
Automated Use Case Diagram Generator: Transforming Textual Descriptions

into Visual Representations using a Large Language Model

Maxmillan Giyane

Department of Computer Science

Midlands State University

Gweru, Zimbabwe

email: giyanem@staff.msu.ac.zw

Dzinaishe Mpini

Department of Computer Science

Midlands State University

Gweru, Zimbabwe

email: mpinid@staff.msu.ac.zw

Abstract— Software Architects often use Use Case diagrams, a

type of Unified Modelling Language (UML) behavior diagram,

to capture user needs and system functionalities. These

diagrams aid in project estimation by identifying system

requirements and reducing ambiguity. Creating them

manually is a time-consuming task prone to errors. This

research aims to automate Use Case diagram generation from

text using the Generative Pretrained Transformer 3.5 (GPT-

3.5) Turbo model. The developed tool uses a Natural Language

Processing (NLP) technique to extract actors, use cases, and

associations from descriptions, and convert these elements

into UML-compliant diagrams. It also includes an interactive

interface for Use Case diagram refinement. The system

processes user input text to identify relevant elements,

visualizes them using jCanvas, and allows real-time user

interaction for refinement. Testing showed an 89.33%

accuracy in element identification but highlighted areas for

improvement like handling edge cases and optimizing

performance. This research demonstrates the potential of NLP

and visualization tools to improve Use Case diagram

generation efficiency and accuracy, with future work focusing

on enhancing usability and functionality.

Keywords- Use Case Diagram; Large Language Model; GPT

3.5 Turbo; Natural Language Processing.

I. INTRODUCTION

The software Architect task relies on different methods to
capture user needs. One method widely used is Use Case
diagrams. According to Fauzan et al. [1], Use Case diagrams
are a specific type of behavior diagram in the Unified
Modelling Language (UML) which are primarily meant to
help visualize a system’s functionalities. UML itself is a
prominent notation system commonly employed in software
architecture [2]. Use Case diagrams capture system behavior
from the user's perspective, detailing interactions, and system
boundaries [3]. They essentially define what the software
should do [3]. Beyond functionality, Use Case diagrams play
a valuable role in project estimation as they highlight system
requirements which are in turn used to estimate development
effort [4][5][6]. Furthermore, they help reduce ambiguity
within requirement specifications [7].

The core elements of a Use Case diagram are actors, use
cases, and their associations. Actors are external entities
(individuals or groups) that interact with the system. Use
cases represent the interactions themselves, specifying how

actors achieve goals within the system. These elements are
connected by associations, signifying the communication
between actors and use cases [8].

Creating well-structured Use Case diagrams requires
adherence to specific conventions due to the complexity of
placement rules [2]. Unlike typical graph layouts, Use Case
diagrams demand specialized methods to ensure clarity,
particularly as diagram size increases. The guidelines in Use
Cases diagram generation encompass naming conventions
for actors, systems, and use cases themselves. They advocate
for simplicity and clarity, emphasizing the use of nouns and
verbs to clearly define elements within the diagram [9].

These conventions make drawing of a Use Case diagram
difficult. Filipova and Nikiforova [2] alludes manual layout
of Use Case diagrams is a time-consuming activity; and one
can fail to produce effective diagrams. With the way
technology is advancing nowadays, researchers were
compelled to create more efficient tools for drawing Use
Case diagrams that follow the UML notation.

This research is aimed at developing a tool for automated
Use Case diagrams generation from text that utilizes Large
Language Models (LLMs). The specific objectives of the
research are:

1. To develop a Natural Language Processing (NLP)
technique which utilizes the GPT 3.5 Turbo LLM to
extract relevant information which includes actors,
use cases, and associations from textual system
descriptions.

2. To develop an engine that can automatically
convert the extracted elements (actors, use cases
and associations) from the NLP analysis into a
coherent and accurate Use Case diagram compliant
with UML standards.

3. To design an interface that allows users to interact
with the generated Use Case diagram and refine its
actors, associations, and use cases manually.

The remainder of this paper is organized as follows: In
Section 2, we review related work on automated software
documentation and LLM applications. Section 3 details our
methodology, including the prompt engineering framework.
Section 4 presents a case study validating the approach use
cases. Section 5 discusses results, limitations, and
comparisons with traditional methods. Finally, Section 6
concludes with future directions, including integration with
generative media tools.

47Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

II. RELATED WORK

Use case diagrams were first proposed by Ivar Jacobson
in 1986 as part of his work on object-oriented software
engineering [8]. These diagrams have since become a
fundamental tool in software development, aiding in the
visualization of system functionality from a user perspective.
In drawing tools, one can use the manual approach,
electronic drag and drop tools, and automated tools.

This research noted a lack of recent scholarly articles
focusing on manual tools for Use Case diagram creation.
Electronic drag and drop tools research have also not been
clearly documented but there exist several tools for Use Case
diagram generation. These include Lucid Chart, Visual
Paradigm, Smart Draw, DrawIO, Miro, Microsoft Visio and
Wondershare Edraw Max. Table 1 shows the top found tools
and the analysis done on them.

In the realm of automating the generation of Use Case
diagrams from textual descriptions, several significant
studies have been conducted. Elallaoui et al. [7] conducted
pioneering research aimed at transforming user stories into
UML Use Case diagrams automatically. By leveraging NLP
techniques, their approach achieved impressive accuracy
scores ranging from 87% to 98%. This evaluation was based
on a comparison of the outputs automatically generated by
the plugin against manual modelling of each user story. This
demonstrated the potential of NLP in interpreting and
converting textual requirements into structured diagrams.
Similarly, Nasiri et al. [17] presented a comprehensive
framework for the automatic generation of various UML
diagrams, including class, Use Case, and package diagrams.
Their approach involved processing user stories written in
natural language (English) using the Stanford Core NLP
engine. By incorporating artificial intelligence through
Prolog rules and ontology, they enhanced their previous
methodologies, resulting in improved outcomes. Despite
reporting that the results of the approach have been validated
by several case studies, the methodology for assessing the
approach was not documented and the metric values of
results were not specified. While both studies
 showcased promising results, they also had
limitations. Notably, the carried out researches lack
implementation. However, a Google search revealed an
implemented automated Use Case diagram generation tool
called Diagramming AI [18]. The underlying technology
behind its working is not publicly available and at the time of
analysis the tool did not adhere to the UML Use Case
diagram standard, limiting its utility for standard-compliant
projects.

Recent advances in prompt engineering have become
pivotal for optimizing LLM outputs in software engineering
tasks. Sahoo et al. [19] conducted a systematic survey of
prompt engineering methods for LLMs, categorizing
techniques, such as zero-shot, few-shot, and role-based
prompting. Their work highlights how tailored prompts
improve accuracy in structured outputs, a finding directly
relevant to our Use Case extraction process.

TABLE I. USE CASE DIAGRAMS GENERATION TOOLS

Source Tool Access Channel Cost

[10] Lucid Chart

Web based
application, and

embedded in

Google platforms

USD7.95-

9.95/month. Free
trial available

[11] Visual Paradigm

Web based
application and

desktop

applications

USD4.00-
15.00/month.

Free trial

available

[12] Smart Draw
Web based

application
USD9.95

[13] DrawIO

Web based
application,

desktop

application, and
embedded in

Google platforms

USD34.00/20
users. Free trial

available

[14] Miro
Web based

application

USD8.00-
16.00/month.

Free trial

available

[15] Microsoft Visio
Desktop

application

USD44.15 for the

software license

[16]
Wonder Share

Edraw Max

Web based

application

USD5.99-

79.99/month

Wang et al. [18] explored the application of LLMs in

generating UML diagrams. Use Case diagrams were part of
the UML diagrams under study. 45 undergraduate students
explored the platform. The research demonstrated 100%
correctness of LLMs in identifying users, relationships and
functional requirements from a given scenario. However, the
research only encompassed identifying users, relationships
and functional requirements and did not create the Use Case
diagram from this information.

Additionally, Carrazan [20] provides critical insights into
LLM applications for automating software requirements,
particularly Use Case diagrams and narratives. The study
demonstrates that when guided by carefully engineered
prompts, Chat Generative Pre-trained Transformer
(ChatGPT) can effectively generate accurate requirements
documentation while significantly reducing development
time. Carrazan's methodology [20] emphasizes a structured
input-process-output framework where tailored prompts
serve as inputs to produce validated UML artifacts - an
approach that directly informs our work's prompt design
strategy (Section III.B). Notably, the dissertation [20]
confirms that LLM-generated requirements can achieve
sufficient quality for stakeholder communication and effort
estimation, though it cautions that human validation remains
essential. These findings complement existing literature
[7][19] while providing empirical evidence of LLMs'
potential to streamline early-phase software documentation.

III. METHODOLOGY

A. System Architecture

The proposed tool went through a streamlined process
designed to facilitate the creation and refinement of Use
Case diagrams from textual descriptions. Initially, users
provide a textual description of their desired system via a

48Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

web page interface. This input is then sent to the backend,
where the GPT-3.5 Turbo model processes the text to
identify and extract relevant actors, use cases, and
associations. The extracted information is subsequently
transferred to the frontend, where the jCanvas engine
generates an initial Use Case diagram based on the provided
data. Users can interact with the diagram through a user-
friendly interface, allowing them to modify actors, system
names, use cases, and associations. These modifications are
reflected in real time on the Use Case diagram, thanks to the
dynamic capabilities of the jCanvas engine. Once users are
satisfied with the refined diagram, they have the option to
save or export the final version for their documentation or
further use. The architecture of this tool ensures a seamless
and interactive experience from the initial text input to the
final output, enabling users to efficiently create and refine
Use Case diagrams. Figure 1 shows the architectural diagram
of the proposed system.

 Figure 1. Architecture diagram of the proposed system.

B. GPT3.5 Turbo Model Working Mechanism

GPT-3.5 Turbo was chosen because of its Instruct
Architecture. According to Yeow et al. [19] this architecture
comprises multiple layers, each containing a self-attention
mechanism and a feed-forward neural network. The self-
attention mechanism enables the model to weigh the
importance of different parts of the input when making
predictions, enhancing its contextual understanding. The
feed-forward neural network then makes the final
predictions, allowing GPT-3.5 Turbo to generate coherent
and contextually relevant text across various applications.

Bandara et al. [20] outlines GPT-3.5, released by OpenAI
in 2020, is the foundational language model for the original
ChatGPT and represents significant advancements in NLP
and generation. With 175 billion parameters, it is one of the
largest language models, demonstrating improved language
understanding, enhanced text generation, and the ability to
produce human-like text across various domains. GPT-3.5's
architecture allows ChatGPT to engage in natural, context-
aware dialogues, leveraging its extensive pre-training to
draw on a vast knowledgebase. However, GPT-3.5 has
limitations, such as struggles with logical reasoning,

potential biases from its training data, and a restricted
context window of 2,048 tokens. Understanding these
strengths and limitations is essential for setting realistic
expectations when using ChatGPT and similar Artificial
Intelligence (AI) applications built on GPT-3.5. In
generating the Use Case diagrams, jCanvas was used.
jCanvas is a jQuery plugin that makes it easy to work with
the Hypertext Markup Language 5 (HTML5) canvas element
[21]. It provides a convenient Application Programming
Interface (API) for drawing shapes, text, and images, as well
as handling animations and user interactions. The plugin
integrates seamlessly with jQuery, enabling efficient
manipulation of canvas elements and real-time updates,
making it an excellent choice for creating and modifying Use
Case diagrams [22].

C. Interface Design

The interface design for the web page should be a one-
page, user-friendly and dynamic visualization of system
descriptions through Use Case diagrams. Upon loading,
users encounter a central text input box where they can enter
detailed descriptions of the system they intend to diagram.
Adjacent to this input area is a "Generate Diagram" button,
signaling the action to transform the entered text into a visual
representation. Once activated, the system processes the
input using GPT-3.5 Turbo via the OpenAI Application
Programming Interface (API) and displays the resulting Use
Case diagram on a canvas. This canvas initially presents
elements, such as system boundaries, actors, use cases, and
their associations based on the processed text.

Each element within the diagram becomes interactive and
editable directly on the canvas, enabling users to click, drag,
and modify elements effortlessly. This interactive capability
extends to renaming actors or use cases, adjusting
connections, and repositioning elements to suit specific
requirements. Real-time updates ensure that any changes
made by the user are immediately reflected in the displayed
diagram, maintaining continuity and allowing for iterative
refinement. Options for saving or exporting the finalized
diagram, typically in formats like PNG or PDF, provide
users with the means to preserve their work or share it as
needed. The interface design emphasizes clarity, intuitive
usability, and responsiveness across different devices, aiming
to facilitate seamless interaction and effective visualization
of system structures from textual descriptions.

IV. TOOL DESCRIPTION

The tool was designed as a comprehensive web
application that utilized HyperText Markup Language
(HTML), Cascading Style Sheets (CSS), and the Bootstrap
framework to create an intuitive user interface. jQuery was
employed to enhance user interaction, ensuring smooth and
responsive handling of dynamic elements within the
interface. A Representational State Transfer Application
Programming Interface (RESTful API) endpoint was
developed in PHP: Hypertext Preprocessor (PHP) to
facilitate seamless communication with the 'gpt-3.5-turbo-
0125' model from OpenAI.

49Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

The core functionality of the tool was driven by jCanvas,
a powerful jQuery plugin that enabled the creation and
modification of Use Case diagrams directly within the web
page. Users interacted with a straightforward interface where
they input system descriptions and, upon triggering the
"Generate Diagram" function, observed a visual
representation of their system structure. This design
emphasized usability and real-time responsiveness, allowing
users to refine and customize their diagrams effortlessly. The
tool's integration of modern web technologies ensured an
efficient and engaging experience for users who sought to
visually conceptualize system architectures from textual
descriptions.

V. RESULTS AND DISCUSSION

In testing the developed system, a comprehensive suite of
tests was conducted to ensure functionality, accuracy,
performance, usability, and integration across its core
objectives. A group of 3 Computer Science students and 2
Computer Science lecturers who were not involved in the
development of the system conducted the tests. Each user
created their own user story and evaluated the performance
of the system with those user stories.

A. Large Language Model Performance in Extraction of

Actors, Use Cases and Associations

Initially, the accuracy of the NLP technique was
rigorously evaluated through test cases that assessed the
extraction of actors, use cases, and associations from diverse
textual use case descriptions. This included edge case
scenarios to gauge robustness. Performance testing focused
on measuring processing speeds and scalability under
varying system descriptions. In the test, reviewers analyzed
the output actors, Use Cases and associations to gauge the
accuracy of the tool. Additionally, the time taken to produce
an output was recorded.

The testers' scores revealed a promising average accuracy
of 89.33%, indicating the tool successfully identifies
elements from the descriptions. However, there were some
missed elements, like deposit/withdrawal use cases in one
instance and the bank teller actor itself for the first test case.
These highlight areas for improvement, particularly in
handling operations which have not been mentioned. The
loading time for testers ranged from 5 to 7 seconds,
averaging at 6.2 seconds. While acceptable, further
optimization can enhance user experience. Additionally,
testers 3 and 5 noted overly long system names generated by
the tool. This suggests the system might be assigning
generic, lengthy descriptions. Implementing logic to generate
concise and descriptive names would be beneficial. The NLP
technique shows promise with its accuracy. However,
improvements are needed to handle edge cases, optimize
loading times, and generate better quality names for actors
and use cases. This will further enhance the tool's
effectiveness and user experience.

B. Use Case Diagram Generation

The engine's capability to convert extracted elements into
UML-compliant Use Case diagrams was verified through

validation tests against UML standards and guidelines,
ensuring diagrams met syntax and semantic requirements.
Customization features were tested to validate user-defined
preferences and styles, ensuring flexibility in diagram
presentation. Integration tests ensured seamless
interoperability with external systems, assessing data
consistency and compatibility.

Largely, the test results show that the system has the
capability to convert extracted elements into UML-compliant
Use Case diagrams, but there are some areas for
improvement, such as refining extracted elements to avoid
cluttered diagrams and ensuring that generated names fit
within the designated space. Only Tester 2 found that the
tool generated a poor diagram due to the identification of too
many use cases. This suggests that the system might need
improvement in refining the extracted elements to ensure a
clear and concise Use Case diagram. Tester 3 identified an
issue where the system name spanned outside the boundary
of the diagram. This indicates that the name generation
process might need to consider the available space within the
diagram to ensure all elements are well presented.

C. Interactive User Interface for Refining Generated

Diagrams

User Interface (UI) testing involved usability assessments
with potential end-users to gauge ease of use and navigation.
Feedback mechanisms were tested to capture user inputs on
diagram quality and interface improvements. Compatibility
tests were conducted across different devices to ensure
consistent performance and responsiveness. Error handling
was scrutinized through various error scenarios to assess how
the system managed and communicated errors effectively to
users.

While testers commended the tool's ease of use and
functionality for adding, deleting, or modifying elements,
they highlighted the need for improved visual clarity. This
suggests that while the core functionalities are present, the
user interface might benefit from enhancements that ensure a
clearer visual representation of the Use Case diagram during
the editing process.

VI. CONCLUSION AND FUTURE WORK

This research focused on the development of a tool
capable of extracting a Use Case diagram elements from a
given textual system description using a large language
model. The tool should further draw the Use Case diagram
using jCanvas and allow a user to manually refine the
generated Use Case diagram. The testing approach utilized
validated each aspect of the tool objectives. Notably, there
was no comparable researches available for direct
comparison, as existing literature either lacked publicly
available implementations which follow the UML Use Case
diagrams standard or did not employ an automated diagram
generation approach like the one proposed in this research.

The system is poised for deployment in real-world
environments where efficient Use Case diagram generation
is paramount. The research recommends scalability to verify
the system's capability to manage increasing volumes of use
case descriptions without performance degradation, ensuring

50Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

robustness under varying workloads. Additionally, it is
recommended to provide comprehensive user training and
support material to facilitate smooth and effective utilization
of the system.

While this study demonstrates the efficacy of GPT-3.5
Turbo in automating Use Case diagram generation, the
reliance on a single LLM poses a limitation. Recent
advancements in code-specific LLMs, such as Codex,
StarCoder or fine-tuned variants, such as Llama-3 with UML
datasets may yield higher accuracy in extracting structural
UML elements. Future work should also include a
comparative analysis of multiple LLMs, evaluating their
performance in parsing textual descriptions and adhering to
UML standards. This expansion will help identify optimal
models for specific tasks, such as handling “include” and
“extend” relationships or complex system boundaries, further
improving the tool’s robustness. Beyond testing other LLMs,
future research could explore AI-generative media tools,
such as Stable Diffusion or DALL-E to automatically
enhance diagram aesthetics and layout, enabling direct
conversion of textual descriptions into polished UML figures
while maintaining compliance with standards through hybrid
human-AI validation frameworks. The tool was also tested
by only 5 individuals from the same department at a
university. This presents potential bias on the effectiveness
of the tool and future work must be evaluated by many
participants from varying backgrounds.

Additionally, the developed tool outputs an image file of
the generated Use Case diagram without the XML code for
that can be used in other diagramming tools. Future work
could focus on producing both the Use Case diagram image
as well as standard XML code for a Use Code which can be
integrated in other languages.

Furthermore, there is an opportunity for comparative
studies with other GPT variants or large language models to
identify and integrate the most efficient model for improving
system performance and accuracy. These enhancements and
comparisons will contribute to advancing the capabilities and
effectiveness of the system in generating and manipulating
Use Case diagrams.

REFERENCES

[1] R. Fauzan, D. Siahaan, S. Rochimah, and E. Triandini, "A
Different Approach on Automated Use Case Diagram
Semantic Assessment," International Journal of Intelligent
Engineering and Systems, vol. 14, no. 1, 2021, pp. 496-505,
doi - 10.22266/ijies2021.0228.46.J. Clerk Maxwell, A
Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, pp. 68–73, 1892,

[2] O. Filipova and O. Nikiforova, "Definition of the Criteria for
Layout of the UML Use Case Diagrams," Applied Computer
Systems, vol. 24, no. 1, 2019, pp. 75-81, doi - 10.2478/acss-
2019-0010.

[3] F. Mokhati and M. Badri, "Generating Maude Specifications
From UML Use Case Diagrams," Journal of Object
Technology, vol. 8, no. 2, 2009, pp. 119-136.

[4] P. Jayadi, R. S. Dewi, and K. Sussolaikah, "Activity-based
function point complexity of Use Case diagrams for software

effort estimation," Journal of Soft Computing Exploration,
vol. 5, no. 1, 2024, pp. 1-8, doi - 10.52465/joscex.v5i1.252.

[5] A. B. Nassif, L. F. Capretz, and H. Danny, "A Regression
Model with Mamdani Fuzzy Inference System for Early
Software Effort Estimation Based on Use Case Diagrams",
PhD dissertation, Graduate Program in Electrical and
Computer Engineering, The University of Western Ontario,
2012.

[6] P. Sahoo and J. R. Mohanty, "Early Test Effort Prediction
using UML Diagrams," Indonesian Journal of Electrical
Engineering and Computer Science , vol. 5, no. 1, 2017, pp.
220-228.

[7] M. Elallaoui, K. Nafil, and R. Touahni, "Automatic
Transformation of User Stories into UML Use Case Diagrams
using NLP Techniques," in The 8th International Conference
on Ambient Systems, Networks and Technlogies (ANT
2018), 2018, pp. 42-49.

[8] A. Y. Aleryani, "Comparative Study between Data Flow
Diagram and Use Case Diagram," International Journal of
Scientific and Research Publications, vol. 6, no. 3, 2016.

[9] P. Danenas, T. Skersys, and R. Butleris, "Natural language
processing enhanced extraction of SBVR business
vocabularies and business rules from UML Use Case
diagrams," Data and Knowledge Engineering, 2020.

[10] Lucid Chart, "Draw Chart," 2024. [Online]. Available:
https://lucid.app/lucidchart/. [Accessed June 2025].

[11] Visual Paradigm, "Visual Paradigm," 2024. [Online].
Available: https://online.visual-paradigm.com. [Accessed
June 2025].

[12] Smart Draw, "Use Case Diagram," 2024. [Online]. Available:
https://www.smartdraw.com/use-case-diagram/. [Accessed
June 2025].

[13] Drawio, "Draw Use Case Diagram," 2024. [Online].
Available: https://drawio-app.com/ . [Accessed June 2025].

[14] Miro, "Use Case Diagram," Miro, 2024. [Online]. Available:
https://miro.com/templates/use-case-diagram/. [Accessed
June 2025].

[15] Microsoft , "Create a UML Use Case Diagram," Microsoft,
2024. [Online]. Available: https://support.microsoft.com/en-
us/office/create-a-uml-use-case-diagram-92cc948d-fc74-
466c-9457-e82d62ee1298 . [Accessed June 2025].

[16] EdrawMax, "Use Case Diagram," Edraw, 2024. [Online].
Available: https://www.edrawmax.com/online/en/ . [Accessed
June 2025].

[17] S. Nasiri, Y. Rhazali, M. Lahmer and A. Adadi, "From User
Stories to UML Diagrams Driven by Ontological and
Production Model," International Journal of Advanced
Computer Science and Applications, vol. 12, no. 6, 2021, doi
- 10.14569/IJACSA.2021.0120637.

[18] B. Wang, C. Wang, P. Liang, B. Li, and C. Zeng, "How
LLMs Aid in UML Modeling: An Exploratory Study with
Novice Analysts," 2024 IEEE International Conference on
Software Services Engineering (SSE), Shenzhen, China,
2024, pp. 249-257, doi: 10.1109/SSE62657.2024.00046.

[19] L. Naimi, E. Bouziane, A. Jakimi, R. Saadane, and A Chehri,
"Automating Software Documentation: Employing LLMs for
Precise Use Case Description", Procedia Computer Science,
vol. 246, no 1, 2024, pp. 1346-1354, doi
10.1016/j.procs.2024.09.568.

[20] P. F. V. Carrazan, Large Language Models Capabilities for
Software Requirements Automation, Ph.D. dissertation, Dept.
Comput. Eng., Politecnico di Torino, Torino, Italy, 2023.

51Copyright (c) IARIA, 2025. ISBN: 978-1-68558-284-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2025 : The 2025 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

