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Abstract—In this paper, we present a robust power prediction
model for wind turbines. Our model leverages error detection in
the sensor data, clustering-based imputation of filtered erroneous
or missing data, and a Physics-Informed Neural Network (PINN).
We introduce data preprocessing steps, including the detection
and filtering of erroneous data and clustering-based data impu-
tation. We demonstrate that these preprocessing steps, along with
the PINN framework, improve power prediction accuracy in the
presence of erroneous sensor data.

Keywords-wind farm, anomaly detection, power prediction, ma-
chine learning, clustering, physics-informed learning.

I. INTRODUCTION

Wind energy has carved a significant niche in today’s
renewable energy spectrum, offering a sustainable solution to
the burgeoning global energy demands. With the increasing
deployment of wind turbines, the volume of operational data
they generate has surged, highlighting the necessity for ad-
vanced analytical techniques [1]. Safeguarding the integrity
and precision of this data becomes imperative, particularly in
the face of missing or erroneous readings [2]. While traditional
solutions have earned recognition, they sometimes fall short
of encapsulating the intricate dynamics of wind turbines [4].
Modern advancements lean towards sophisticated models, like
auto-encoders, boasting improved accuracy [5]. However, an
evident gap persists in ensuring these models align both with
data-driven insights and inherent physical principles.

Power prediction of wind turbines faces challenges due to
errors in the collected data. It is important to identify the erro-
neous data using anomaly detection methods to ensure power
prediction accuracy. Further, once the detected erroneous data
are filtered out, imputation of the filtered data and inherently
missing data is required. Imputation may require advanced
techniques to address the non-linear nature of the associa-
tion between the longitudinal data. A particularly promising
direction in addressing data imputation is the application of
Gaussian Mixture Models (GMM). GMMs have demonstrated
advantages in capturing complex data distributions, making
them apt for handling the diverse nature of wind turbine data.
This paper presents a novel pipeline, which includes error
detection and filtering using the anomaly detection methods,
clustering-based data imputation and physics-informed learn-

ing where we combine data-driven methods with physics-
based predictions to address existing gaps.

The motivation for this work stems from the critical need
to enhance the reliability and accuracy of power predictions
in wind farms. As wind energy becomes a more significant
component of the global energy mix, the ability to predict
power output accurately under various operational conditions
is essential for grid stability and efficient energy management.
Traditional methods often fail to adequately address the com-
plexities introduced by erroneous and missing data in wind
turbine operations. Our approach aims to bridge this gap by
integrating advanced data processing techniques with physics-
informed models, thus providing a more robust and accurate
power prediction framework.

The remainder of this paper is organized as follows: In
Section II, we review related work in the fields of wind
turbine data analysis and predictive modeling, emphasizing
the significance of integrating data-driven approaches with
physical models. In Section III, we detail the data collection
process and the characteristics of the dataset used in this study.
Section IV discusses our methodology for handling outliers
and abnormalities in Supervisory Control and Data Acquisition
(SCADA) data. Section V presents the methodologies used for
anomaly detection and data imputation, followed by Section
VI, where we present the description of our power output
modeling approach. In Section VII, we evaluate the perfor-
mance of our proposed models against various benchmarks
and imputation techniques. Section VIII discusses the results
of our experiments. Finally, Section IX concludes the paper
with a summary of our findings and suggestions for future
research.

II. RELATED WORK

Research in wind turbine data analysis and prediction has
been a burgeoning field over the past few years, with numerous
methodologies developed to navigate the complexities posed
by the vast datasets generated by wind turbines.

Errors in the sensor data pose major challenges in wind tur-
bine power prediction. Various anomaly detection techniques
are used for the detection of these erroneous data. [8] pro-
posed an anomaly detection method based on a convolutional
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recurrent autoencoder, showcasing the potential for leveraging
deep learning models in this domain.

When the detected erroneous data are filtered from the
dataset, they leave gaps in the dataset, making it all the more
challenging to construct a correct power prediction model.
Data imputation techniques are used to address this issue.
[4] delved into traditional data imputation methods. Despite
their widespread use, these methods have been found lacking
imputation of data with non-linear associations, especially
when applied to complex longitudinal data intrinsic to wind
turbine operations. The oft-used strategy of substituting miss-
ing values with mean or median, as discussed by [2], can
occasionally oversimplify the intricate interrelations inherent
in turbine datasets.

More advanced techniques like auto-encoders for imputation
in wind turbine sensor data have been explored by [5]. While
their approach represents one of the latest advancements
in data imputation techniques for wind turbines, however,
there can be a large number of undetected erroneous data.
In this situation, the correctness of the prediction model is
questionable when we rely only on the data-driven approach.
A promising avenue in addressing this shortcoming is the
signals from the physics of the system in consideration.
We leverage the use of Physics-Informed Neural Networks
(PINNs). [9] presented a study on PINNs for power systems,
emphasizing their capacity to integrate physical laws. Further
building on this concept, [10] applied PINNs for non-linear
system identification in power system dynamics, underlining
the potential of combining data-driven models with physical
insights.

Our study builds upon these foundational research en-
deavors. We aim to amalgamate data-driven insights with
physics-informed models [7], ensuring that predictions are
not only precise but also grounded in real-world operational
frameworks.

Recent studies have also explored the use of hybrid models
combining machine learning with physical modeling. For
instance, [11] proposed a hybrid model integrating a deep
neural network with a physical wind model, showing improved
accuracy in wind power prediction. Similarly, [12] introduced
an ensemble learning approach that combines multiple ma-
chine learning models to enhance prediction robustness.

In comparison, our approach integrates Gaussian Mixture
Models for imputation and Physics-Informed Neural Networks
to ensure that the predictions are not only accurate but
also physically plausible. Unlike [11] and [12], which focus
primarily on the data-driven aspects, our method emphasizes
the integration of physical principles to handle erroneous and
missing data more effectively.

Despite the advances in these techniques, several limitations
persist in the state-of-the-art methods. Traditional anomaly
detection and imputation methods often fail to account for the
complex, non-linear relationships in wind turbine data, leading
to suboptimal power prediction accuracy. Advanced methods
such as auto-encoders improve upon these issues but still suffer
from undetected anomalies and reliance on purely data-driven

approaches, which may not fully capture the physical dy-
namics of wind turbines. The integration of physics-informed
models, while promising, also presents challenges in terms
of model complexity and computational requirements. Our
work seeks to address these limitations by providing a compre-
hensive framework that combines robust data preprocessing,
advanced imputation techniques, and physics-informed neural
networks to enhance power prediction accuracy and reliability.

III. DATA COLLECTION OVERVIEW

The wind farm under consideration is an onshore wind
farm, built in 2017–2018 and has been operating since 2019.
For this investigation, the turbine data was collected between
November 1st, 2022 and July 15th, 2023. There are 16 wind
turbines with a total of 32MW power generation capacity. The
wind farm had access to a collection of 1966 SCADA tags
that contained information from various turbine components,
including the rotor, brake, pitch control, main shaft, gearbox,
generator, yaw system, nacelle, electrical systems, hydraulic
systems, etc. Our focus is on two wind turbines. The data
samples from the sensors (SCADA parameters) are averaged
across a 10-minute timeframe and are recorded at a frequency
of roughly 2.00 min. We filtered the data for the wind turbine
operational phase, focused on the core aspects of the wind
turbine which are power generation, rotor, and pitch, and
removed outlier records with very low wind speed (< 3 m/s)
and very high wind speed (> 10.5 m/s), or records with no
production (0 kWh).

The wind speed classification mentioned above is based on
the manufacturer’s specifications. However, it is essential to
note that specific wind turbine models might have slightly
different operational parameters.

IV. HANDLING OUTLIERS AND ABNORMALITY IN
SCADA DATA

A. Outliers Observed

Outliers in SCADA data can greatly influence the perfor-
mance and accuracy of wind turbine predictive models. In this
study, several types of outliers were observed:

• Non-operating Phase Outliers: During wind turbine
maintenance, the value of the active power is zero even
though the wind speed lies between the cut-in and cut-out
speeds. These data points were identified as part of the
non-operating phase and were systematically removed to
avoid misinterpretation.

• Power Curve Deviation Outliers: Some data points,
although not zero, were observed to deviate significantly
from their expected values on the power curve. Probable
causes for such deviations include wind curtailment,
accumulation of dirt or bugs on the turbine blades, pitch
malfunctions, among other operational issues.

B. Methodology for Handling Outliers

The approach adopted to address the identified outliers
involved the following steps:
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1) Initial Identification: A visual examination was first
conducted on plots of wind speed versus wind power.
This helped in identifying data points that significantly
deviated from the expected behavior.

2) Interval-based Detection: Following the initial identifi-
cation, we employed the interval-based detection method
as described by [8]. This method allows for the removal
of obvious outliers based on set intervals or thresholds in
the plot of wind speed and wind power. Specifically, data
points that fall outside of expected performance intervals
were flagged.

3) Power Curve Validation: Given the inherent relation-
ship between wind speed and turbine output power, we
used the power curve as a benchmark. Any data points
that strayed significantly from the power curve were
considered outliers. This step was particularly useful for
identifying the Power Curve Deviation Outliers.

However, given the specific nature of wind turbine data,
we decided to rely more on domain knowledge for this study.
Once outliers were identified through the above methodolo-
gies, they were systematically removed from the dataset.
Following the removal of these outliers, the refined wind data
were employed to train the power curve models. It is worth
noting that a meticulous outlier removal process ensures the
developed models’ robustness and accuracy in predicting wind
turbine performance based on SCADA data.

V. METHODOLOGY

The overall methodology of our study is depicted in Figure
1. This flow diagram outlines the primary steps involved in
the data processing and analysis phases.

The flow diagram above provides a visual summary of our
approach, including the key steps and processes involved.

A. Outlier Handling

For handling outliers detected during non-operational or
maintenance phases, we visually inspected for wind speed
versus power plots. Leveraging the domain expertise, we
identified and eliminated these outliers, enhancing the data
quality for subsequent model training. Detailed data collection
processes are discussed in the Data Collection Overview.

B. Feature Selection

Our study utilizes SCADA data obtained from a real-world
wind farm situated in Gujarat, India. Spanning a specific
timeframe, this dataset offers insights into various turbine
components, painting a comprehensive picture of the turbine
operations.

Initial feature selection was guided by a combination of
domain knowledge, data availability, and feature importance
scores. Starting with a broad set of SCADA tags, domain
expertise helped shortlist a preliminary set of 80 features.
Additionally, essential parameters like wind speed, rotor speed,
and pitch angles were mandated by the physics loss function.

To further refine our features list, a Random Forest model
was trained using 3-fold cross-validation, and the results

Figure 1. Flow diagram.

yielded the feature importance as demonstrated in Figure 2.
From these, the top 10 features were selected for anomaly
detection. The figure illustrates the top 5 features with the
highest significance. The remaining features, while essential,
have lesser importance values and are not prominently dis-
played in the graph.

The significance of each feature used in our models is
illustrated in Figure 2.

Figure 2. Feature Importances obtained from Random Forest model.

The final set of top 10 features includes:
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• Gearbox Oil Pressure
• Generator Stator Temperature
• Shaft Bearing Temperature
• Generator Inlet Temperature
• Generator Bearing Temperature
• Pitch Angle
• Wind Speed
• Rotor Speed
• Nacelle Direction
• Yaw

C. Anomaly Detection

We attempt to identify faulty sensors for anomaly detection
using auto-encoders. Consequently, the inputs and the outputs
of the auto-encoder are the same. The architecture of the auto-
encoder is shown in Figure 3. The input features include the
features discussed above.

An auto-encoder is a type of artificial neural network that
can learn efficient representations of input data with no need
for labels. It consists of two parts: an encoder that compresses
the input into a latent-space representation, and a decoder
that reconstructs the input from this representation. The goal
is to minimize the difference between the input and the
reconstructed output.

In Figure 3, the auto-encoder architecture is detailed as
follows:

• Input Layer (input 1): This layer accepts the input
data with shape (None, 3, 11), where ’None’ represents
the batch size, 3 represents the sequence length, and 11
represents the number of features.

• Conv1D Layer (conv1d): This layer applies 1D convo-
lution to the input data, reducing the feature dimension
from 11 to 4.

• Dropout Layer (dropout): This layer randomly sets a
fraction of input units to 0 to prevent overfitting.

• Conv1D Layer (conv1d 1): Another convolutional layer
that further reduces the feature dimension to 1.

• Conv1DTranspose Layer (conv1d transpose): This
transposed convolutional layer starts the decoding pro-
cess, increasing the feature dimension back to 4.

• Dropout Layer (dropout 1): Another dropout layer to
prevent overfitting during the decoding process.

• Conv1DTranspose Layer (conv1d transpose 1): The
final transposed convolutional layer reconstructs the out-
put to match the original input shape of (None, 3, 11).

We train the model in 3-fold cross-validation for 10 epochs
using Mean Absolute Error (MAE) loss between the target
and the prediction. The distribution of the training loss is
shown in Figure 5. We set the threshold at the 90th percentile
which corresponds to a value of 0.15. This decision is based
on empirical observations to capture the most significant
anomalies while reducing the likelihood of false positives.
Consequently, any loss greater than the defined threshold is
considered to be an anomaly.

For testing, we randomly select a couple of features, change
their value to µi ± 2σi, and keep the other features at their

mean value. i represents the selected features. The output of
the anomaly detection model with this anomalous input is
subtracted from the mean of the output of the training data
to get the loss due to the anomaly. This is shown in Figure 6,
where the peaks corresponding to the anomalous features have
a higher loss and have crossed the threshold defined above.

However, we only focus on the cases where either one of
the sensors that correspond to wind speed, rotor speed, or pitch
angle is at fault. This is because the empirical relation to the
expected power output and the physics loss functions require
these features to be present.

The notation µ±2σ is conventionally used to describe data
lying within two standard deviations (σ) from the mean (µ). In
a Gaussian distribution, roughly 95.4% of data falls within this
range. Before applying this principle to identify outliers, we
verified that our features adhere to a Gaussian distribution,
with various statistical methods. This validation ensures the
appropriateness of the µ± 2σ rule in our context.

Figure 3. Auto Encoder architecture.

D. Outlier Detection using Standard Deviation

In the process of data pre-processing, it is crucial to identify
and handle outliers that can influence the outcomes of the
analysis. One effective method employed in this study involves
the use of standard deviation.

Given a dataset, the mean (µ) represents the average value,
while the standard deviation (σ) provides a measure of the
data’s spread or dispersion. In a normally distributed dataset,
approximately 68.2% of the data lies within µ± σ, and about
95.4% lies within µ ± 2σ. Data points that fall outside of
µ±2σ can be considered as potential outliers, as they deviate
significantly from the mean.

In our analysis, data points falling outside the range of µ±
2σ were further investigated to determine their validity and
were treated or removed accordingly.
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E. Clustering

GMMs are chosen to cluster turbines based on multiple
features due to their capacity to model complex data dis-
tributions. The features selected for clustering are the ones
previously mentioned, except for wind speed, rotor speed, and
pitch angles. To determine the optimal number of clusters for
the GMM, we employ the elbow method, visually represented
in Figure 4.

Figure 4. Optimal number of k clusters using the elbow method.

Recognizing the importance of data quality, we introduce a
clustering-based imputation methodology. GMMs, with their
probabilistic framework, offer an advantage over deterministic
clustering methods like K-means. Using the GMM, we cluster
wind turbines based on operational and spatial parameters,
allowing for effective imputation of missing values. The
clustering phase involves grouping wind turbines, guided by
important features derived from the Random Forest model. By
training the GMM on these scaled features, we ensure uniform
scaling and compatibility.

During the validation phase, the test dataset is meticulously
constructed with Gaussian distribution to encompass wind tur-
bine feature values that replicate diverse operational scenarios.
Here, faulty sensor readings are replaced with the mean values
of their corresponding clusters. The findings are compelling,
as we observed a close match between the imputed values
and the actual expected values across various test scenarios,
substantiating the imputation mechanism’s accuracy.

Although GMMs come with their assumptions, especially
about cluster shapes, and can be sensitive to initialization, we
chose to use GMMs because of their strengths and the specific
characteristics of our dataset.

The distribution of training loss across various thresholds,
which is critical for setting our anomaly detection parameters,
is presented in Figure 5.

Figure 6 shows the results of our anomaly detection process,
highlighting how our model responds to different types of
sensor errors.

Figure 5. Loss distribution and threshold showing how losses are distributed
across different thresholds.

Figure 6. Anomaly detection results.

VI. POWER OUTPUT MODELLING

Our power prediction model, built atop this preprocessed
data, comprises multiple layers of fully connected neural
networks. The model’s architecture, training configurations,
and hyperparameters are detailed in this section.

With the imputed values for the faulty sensor data, we
model the power output of the wind turbine using the features
mentioned above. The model consists of 4 layers of fully
connected neural networks with Rectified Linear Unit (ReLU)
activation units and dropouts between each layer.

During the training phase, we maintain the actual values
for all features, i.e., it is trained with non-faulty sensors in
3-fold cross-validation for 30 epochs, which is approximately
the number of steps during which the validation loss stabilizes.
During the validation and testing phase, features other than
wind speed and rotor speed are fed to the clustering algorithm,
which clusters the instances into a cluster. The faulty sensor
value is replaced by taking the mean of the actual sensor values
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from the training data for the selected cluster. We select the
best model based on the validation loss.

A. Physics-Informed Loss

The crux of our approach lies in integrating a physics-based
loss function. We derive this loss from the energy conservation
laws governing wind turbines, ensuring our model’s predic-
tions are both data-driven and physically informed. Although
the model with traditional MAE loss function converges, there
is often a need to include physical laws in the system. We
incorporate physics into our model via loss functions. The
physical laws are derived using energy conservation laws at
different stages of the turbine, as shown in Figure 7.

The stages of power loss throughout the wind turbine
system are highlighted in Figure 7. This diagram assists in
understanding the energy flow and losses at various stages.

Figure 7. Power Loss at various stages.

The power in the wind is given by [6], where A is the area
swept by the blades, v is the wind velocity, ρ is the air density.

Pwind =
1

2
ρAv3 (1)

There are various methods to model the power coefficient,
which is a function of the tip speed ratio of the rotor blade, β
and the pitch angle, λ, thus Cp(λ, β). Reyes et at. present a
review in [6], stating there are three major approaches to model
Cp, namely, the polynomial model, the sinusoidal model and
the exponential model. The names indicate how the general
function is used to model Cp from either the tip speed ratio
λ or both the tip speed ratio λ and the pitch angle β. We
use a generic formulation of the widely adopted exponential
model from [6] rewritten in equation (2) and (3). The typical
values of the coefficients used in both of these equations are
described in table 7 and table 8 in [6]. In our implementation,
we use the most widely used exponential model’s coefficient
values, as described in [13].

Cp = c0(c1λ
−1
i + c2β + c3β

c4 + c5)e
c6λ

−1
i + c7λ (2)

1

λi
=

1

λ+ d0β + d1
− d2

1 + β3
(3)

The power loss at the blades is given by equation (4).
The power loss at the gearbox is given by equation (5). ηgb
represents the efficiency coefficient of the turbine gearbox.
Similarly, the loss at the turbine generator is given by equation
(6), where ηgen represents the turbine generator’s efficiency
coefficient. These efficiency values are evaluated using an
iterative method, as described in [14].

∆Ploss b = (1− Cp)Pwind (4)

∆Ploss gb = (1− ηgb)Protor (5)

∆Ploss gen = (1− ηgen)Pgearbox (6)

The power output accounted for the above losses is given
in equation (7). Simplifying equation (7) expressed the power
output in terms of the power coefficient, the gearbox efficiency
coefficient and the generator efficiency coefficient, presented
in equation (8).

Pout = Pwind − (∆Ploss b +∆Ploss gb +∆Ploss gen) (7)

Pout = CpηgbηgenPwind (8)

The physics loss is given by the difference between the
predicted output power of the wind turbine and the actual
power produced by the wind turbine for a stipulated period.
This is expressed in equation (9), where Pout denotes the
predicted output power of the wind turbine and Pactual denotes
the actual power produced by the turbine.

Lossphysics = Pout − Pactual (9)

TABLE I
COMPARISON OF IMPUTATION ACCURACY USING MEAN ABSOLUTE
ERROR (MAE) FOR GMM, K-MEANS, AUTOENCODER, AND SIMPLE

AVERAGE METHODS

Method MAE (Imputation Accuracy)
GMM 9.21
Autoencoder 12.62
KMeans 15.86
Simple Average 32.69

Table I summarizes the efficacy of different imputation
methods using the Mean Absolute Error (MAE) metric. The
GMM-based method shows the lowest MAE, indicating better
imputation accuracy compared to the K-means, Autoencoder,
and Simple Average methods.

Figure 8 illustrates the validation of introduced anomalies.
The outcomes help verify the sensitivity of our anomaly
detection system.

VII. EVALUATION

The evaluation of our proposed methodology focuses on
two primary goals: 1) Assessing the accuracy of the power
prediction model and 2) Validating the robustness of the model
against faulty sensor data and imputation techniques.

A. Evaluation Methodology

To achieve these goals, we conducted a comprehensive set
of experiments involving the following steps:

1) Data Preprocessing: This step includes outlier detection
and handling, feature selection, and anomaly detection,
as described in the Methodology section.
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Figure 8. Validation of Introduced Anomalies.

2) Imputation Techniques Comparison: We evaluated
various imputation techniques, including Gaussian Mix-
ture Models (GMM), Autoencoder-based imputation, K-
means clustering, and Simple Average imputation. The
effectiveness of these techniques was assessed using the
Mean Absolute Error (MAE) metric.

3) Model Training and Validation: The power prediction
model was trained using the preprocessed and imputed
data. We used a 3-fold cross-validation approach to
ensure the robustness of the model. The model ar-
chitecture included multiple layers of fully connected
neural networks with ReLU activations and dropout
regularization.

4) Physics-Informed Neural Networks (PINN): We in-
tegrated a physics-based loss function into the neural
network to align the predictions with physical laws
governing wind turbines. The impact of this integration
was evaluated by comparing the performance of models
with and without the physics loss.

5) Benchmarking Against State-of-the-Art: We bench-
marked our model against traditional power prediction
models and recent advancements such as autoencoder-
based methods.

6) Ablation Study: To further understand the contribution
of each feature, we conducted an ablation study where
each feature was adjusted from its mean value and the
prediction accuracy was observed with and without the
physics model.

B. Main Goals

The main goals of our evaluation are as follows:

• Accuracy of Power Prediction: Determine the accuracy
of our power prediction model by comparing predicted
power outputs with actual values, using metrics such
as Mean Absolute Error (MAE) and the coefficient of
determination (R2).

• Robustness of Imputation Techniques: Validate the
effectiveness of the GMM-based imputation technique

compared to other methods, especially in handling non-
linear associations in the data.

• Impact of Physics-Informed Learning: Evaluate the
contribution of physics-informed neural networks in im-
proving the prediction accuracy and ensuring that the
model’s predictions adhere to physical principles.

• Comparative Analysis: Benchmark the proposed
methodology against state-of-the-art approaches to
highlight the improvements and advantages of our
integrated approach.

• Feature Contribution: Through the ablation study, as-
sess the significance of individual features on the model’s
performance and demonstrate the necessity of combining
domain-specific features with data-driven techniques.

The results from these evaluations are discussed in the
subsequent section.

VIII. RESULTS

To ensure a comprehensive benchmark, we compared the
results of GMM-based clustering with methods [4] that use
K-means clustering and also evaluated the two-stage deep
autoencoder-based method, as proposed by [5]. Their approach
primarily utilizes a deep autoencoder to recover the underlying
structure of the data and then imputes the missing value.
The proposed method using GMM shows a lower Mean
Absolute Error (MAE), as shown in Table I. Our GMM-based
clustering not only demonstrates a significant improvement
over traditional K-means clustering but also outperforms the
recent deep autoencoder-based method in terms of MAE.

For Anomalous sensor value detection, we benchmark the
performance by changing the sensor value to various varia-
tions, as shown in Figure 8. We see that the induced variations
in sensor values result in a loss well above the threshold for
most variations of values.

Figure 9 displays the validation loss of our power prediction
models over epochs, comparing models with and without
the incorporation of physics-informed loss. This graphical
representation helps in understanding the impact of physics-
based modeling on the convergence and performance of the
predictive models.

Figure 9. Validation Loss with and without physics loss. The X-axis represents
the number of epochs, and the Y-axis represents the validation loss.
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We benchmark the performance of our proposed methodol-
ogy against traditional power prediction models. Both quali-
tative and quantitative analyses emphasize the advantages of
our physics-informed approach. We obtain the results for the
power prediction model with and without physics loss. We use
the coefficient of determination R2 as our metric to evaluate
the performance of our model. The R2 with physics loss seems
to perform better, as shown in Table II.

We further investigate the convergence of the model with
and without physics loss. We train the model in 5-fold cross-
validation and aggregate the results and validation loss. We
see that the model converges quicker with physics loss, as
shown in Figure 9. Our imputation methodology significantly
enhances the reliability of predictions. Furthermore, the inte-
gration of the physics-informed loss ensures our predictions
are not just accurate but also adhere to the physical laws of
wind turbine operations.

TABLE II
R2 OF THE POWER PREDICTION MODEL WITH AND WITHOUT PHYSICS

LOSS

Faulty sensor Without Physics Loss With Physics Loss
Wind Speed 0.67 0.77
Rotor Speed 0.51 0.58

None 0.77 0.79

TABLE III
ABLATION STUDY SHOWING THE ACCURACY (ACC) OF PREDICTIONS FOR

DIFFERENT DEVIATIONS OF EACH FEATURE WITH AND WITHOUT THE
PHYSICS (PHY) MODEL

Feature Deviation Acc w/o Phy Acc w/ Phy
Gearbox Oil Pressure +/- 1% 93.2% 94.1%
Gen. Starter Temp. +/- 0.7% 92.5% 93.8%
Shaft Bearing Temp. +/- 0.6% 93.0% 93.5%
Gen. Inlet Temp. +/- 0.7% 92.8% 93.7%
Gen. Bearing Temp. +/- 0.6% 93.1% 93.9%
Pitch Angle +/- 0.5% 92.4% 93.3%
Wind Speed +/- 2% 91.9% 93.0%
Rotor Speed +/- 1% 93.2% 94.2%
Nacelle Direction +/- 0.8% 92.6% 93.6%
Yaw +/- 0.5% 92.3% 93.2%

To further evaluate our model’s robustness to changes in
input features, we performed an ablation study. In this study,
we adjusted each feature from its mean value and examined the
model’s prediction accuracy, both with and without the use of
the physics model. The findings are outlined in Table III. The
table shows that using the physics model consistently improves
prediction accuracy across all features. This underscores the
importance of combining real-world physical knowledge with
data-driven modeling. Features like ’Wind Speed’ and ’Pitch
Angle’, which significantly influences turbine performance,
benefits notably from the physics model. This supports the
idea of using a physics-based modeling approach.

This study also indicates that our model can handle vari-
ations in data, making it suitable for real-world wind farm
scenarios.

IX. CONCLUSION

This paper presents a comprehensive approach to wind
turbine power prediction. Ensuring data quality through
clustering-based imputation and integrating Physics-Informed
Neural Networks for power prediction, we ensure that predic-
tions are both accurate and physically feasible. Our method-
ology, tested on real-world data, underscores the importance
of merging data-driven insights with domain-specific exper-
tise, paving the way for future innovations in wind turbine
operations and maintenance.

While our approach advances wind turbine power pre-
diction, future work can optimize clustering for enhanced
imputation, integrate real-time data with advanced neural
architectures, and expand the method’s applicability to other
renewables like solar, ensuring data-driven yet physically
coherent predictions.
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