CGAN) [4] uses dual Conditional-GANs to jointly learn 

shadow detection and removal in a unified framework. 

SP+M-Net [10] combines deep networks with a linear 

illumination model to simulate shadows and predict lighting 

parameters. Mask-ShadowGAN [11] applies Cycle-GANs 

[15] to unpaired data, removing shadows without needing 

paired training samples. Auto-Exposure [12] enhances 

lighting consistency by automatically adjusting exposure 

across shadowed regions. CRFormer [13] leverages a 

Transformer with unidirectional attention for efficient pixel 

restoration. SpA-Former [14] merges Transformer and 

Convolutional Neural Network (CNN) architectures with 

spatial attention for fast, accurate single-stage shadow 

removal. 

B. Transformer 

(1) Attention is All You Need 

The Transformer [16] replaced Recurrent Neural 
Networks (RNNs) [17] and Long Short-Term Memory 
networks (LSTMs) [18] by enabling parallel processing of 
sequence data, greatly improving training efficiency. It uses 
multi-head attention in layered encoders and decoders to learn 
complex patterns. Positional encoding with sine and cosine 
functions helps retain token order despite parallel input 
processing. 
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The self-attention mechanism in Transformers computes 
relationships between tokens by converting inputs into 
queries, keys, and values. Attention scores from query-key dot 
products are normalized with softmax and used to weight the 
value vectors, enabling the model to capture long-range 
dependencies effectively. 

(2) Swin Transformer 

The Swin Transformer [8], or Shifted Window 
Transformer, improves visual task performance and efficiency 
using a hierarchical structure and window shifting, effectively 
handling scale variation and high-resolution images. 

Prior Vision Transformer [2] used a global self-attention 
mechanism, and the Swin Transformer introduces a shifted 
window mechanism that limits self-attention to local 
windows, reducing computational complexity from quadratic 
to linear. By shifting windows, it enables cross-window 
interactions. Its hierarchical structure merges patches 
progressively, boosting multi-scale representation learning 
and making it a strong alternative to CNN backbones in visual 
tasks. 

(3) DehazeFormer 

DehazeFormer [19], based on the Swin Transformer, 
addresses dehazing by improving edge handling in window-
based self-attention. Unlike cyclic shifting, which reduces 
patch use at image edges, DehazeFormer uses reflection 
padding to extend boundaries, ensuring consistent patch 
numbers and better feature continuity. After attention, center 
cropping restores the original size. This method is also 
effective for shadow removal, where edge detail is crucial. 

C. Semantic Segmentation 

(1) Segment Anything Model 

The Segment Anything Model (SAM) [7] performs zero-
shot image segmentation using minimal cues like points or 
rough selections. Pre-trained on large datasets, SAM delivers 
high-quality masks instantly and serves as a versatile 
backbone for tasks like segmentation, data annotation, and 
real-time image analysis. 

SAM also introduces the SA-1B dataset, with over 10 
million images and 1 billion masks, enriching model training. 
Its architecture includes an Image Encoder (based on Vision 
Transformer [2]), a Prompt Encoder, and a Mask Decoder. 
The encoders extract features from images and prompts, while 
the decoder combines them to generate accurate masks and 
confidence scores, even under ambiguous input. 

(2) SAM-Adapter 

The SAM-Adapter [20] enhances the original SAM by 
adding adapters to improve performance on specific tasks. 
This boosts generalizability and makes it more effective for 
shadow detection. 

SAM-Adapter retains SAM’s original image encoder but 
adds adapters between Transformer layers. Each adapter uses 
two Multilayer Perceptron (MLPs) and a Gaussian Error 
Linear Units (GELU) activation: one creates task-specific 
hints, the other adjusts them to fit the encoder. These refined 

features improve mask accuracy, making SAM-Adapter 
effective for shadow detection, which this study adopts. 

D. U-Net 

U-Net [9] is a convolutional neural network widely used 
for image restoration and segmentation due to its symmetric 
U-shaped design. It consists of a contracting path for feature 
extraction using 3x3 convolutions and 2x2 max pooling, and 
an expansive path for upsampling and feature fusion. Skip 
connections between corresponding layers help preserve 
spatial details, making U-Net effective for high-precision 
image restoration and the backbone of our model. 

E. Selective Kernel Networks 

Selective Kernel Networks (SK-Net) [21] overcome the 
fixed receptive field limitation in CNNs by enabling neurons 
to adaptively adjust their receptive field size for better multi-
scale processing. SK-Net operates in three phases: Split, 
where input features are processed through multiple 
convolution paths with different kernel sizes; Fuse, where 
these are combined and condensed into a global feature 
vector; and Select, where attention-based weights determine 
the contribution of each path, dynamically adjusting the 
receptive fields. This efficient, flexible mechanism makes SK-
Net ideal for feature fusion, which is critical in achieving 
precise shadow removal in our model. 

III. PROPOSED METHOD 

A. Dataset 

(1) Image Shadow Triplets Dataset 

The ISTD dataset [4] is a widely used benchmark for 
shadow detection and removal, containing 1,870 triplets—
each with a shadow image, shadow mask, and shadow-free 
image—across 135 diverse scenes. It includes 1,330 training 
and 540 testing triplets, featuring varied lighting and shadow 
types, making it essential for evaluating shadow removal 
methods. 

 

 
Shadow Image         Shadow Mask           Ground Truth 

 
Figure 1.  ISTD triplet [4]. 

(2) Adjusted Image Shadow Triplets Dataset 

The Adjusted Image Shadow Triplets Dataset (AISTD) 
[10] addresses color inconsistencies in the ISTD dataset [4], 
caused by varying lighting when shadow and non-shadow 
images were taken. These differences result in notable RMSE 
values—up to 12.9 in non-shadow areas (Figure 2) and 6.83 
on average in the test set. To correct this, the authors applied 
linear regression to align pixel values in non-shadow regions, 
using shadow masks and adjusting each Red Green and Blue 
(RGB) channel separately. 
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Initially, a shadow mask was used to select the non-
shadow regions from each pair of shadow and non-shadow 
images. Subsequently, a separate linear regression model was 
applied independently to each color channel (red, green, blue). 

 
𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑥) = 𝑎 ⋅ 𝐼𝑠ℎ𝑎𝑑𝑜𝑤−𝑓𝑟𝑒𝑒(𝑥) + 𝑏 (1) 

 
The linear regression model, as per Equation (1), uses 
𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑥) to denote the color-corrected pixel values of the 
shadow-free image, and 𝐼𝑠ℎ𝑎𝑑𝑜𝑤−𝑓𝑟𝑒𝑒(𝑥)  to represent the 

original pixel values of the shadow-free image. The 
parameters 𝑎  and 𝑏  of the linear regression model are 
obtained through the Least Squares Method, fitted within the 
non-shadow regions. This method significantly reduces the 
color discrepancy between shadowed and shadow-free 
images, thereby enabling more accurate performance 
evaluations during the training of shadow removal models.  
As shown in the Corrected GT in Figure 2, color correction 
reduced RMSE in non-shadow regions from 12.9 to 2.9, and 
from 6.83 to 2.6 across the test set, improving dataset quality. 
This corrected version is widely adopted in shadow removal 
research, including this study. 
 

 
Shadow Image           Original GT           Corrected GT 

 
Figure 2.  Corrected AISTD dataset  [10]. 

B. Network Architecture 

(1) System architecture and process 

This paper proposes a novel shadow removal model 
(Figure 3) that generates shadow-free images from shadow 
inputs. It combines SAM-Adapter, U-Net, and Swin 
Transformer, with a Selective Shadow Fusion module to 
improve integration in shadowed areas. 

Experiments showed that end-to-end training with shadow 
and shadow-free images often leaves residual shadows due to 
large pixel value differences between non-shadow and 
shadow areas, with the former averaging 2.3 times brighter 
than the latter, as shown in Figure 2. To address this, our 
model uses a pre-trained SAM-Adapter to extract shadow 
masks, then applies mask inversion and morphological 
gradients operations [22] to segment the image into shadow, 
foreground, and boundary regions. Each is processed 
separately: preserving content in the foreground, smoothing 
transitions at boundaries, and restoring brightness in shadows. 
These weighted feature maps are then fused for more accurate 
shadow removal. 

Figure 3 illustrates the architecture of the shadow 
restoration model, consisting of a contracting path and an 
expanding path. The sequence of feature map depths 
transitions from input to output as (3, 24, 48, 96, 48, 24, 3). 
The Transformer modules are stacked in sequences of (16, 16, 

16, 8, 8), with pairs executing computations of window 
attention and shifted window attention, respectively. 
 

 
 

Figure 3. Network architecture. 

 

 
 

Figure 4. Shadow fusion block. 

 
In the contracting pathway, downsampling and feature 

extraction are primarily conducted through two Patch 
Merging modules and three Transformer modules. Each 
passage through a Patch Merging module halves the 
dimensions of the feature map while doubling the number of 
channels. Conversely, the expanding pathway is responsible 
for upsampling and feature fusion, comprising two Patch 
Expanding modules, two Transformer modules, and two 
Fusion modules. The Patch Expanding modules increase the 
dimensions of the feature map by a factor of two while halving 
the channel count. The Fusion modules utilize a Selective 
Kernel Network (SK-Net) and integrate features from both the 
contracting and expanding pathways via Skip Connections. 
Ultimately, the output is merged with the original shadow 
image through a Residual Connection to produce the 
corresponding shadow-free image. 
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(2) Shadow Fusion Block 

In the task of shadow removal, to enhance the detail at the 
shadow boundaries and the recovery of shadowed areas, this 
study introduces a Shadow Fusion module. This module 
employs an Area Attention mechanism to boost the model's 
capability to discern features in different shadow regions. The 
architecture is illustrated in Figure 4. During the fusion phase, 
element-wise addition is initially applied to the feature maps 
of the shadow region, foreground area, and shadow boundary 
area. Subsequently, these combined feature maps undergo 
Global Average Pooling. Following this, a convolution layer 
and Rectified Linear Unit (ReLU) activation function reduce 
the channel dimension of the feature maps to one-eighth of its 
original size, after which convolution operations expand the 
channel count back to its initial dimension. Throughout this 
process, three vectors of the same dimensions, F, E, and S, are 
generated. During the selection phase, corresponding 
elements of these three vectors undergo Softmax computation, 
producing regional attention vectors for the three paths. These 
vectors are then multiplied by their corresponding regional 
feature maps. The resulting products are cumulatively added 
to obtain a channel-fused shadow feature map, referred to as 
the Fusion Map. 

The proposed shadow fusion module uses regional 
attention to better recognize and process shadow features, 
offering three key advantages: 

a) Regional differentiation processing: The attention 
mechanism adjusts channel weights by region, 
enabling flexible handling of varying shadows and 
enhancing feature extraction in dark, dense areas to 
prevent detail loss. 

b) Smooth shadow boundary transitions: Rather than 

simply adding features, our model uses channel 

fusion to integrate shadow, foreground, and 

boundary regions, enabling smoother, more natural 

transitions at shadow edges for improved restoration 

detail. 

c) Enhanced model generalization: Channel attention 

allows the model to adaptively adjust weights, 

enabling effective shadow removal and strong 

generalization under complex lighting and irregular 

shadow conditions. 

(3) Transformer Block 

Figure 5 illustrates the modified architecture of the 
Transformer module. Initially, the feature map undergoes 
normalization through the Layer Normalization module, 
which normalizes across channels. Subsequently, the feature 
map is directed to the Reflection Padding module for 
expansion. This process involves mirror padding on the right 
and bottom sides of the feature map, ensuring that the patches 
within the window are expanded to multiples of the window 
size. Following this, the feature map enters the Window-based 
Multi-head Self-Attention (W-MSA) module, where window 
attention computations are performed. 
 

 
 

Figure 5. Revised transformer block. 

 
 Additionally, relative position embedding is incorporated 

to enhance the model's spatial awareness. The overall 
computation is described in (2). Here, 𝑄, 𝐾, 𝑉 represent the 
Query, Key, and Value vectors, respectively, while 𝐵 denotes 
the Relative Position Bias. 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝐵) × 𝑉 (2) 

 
Unlike the Vision Transformer, the window attention 

mechanism restricts computations within each window, 
eliminating the need for absolute position embedding of 
feature maps at the input stage. Instead, relative positional 
biases are incorporated during the self-attention computations 
within each window. The relative position vectors are 
combined with the results of the dot product between the 
query and key vectors, influencing the final attention scores. 
This approach allows the attention mechanism in each 
window not only to consider the similarity of features but also 
to dynamically adjust for positional relationships, enhancing 
the adaptability and generalization of feature representation. 
Additionally, this mechanism enables the model to effectively 
handle feature maps of varying sizes. 

To better restore the pixel quality in the edge regions of 
images, this study employs a mechanism distinct from the 
Swin Transformer. In the calculation of shifted window 
attention within the SW-MSA module, Window Masks are 
not utilized to cover the windows. Instead, the feature maps 
are mirrored and padded on all four sides to integer multiples 
of the window size before calculating the window attention.   
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Figure 6. Patch Merging (top) and patch expanding (bottom) block. 

 
This mechanism offers three advantages for shadow 

recovery models: 
(a) Enhanced processing of image edge regions: Traditional 

padding methods, such as zero padding or cyclic shift 
mechanisms, may introduce irrelevant information or 
cause unreasonable element arrangements at image 
edges, which are detrimental to image restoration models. 
By reflecting edge pixels, our model effectively 
maintains consistency in window size at the edges, 
avoiding biases in model training due to insufficient patch 
numbers within the windows, thereby improving the 
processing quality of image edge regions. 

(b) Improved quality of feature representation: By using 
reflection padding to extend the image content naturally 
at the edges, this method maintains contextual 
information more effectively compared to other padding 
techniques, thus enhancing the quality of feature 
representation. 

(c) Reduced additional computational costs: Reflection 
Padding simplifies computation by removing the need for 
Window Mask operations. Though slightly more costly 
than cyclic shift, its impact is minimal on large images, 
where edge regions are less significant. 

(4)  Patch Merging & Patch Expanding Block 

The architectural framework of the Patch Merging and 
Patch Expanding modules used in this study is shown in 
Figure 6. The Patch Merging module employs a 2x2 
convolutional kernel with a stride of 2, merging four adjacent 
patches into one. This approach effectively reduces the feature 
map by half while doubling the number of channels. 
Conversely, the Patch Expanding module utilizes a 1x1 
convolution to quadruple the channel count of the input 
feature map. Subsequently, a Pixel Shuffle Layer [23] 
transforms channel information into pixel information 
necessary for upsampling, ultimately achieving a twofold 
increase in the feature map resolution. 

 

C. Loss Function 

In this paper, the L1 Loss is employed as the loss function 
for the shadow removal model. The principal mechanism of 
the L1 Loss involves measuring the model's error by 
calculating the absolute differences between the predicted 
values and the true values. For a given set of input image pairs 
𝑥𝑖, 𝑦𝑖  where 𝑖 = 1 to 𝑛, the L1 Loss function is defined in (3).  

 

𝐿1(𝑥𝑖 , 𝑦𝑖) =
1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (3) 

 
Here, 𝑥𝑖 represents the true values, 𝑦𝑖 denotes the model's 

predicted values, and 𝑛 indicates the number of pixels. The L1 
Loss function computes the overall loss by summing the 
absolute differences between the predicted and true values of 
each pixel and then averaging these sums. Employing the L1 
Loss in shadow removal models assists in more accurately 
restoring details in areas obscured by shadows. Given its 
involvement in the restoration of image brightness and color, 
the L1 Loss effectively handles subtle variations in brightness, 
thereby maintaining the naturalness and visual continuity of 
the image while removing shadows. 

IV. EXPERIMENTAL RESULTS 

A. Evaluation Metrics 

(1) Structural Similarity Index Measure 

The Structural Similarity Index Measure (SSIM) [24] is 
used to measure visual similarity between images based on 
luminance, contrast, and structure, which better reflects 
human perception than pixel-level metrics. SSIM is calculated 
based on luminance, contrast, and structure: 

(a) Luminance Function: Luminance influences human 
perception. In (4), 𝐿(𝑥, 𝑦) represents luminance 
similarity, with 𝜇𝑥 and 𝜇𝑦 as the average luminance 

of the images, and 𝐶1 = 6.5025 to prevent division 
by zero. 

(b) Contrast Function: Contrast refers to the difference 
between the brightest and darkest parts of an image. 
In (5), 𝐶(𝑥, 𝑦) measures contrast by calculating the 
standard deviations of the images, ensuring similar 
luminance distribution and range. 𝜎𝑥  and 𝜎𝑦  the 

images' standard deviations, with 𝐶2 = 58.5225  to 
prevent division by zero. 

(c) Structure Function: The structure function evaluates 
the preservation of details and textures. In (6), 𝑆(𝑥, 𝑦) 
calculates the covariance𝜎𝑥𝑦 between images, with 

𝐶3 = 29.26125 ensuring calculation stability. 
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𝐿(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1

(4) 

 

𝐶(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2

(5) 

 

𝑆(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3

(6) 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝐿(𝑥, 𝑦)𝛼 ∙ 𝐶(𝑥, 𝑦)𝛽 ∙ 𝑆(𝑥, 𝑦)𝛾] (7) 

 
SSIM in (7) uses parameters α, β, and γ to weight its three 

components, typically set to 1 for balanced evaluation. 

(2) Root Mean Square Error 

Root Mean Square Error (RMSE) intuitively reflects the 
magnitude of error by calculating the root mean square 
difference between predicted and actual values. It is shown in 
(8), where 𝑛 represents the number of samples, 𝑥𝑖 represents 
the shadow-free image, and 𝑦𝑖  represents the image after 
shadow removal. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

(8) 

B. Metrics Used to Evaluation 

To evaluate the model, SSIM and RMSE were measured 
on the AISTD test set, analyzing both entire images and 
shadow/non-shadow regions to assess restoration and 
preservation. The proposed architecture performs shadow 
detection followed by removal without requiring shadow 
masks. Images were resized to 256×256 and trained for 300 
epochs using the AdamW optimizer [25], with a learning rate 
of 2×10⁻⁴ and batch size of 4. 

TABLE I shows SSIM scores above 0.98 in both 
shadowed and non-shadowed regions, confirming the model's 
effectiveness in shadow removal and preserving structural 
integrity without using shadow masks. 

 
TABLE I. COMPARISON OF SSIM ON AISTD 

Scheme Method Shadow 
Non-
shadow 

All 

Mask-
Based 

Input image 0.926 0.984 0.894 

SP+M-Net [10] 0.987 0.972 0.947 

Auto-Exposure [12] 0.976 0.875 0.840 

Inpaint4Shadow [26] 0.989 0.977 0.960 

ShadowFormer [27] 0.990 0.979 0.966 

RRL-Net [28] 0.990 0.984 0.968 

Mask-
Free 

DC-ShadowNet [29] 0.975 0.963 0.921 

G2RShadowNet [30] 0.988 0.975 0.953 

BMNet [31] 0.990 0.977 0.962 

Ours 0.991 0.982 0.969 

 
TABLE II shows that the proposed model achieves lower 

RMSE in shadowed areas compared to other mask-free 
methods, highlighting its accuracy in shadow restoration. 

TABLE II. COMPARISON OF RMSE ON AISTD 

C. Comparative Results on the AISTD Dataset 

Figure 7 illustrates the comparative results on the AISTD 
dataset against other studies. In the first four columns of tested 
images, the method proposed in this paper effectively removes 
shadows while minimizing residual shadows at the shadow 
boundaries. In the fifth column of images, the colors within 
the shadow regions are accurately transformed, and the 
transitions at the shadow edges appear more natural.  

 

 
 

Figure 7. Visualization results on AISTD dataset. 

D. Ablation Study 

To evaluate the proposed methods, ablation experiments 
were conducted to assess the impact of the SAM-Adapter and 
Shadow Fusion modules on shadow removal. TABLE III 
compares the results using the RMSE metric. 

Removing the semantic segmentation module hinders 
accurate shadow region restoration and increases RMSE by 
affecting non-shadow areas. Without the shadow fusion 
module, segmentation alone restores structure but causes 
unnatural transitions between shadow and non-shadow 
regions. 

 
TABLE III. COMPARISON OF RMSE IN ABLATION STUDIES 

Setting Shadow 
Non-
shadow 

All 

Input image 40.2 2.6 8.5 

w/o SAM-Adapter 6.4 3.2 3.8 

w/o Shadow Fusion 5.8 2.6 3.2 

Ours 5.2 2.5 3.0 

 

 
w/o SAM-Adapter   w/o Shadow Fusion            Ours 

 
Figure 8. Visualization results on ablation studies. 

Scheme Method Shadow 
Non-
shadow 

All 

Mask-
Based 

Input image 40.2 2.6 8.5 

CRFormer [13] 5.9 2.9 3.4 

Inpaint4Shadow [26] 5.9 2.9 3.3 

ShadowFormer [27] 5.4 2.4 2.8 

RRL-Net [28] 5.6 2.3 2.8 

Mask-
Free 

G2RShadowNet [30] 7.3 3.0 3.6 

BMNet [31] 6.1 2.9 3.5 

Ours 5.2 2.5 3.0 
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Figure 8 shows how the SAM-Adapter and Shadow Fusion 

modules enhance shadow removal. Without semantic 

segmentation, residual shadows remain. With only semantic 

segmentation, shadows are removed but without optimal 

refinement. 

V. CONCLUSION 

This paper proposes an architecture that combines 
semantic segmentation and attention mechanisms for shadow 
removal, enhanced by a shadow fusion module to restore 
image details. The Semantic Attention Module (SAM) 
segments shadow and non-shadow regions across diverse 
scenes, while attention mechanisms capture their 
relationships. The fusion module refines shadow boundaries, 
producing high-quality shadow-free images. Experiments on 
the AISTD dataset show strong performance, with high SSIM 
and low RMSE scores. The model also generalizes well to 
various scenes, including game environments, outdoor 
landscapes, and facial images, demonstrating its strong 
generalization capability. 

ACKNOWLEDGEMENT 

This work was supported in part by the NSTC under contract 

111-2221-E-011 -134 -, 112-2221-E-468 -023 -. 

REFERENCES 

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification 
with deep convolutional neural networks,” Advances in neural 
information processing systems, vol. 25, 2012. 

[2] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers 
for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020. 

[3] Y. Zhong, X. Liu, D. Zhai, J. Jiang, and X. Ji, “Shadows can be 
dangerous: Stealthy and effective physical-world adversarial attack by 
natural phenomenon,” IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 2022, pp. 15345–15354. 

[4] J. Wang, X. Li, and J. Yang, “Stacked conditional generative 
adversarial networks for jointly learning shadow detection and shadow 
removal,” IEEE Conference on Computer Vision and Pattern 
Recognition, 2018, pp. 1788–1797. 

[5] L. Qu, J. Tian, S. He, Y. Tang, and R. W. Lau, “Deshadownet: A multi-
context embedding deep network for shadow removal,” IEEE 
Conference on Computer Vision and Pattern Recognition, 2017, pp. 
4067–4075. 

[6] T. F. Y. Vicente, M. Hoai, and D. Samaras, “Noisy label recovery for 
shadow detection in unfamiliar domains,” IEEE Conference on 
Computer Vision and Pattern Recognition, 2016, pp. 3783–3792. 

[7] A. Kirillov et al., “Segment anything,” IEEE/CVF International 
Conference on Computer Vision, 2023, pp. 4015–4026. 

[8] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using 
shifted windows,” IEEE/CVF International Conference on Computer 
Vision, 2021, pp. 10012–10022. 

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional 
networks for biomedical image segmentation,” Medical image 
computing and computer-assisted intervention–MICCAI 2015: 18th 
International Conference, Munich, Germany, October 5-9, 2015, 
proceedings, part III 18, 2015, pp. 234–241. 

[10] H. Le and D. Samaras, “Shadow removal via shadow image 
decomposition,” IEEE/CVF International Conference on Computer 
Vision, 2019, pp. 8578–8587. 

[11] X. Hu, Y. Jiang, C.-W. Fu, and P.-A. Heng, “Mask-shadowgan: 
Learning to remove shadows from unpaired data,” IEEE/CVF 
International Conference on Computer Vision, 2019, pp. 2472–2481. 

[12] L. Fu et al., “Auto-exposure fusion for single-image shadow removal,” 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
2021, pp. 10571–10580. 

[13] J. Wan, H. Yin, Z. Wu, X. Wu, Z. Liu, and S. Wang, “Crformer: A 
cross-region transformer for shadow removal,” arXiv preprint 
arXiv:2207.01600, 2022. 

[14] X. F. Zhang, C. C. Gu, and S. Y. Zhu, “Spa-former: Transformer image 
shadow detection and removal via spatial attention,” arXiv preprint 
arXiv:2206.10910, 2022. 

[15] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image 
translation using cycle-consistent adversarial networks,” IEEE 
International Conference on Computer Vision, 2017, pp. 2223–2232. 

[16] A. Vaswani et al., “Attention is all you need,” Advances in neural 
information processing systems, vol. 30, 2017. 

[17] M. I. Jordan, “Serial order: A parallel distributed processing approach,” 
Advances in psychology, vol. 121, Elsevier, 1997, pp. 471–495. 

[18] A. Graves and A. Graves, “Long short-term memory,” Supervised 
sequence labelling with recurrent neural networks, pp. 37–45, 2012. 

[19] Y. Song, Z. He, H. Qian, and X. Du, “Vision transformers for single 
image dehazing,” IEEE Transactions on Image Processing, vol. 32, pp. 
1927–1941, 2023. 

[20] T. Chen et al., “SAM Fails to Segment Anything?–SAM-Adapter: 
Adapting SAM in Underperformed Scenes: Camouflage, Shadow, 
Medical Image Segmentation, and More,” arXiv preprint 
arXiv:2304.09148, 2023. 

[21] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” 
Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, 2019, pp. 510–519. 

[22] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using 
mathematical morphology,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, no. 4, 1987, pp. 532–550. 

[23] W. Shi et al., “Real-time single image and video super-resolution using 
an efficient sub-pixel convolutional neural network,” IEEE Conference 
on Computer Vision and Pattern Recognition, 2016, pp. 1874–1883. 

[24] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image 
quality assessment: From error visibility to structural similarity,” IEEE 
Transactions on Image Processing, vol. 13, no. 4, 2004, pp. 600–612. 

[25] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” 
arXiv preprint arXiv:1711.05101, 2017. 

[26] X. Li et al., “Leveraging inpainting for single-image shadow removal,” 
IEEE/CVF International Conference on Computer Vision, 2023, pp. 
13055–13064. 

[27] L. Guo, S. Huang, D. Liu, H. Cheng, and B. Wen, “Shadowformer: 
Global context helps image shadow removal,” arXiv preprint 
arXiv:2302.01650, 2023. 

[28] Y. Liu, Z. Ke, K. Xu, F. Liu, Z. Wang, and R. W. Lau, “Recasting 
regional lighting for shadow removal,” AAAI Conference on Artificial 
Intelligence, 2024, vol. 38, no. 4, pp. 3810–3818. 

[29] Y. Jin, A. Sharma, and R. T. Tan, “Dc-shadownet: Single-image hard 
and soft shadow removal using unsupervised domain-classifier guided 
network,” IEEE/CVF International Conference on Computer Vision, 
2021, pp. 5027–5036. 

[30] Z. Liu, H. Yin, X. Wu, Z. Wu, Y. Mi, and S. Wang, “From shadow 
generation to shadow removal,” IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, 2021, pp. 4927–4936. 

[31] Y. Zhu, J. Huang, X. Fu, F. Zhao, Q. Sun, and Z.-J. Zha, “Bijective 
mapping network for shadow removal,” IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2022, pp. 5627–563. 

7Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications


