
Symbolic Unfolding of Similarity-based Fuzzy Logic Programs

Ginés Moreno
Department of Computing Systems
University of Castilla-La Mancha

02071 Albacete (Spain)
Email: Gines.Moreno@uclm.es

José Antonio Riaza
Department of Computing Systems
University of Castilla-La Mancha

02071 Albacete (Spain)
Email: JoseAntonio.Riaza@uclm.es

Abstract—FASILL introduces “Fuzzy Aggregators and Similar-
ity Into a Logic Language”. In its symbolic extension, called
sFASILL, some truth degrees, similarity annotations and fuzzy
connectives can be left unknown, so that the user can easily
figure out the impact of their possible values at execution time.
In this paper, we adapt to this last setting a similarity-based,
symbolic variant of unfolding rule, which is very well known in
most declarative frameworks. This semantics-preserving transfor-
mation technique is based on the application of computational
steps on the bodies of program rules for improving efficiency.
The method has been implemented in a freely available online
tool and, to the best of our knowledge, it represents the first ap-
proach for unfolding fuzzy logic programs coping with symbolic
similarity relations.

Index Terms—Fuzzy Logic Programming; Similarity; Symbolic
Unfolding.

I. INTRODUCTION

During the last decades, the logic language Prolog has been
fuzzified by embedding similarity relations or using fuzzy con-
nectives for dealing with truth degrees beyond {true, false},
respectively. We have recently combined both approaches in
the design of FASILL [2], whose symbolic extension (inspired
by our initial experiences with MALP [8]) is called sFASILL
[11].

This last symbolic language is useful for flexibly tuning
(according to users preferences) the fuzzy components of
fuzzy logic programs. Although there exist other approaches
which are able to tune fuzzy truth degrees and connectives
[15][16][17], none of them manage similarity relations as the
tuning technique we describe in [11] does. We have used
sFASILL, and its tuning engine, for developing two real world
applications in the fields of the semantic web [1] and neural
networks [9].

Besides this, unfolding is a well-known and widely used
semantics-preserving program transformation rule, which is
able to improve programs, generating more efficient code. The
unfolding transformation traditionally considered in pure logic
programming consists in the replacement of a program clause
C by the set of clauses obtained after applying a computation
step in all its possible forms on the body of C [14][19].

In order to briefly illustrate the essence and benefits of
the transformation, consider a very simple Prolog program
containing a clause, say p(X):-q(X), and a fact, say q(a), for
defining two (crisp, not fuzzy) predicates, p and q. It is easy
to see that both rules must be used in two computational steps
for successfully executing a goal like p(a). Alternatively, we

can unfold the first clause by applying a computational step
on its body q(X) (using the fact q(a)) and next instantiating
the head with the achieved substitution {X/a}. Then, the
new unfolded rule is just the simple fact p(a), which must
be used in only one computational step (instead of two, as
before) to solve goal p(a). This very simple example reveals
that all computational steps applied at unfolding time remain
compiled on unfolded rules forever, and hence, those steps
have no longer to be repeated in all subsequent executions
of the transformed programs. This justifies why unfolding is
able to improve the efficiency of transformed programs by
accelerating their computational behaviour.

In [3][4], we successfully adapted such operation to fuzzy
logic programs dealing with lattices of truth degrees and sim-
ilarity relations, but this type of unfolding was not symbolic
yet. On the contrary, in [10] we defined a symbolic version
of the transformation but in absence of similarities. Inspired
by both works, in this paper we plan to go an step beyond by
fusing both approaches in the definition of a similarity-based
symbolic transformation.

The structure of this paper is as follows. After summarizing,
in Section II, the syntax of FASILL and sFASILL, in Section
III we detail how to execute and unfold such programs. Finally,
we conclude and propose future work in Section IV.

II. THE FASILL LANGUAGE AND ITS SYMBOLIC
EXTENSION

In this work, given a complete lattice L, we consider a first
order language LL built upon a signature ΣL, that contains the
elements of a countably infinite set of variables V , function
and predicate symbols (denoted by F and Π, respectively)
with an associated arity—usually expressed as pairs f/n or
p/n, respectively, where n represents its arity—, and the truth
degree literals ΣT

L and connectives ΣC
L from L. Therefore, a

well-formed formula in LL can be either:
• A value v ∈ ΣT

L , which will be interpreted as itself, i.e.,
as the truth degree v ∈ L.

• p(t1, . . . , tn), if t1, . . . , tn are terms over V ∪F and p/n
is an n-ary predicate. This formula is called atomic (atom,
for short).

• ς(e1, . . . , en), if e1, . . . , en are well-formed formulas and
ς is an n-ary connective with truth function [[ς]] : Ln 7→ L.

Definition 1 (Complete Lattice). A complete lattice is a
partially ordered set (L,≤) such that every subset S of L

121Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

&prod(x, y) ≜ x ∗ y |prod(x, y) ≜ x+ y − xy Product logic
&godel(x, y) ≜ min(x, y) |godel(x, y) ≜ max(x, y) Gödel logic
&luka(x, y) ≜ max(0, x+ y − 1) |luka(x, y) ≜ min(x+ y, 1) Łukasiewicz logic

Fig. 1. Conjunctions and disjunctions of three different fuzzy logics over ([0, 1],≤).

has infimum and supremum elements. Then, it is a bounded
lattice, i.e., it has bottom and top elements, denoted by ⊥ and
⊤, respectively.

Example 1. In this paper, we use the lattice ([0, 1],≤), where
≤ is the usual ordering relation on real numbers, and three
sets of conjunctions/disjunctions corresponding to the fuzzy
logics of Gödel, Łukasiewicz and Product (with different
capabilities for modelling pessimistic, optimistic and realistic
scenarios), defined in Figure 1. It is possible to also include
other fuzzy connectives (aggregators) like the arithmetical
average @aver(x, y) ≜ (x + y)/2 or the linguistic modifier
@very(x) ≜ x2.

Definition 2 (Similarity Relation). Given a domain U and a
lattice L with a fixed t-norm ∧, a similarity relation R is a
fuzzy binary relation on U , that is, a fuzzy subset on U × U
(namely, a mapping R : U × U → L) fulfilling the following
properties: reflexive ∀x ∈ U ,R(x, x) = ⊤, symmetric ∀x, y ∈
U ,R(x, y) = R(y, x), and transitive ∀x, y, z ∈ U ,R(x, z) ≥
R(x, y) ∧R(y, z).

The fuzzy logic language FASILL relies on complete lattices
and similarity relations [2]. We are now ready for summarizing
its symbolic extension where, in essence, we allow some
undefined values (truth degrees) and connectives in program
rules as well as in the associated similarity relation, so that
these elements can be systematically computed afterwards.
The symbolic extension of FASILL we initially presented in
[11] is called sFASILL.

Given a complete lattice L, we consider an augmented
signature Σ#

L producing an augmented language L#
L ⊇ LL,

which may also include a number of symbolic values and
symbolic connectives, which do not belong to L. Symbolic
objects are usually denoted as o# with a superscript # and,
in our tool, their identifiers always start with #. An L#-
expression is now a well-formed formula of L#

L , which is
composed by values and connectives from L as well as by
symbolic values and connectives. We let exp#L denote the
set of all L#-expressions in L#

L . Given a L#-expression E,
[[E]] refers to the new L#-expression obtained after evaluating
as much as possible the connectives in E. Particularly, if
E does not contain any symbolic value or connective, then
[[E]] = v ∈ L.

In the following, we consider symbolic substitutions that are
mappings from symbolic values and connectives to expressions
over ΣT

L ∪ ΣC
L . We let sym(o#) denote the symbolic values

and connectives in o#. Given a symbolic substitution Θ for
sym(o#), we denote by o#Θ the object that results from o#

by replacing every symbolic symbol e# by e#Θ.

Definition 3 (Symbolic Similarity Relation). Given a domain
U and a lattice L with a fixed —possibly symbolic— t-norm
∧ , a symbolic similarity relation is a mapping R# : U×U →
exp#L such that, for any symbolic substitution Θ for sym(R#),
the result of fully evaluating all L-expressions in R#Θ, say
[[R#Θ]], is a similarity relation.

Definition 4 (Symbolic Rule and Symbolic Program). Let L
be a complete lattice. A symbolic rule over L is a formula
A← B, where the following conditions hold:

• A is an atomic formula of LL (the head of the rule);
• ← is an implication from L or a symbolic implication;
• B (the body of the rule) is a symbolic goal, i.e., a well-

formed formula of L#
L ;

A sFASILL program is a tuple P# = ⟨Π#,R#, L⟩ where
Π# is a set of symbolic rules, R# is a symbolic similarity
relation between the elements of the signature Σ of Π#, and
L is a complete lattice.

Example 2. Consider a symbolic sFASILL program P# =
⟨Π#,R#, L⟩ based on lattice L = ([0, 1],≤), where Π# is
the following set of symbolic rules:

Π# =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R4 : good hotel(x)←
@#

s4(elegant(x),@very(close(x,metro)))

Note here that we leave unknown the level in which the hotel
hydropolis is more or less elegant (see the symbolic constant
s#3 in the second fact) as well as which should be the most
appropriate connective for combining two features required on
good hotels (see the symbolic constant @#

s4 in the body of the
fourth rule).

The symbolic similarity relation R# on U =
{vanguardist, elegant,modern,metro, taxi, bus}, is
represented by the graph shown in Figure 2 (a matrix can be
also used to represent this concept).

This symbolic similarity relation R# has been obtained
after applying the closure algorithm we initially introduced
in [11], which is inspired by [6][7][13] and, in essence,
is an adaptation of the classical Warshall’s algorithm for
computing transitive closures. In this particular example, we
have selected the symbolic t-norm &#

s2 and the following
set of similarity equations: elegant ∼ modern = s#0 ,
modern ∼ vanguardist = 0.9, metro ∼ bus = 0.5 and
bus ∼ taxi = s#1 .

122Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

metro

taxi

bus

0.5 &#
s2 s#1 s#1

sup{0.5, s#1 &#
s2 (s#1 &#

s2 0.5)}

elegant

vanguardist

modern
sup{s#0 , (s

#
0 &#

s2 0.9) &#
s2 0.9}

0.9s#0 &#
s2 0.9

Fig. 2. Example of symbolic similarity relation R#.

III. RUNNING AND UNFOLDING sFASILL PROGRAMS

As a logic language, sFASILL inherits the concepts of
substitution, unifier and most general unifier (mgu) from pure
logic programming, but extending some of them in order to
cope with similarities, as Bousi∼Prolog [5] does, where the
concept of most general unifier is replaced by the one of
weak most general unifier (w.m.g.u.). One step beyond, in [11]
we extended again this notion by referring to symbolic weak
most general unifiers (s.w.m.g.u.) and a symbolic weak uni-
fication algorithm was introduced to compute them. Roughly
speaking, the symbolic weak unification algorithm states that
two expressions (i.e, terms or atomic formulas) f(t1, . . . , tn)
and g(s1, . . . , sn) weakly unify if the root symbols f and g
are close with a certain —possibly symbolic— degree (i.e.
R#(f, g) = r ̸= ⊥) and each of their arguments ti and si
weakly unify. Therefore, there is a symbolic weak unifier for
two expressions even if the symbols at their roots are not
syntactically equal (f ̸≡ g).

More technically, the symbolic weak unification algorithm
can be seen as an reformulation/extension of the ones appear-
ing in [18] (since now we manage arbitrary complete lattices)
and [2][5] (because now we deal with symbolic similarity
relations). In essence, the symbolic weak most general unifier
of two expressions E1 and E2, say wmgu#(E1, E2) = ⟨σ,E⟩,
is the simplest symbolic substitution σ of E1 and E2 together
with its symbolic unification degree E verifying that E =
R̂(E1σ,E2σ).

Example 3. Given the complete lattice L = ([0, 1],≤)
of Example 1 and the symbolic similarity relation R# of
Example 2, we can use the symbolic t-norm &#

s2 for computing
the following two symbolic symbolic weak most general
unifiers: wmgu#(modern(taxi), vanguardist(bus)) =
⟨{}, 0.9 &#

s2 s#1 ⟩ and wmgu#(close to(X, taxi),
close to(ritz, bus)) = ⟨{X/ritz}, s#1 ⟩

In order to describe the procedural semantics of the
sFASILL language, in the following, we denote by C[A]
a formula where A is a sub-expression (usually an atom)

which occurs in the –possibly empty– context C[] whereas
C[A/A′] means the replacement of A by A′ in the context
C[]. Moreover, Var(s) denotes the set of distinct variables
occurring in the syntactic object s and θ[Var(s)] refers to
the substitution obtained from θ by restricting its domain to
Var(s). In the next definition, we always consider that A is the
selected atom in a goal Q, L is the complete lattice associated
to Π# and, as usual, rules are renamed apart:

Definition 5 (Computational Step). Let Q be a goal and σ
a substitution. The pair ⟨Q;σ⟩ is a state. Given a symbolic
program ⟨Π#,R#, L⟩ and a (possibly symbolic) t-norm ∧ in
L, a computation is formalized as a state transition system,
whose transition relation ⇝ is the smallest relation satisfying
these rules:
1) Successful step (denoted as SS

⇝):

⟨Q[A], σ⟩
A′ ← B ∈ Π# wmgu#(A,A′) = ⟨θ,E⟩ E ̸= ⊥

⟨Q[A/E ∧ B]θ, σθ⟩
SS

2) Failure step (denoted as FS
⇝):

⟨Q[A], σ⟩ ∄A′ ← B ∈ Π# : wmgu#(A,A′) = ⟨θ,E⟩
⟨Q[A/⊥], σ⟩

FS

3) Interpretive step (denoted as IS
⇝):

⟨Q;σ⟩ where Q is a L#-expression
⟨[[Q]];σ⟩

IS

Definition 6 (Derivation and Symbolic Fuzzy Computed
Answer). A derivation is a sequence of arbitrary length
⟨Q; id⟩ ⇝∗⟨Q′;σ⟩. When Q′ is an L#-expression that cannot
be further reduced, ⟨Q′;σ′⟩, where σ′ = σ[Var(Q)], is called
a symbolic fuzzy computed answer (sfca). Also, if Q′ is a
concrete value of L, we say that ⟨Q′;σ′⟩ is a fuzzy computed
answer (fca).

The following example illustrates the operational semantics
of sFASILL.

123Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Example 4. Let P# = ⟨Π#,R#, L⟩ be the program from
Example 2. It is possible to perform the following derivation
for P# and goal Q = good hotel(x) obtaining the sfca
⟨Q1;σ1⟩ = ⟨@#

s4(&
#
s2(&

#
s2(s

#
0 , 0.9), 0.9), 0.0); {x/ritz}⟩:

⟨good hotel(x), id⟩ SS
⇝

R4

⟨@#
s4(elegant(x1),@very(close(x1,metro))), {x/x1}⟩

SS
⇝

R1

⟨@#
s4(&

#
s2(&

#
s2(s

#
0 , 0.9), 0.9),

@very(close(ritz,metro))), {x/ritz}⟩ FS
⇝

⟨@#
s4(&

#
s2(&

#
s2(s

#
0 , 0.9), 0.9),@very(0.0)), {x/ritz}⟩

IS
⇝

⟨@#
s4(&

#
s2(&

#
s2(s

#
0 , 0.9), 0.9), 0.0), {x/ritz}⟩

Apart from this derivation, there exists a second
one ending with the alternative sfca ⟨Q2;σ2⟩ =
⟨@#

s4(s
#
3 ,@very(&

#
s2(&

#
s2(0.5, s

#
1), 0.7))); {x/hydropolis}⟩

associated to the same goal. Observe the presence of symbolic
constants coming from the symbolic similarity relation, which
contrast with our precedent work [8].

Now, let Θ = {s#0 /0.8, s
#
1 /0.8,&

#
s2/&luka, s

#
3 /1.0,

@#
s4/@aver} be a symbolic substitution that can be used

for instantiating the previous sFASILL program in order to
obtain a non-symbolic, fully executable FASILL program.
This substitution can be automatically obtained by the tuning
tool we described in [11] after introducing a couple of test
cases (i.e., 0.4−> good hotel(hydropolis) and 0.6−>
good hotel(ritz)), which represent the desired degrees for
two goals accordingly to the user preferences.

Now we are ready to introduce the similarity-based sym-
bolic unfolding transformations relying on the operational
semantics described so far.

Definition 7 (Symbolic Unfolding). Let P# = ⟨Π#,R#, L⟩
be a sFASILL program and R : (H ← B) ∈ Π# be a
rule (with non-empty body B). Then, the symbolic unfolding
of rule R in program P# is the new sFASILL program
P ′# = ⟨Π′#,R#, L⟩, where Π′# = (Π# − {R}) ∪ {Hσ ←
B′ | ⟨B; id⟩ ⇝ ⟨B′;σ⟩}.

Example 5. Let us built a transformation sequence where
each sFASILL program in the sequence is obtained from the
immediately preceding one by applying symbolic unfolding,
except the initial one P#

0 = ⟨Π#
0 ,R#, L⟩, which, in our case,

is the one illustrated in Example 2, that is:

Π#
0 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R4 : good hotel(x)←
@#

s4(elegant(x),@very(close(x,metro)))

Program P#
1 = ⟨Π#

1 ,R#, L⟩ is obtained after unfolding rule
R4 (with selected atom elegant(x)) by applying a SS

⇝ step

with rules R1 and R2:

Π#
1 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R41 : good hotel(ritz)← @#
s4(

&#
s2(&

#
s2(s

#
0 , 0.9), 0.9),

@very(close(ritz,metro)))

R42 : good hotel(hydropolis)←
@#

s4(s
#
3 ,@very(close(hydropolis,metro)))

After unfolding rule R41 (with selected atom
close(ritz,metro)) by applying a FS

⇝ step, we obtain
program P#

2 = ⟨Π#
2 ,R#, L⟩:

Π#
2 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R41F : good hotel(ritz)←
@#

s4(&
#
s2(&

#
s2(s

#
0 , 0.9), 0.9),@very(0.0))

R42 : good hotel(hydropolis)←
@#

s4(s
#
3 ,@very(close(hydropolis,metro)))

When unfolding rule R42 (with selected atom
close(hydropolis,metro)) by applying a SS

⇝ step with rule
R3, we reach the program P#

3 = ⟨Π#
3 ,R#, L⟩:

Π#
3 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R41F : good hotel(ritz)←
@#

s4(&
#
s2(&

#
s2(s

#
0 , 0.9), 0.9),@very(0.0))

R423 : good hotel(hydropolis)←
@#

s4(s
#
3 ,@very(&

#
s2(&

#
s2(0.5, s

#
1), 0.7)))

Finally, by unfolding rule R41F (with selected expression
@very(0.0)) after applying a IS

⇝ step, we obtain the final
program P#

4 = ⟨Π#
4 ,R#, L⟩:

Π#
4 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R41FI : good hotel(ritz)←
@#

s4(&
#
s2(&

#
s2(s

#
0 , 0.9), 0.9), 0.0)

R423 : good hotel(hydropolis)←
@#

s4(s
#
3 ,@very(&

#
s2(&

#
s2(0.5, s

#
1), 0.7)))

In the previous example, it is easy to see that each program
in the sequence produces the same set of sfca’s for a given
goal but reducing the length of derivations. For instance, the
derivation performed w.r.t. the original program P#

0 illustrated
in Example 4, can be emulated in the final program P#

4 with
just one computational step (instead of four) as:

⟨good hotel(x); id⟩ SS
⇝

R41FI

⟨@#
s4(&

#
s2(&

#
s2(s

#
0 , 0.9), 0.9), 0.0); {x/ritz}⟩.

124Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

(a) Original sFASILL program before being transformed.

(b) sFASILL program obtained after unfolding the last program rule.

Fig. 3. The FASILL online tool unfolding a symbolic program.

However, in the symbolic case, the unfolding transformation
is not always safe, as the following example reveals.

Example 6. Consider a sFASILL program P = ⟨Π#,R#, L⟩
whose symbolic similarity relation establishes thatR#(a, b) =
v# and R#(q, r) = 0.5 with a fixed t-norm ∧ = &luka:

Π# =

{
p(x)← q(x, b)
r(a, a)← 0.5

Π′# =

{
p(a)← 0.5 ∧ 0.5 ∧ v#

r(a, a)← 0.5

Now, if we apply to P a symbolic substitution Θ which
replaces v# by 0.4 then, the unfolding of PΘ =
⟨Π#Θ,R#Θ, L⟩, where (R#Θ)(a, b) = 0.4, produces the
following set of rules:

(Π#Θ)′ = {p(x)← 0, r(a, a)← 0.5}

This program is different to the instantiated unfolded one
(observe, in particular, that the head of the first rule in both
programs are different):

Π′#Θ = {p(a)← 0.5 ∧ 0.5 ∧ 0.4, r(a, a)← 0.5}

IV. CONCLUSION AND FUTURE WORK

The symbolic extension of the FASILL language based
on symbolic similarity relations we introduced in [11] has
been used in this paper for developing an effective unfolding
technique for sFASILL programs, which is available at [12]
(see in Figure 3 two screenshots of a work session with the
FASILL online tool, before and after unfolding a symbolic
program). Here, we have surpassed both the similarity-based
(but non-symbolic) unfolding of [3][4], thus permitting the
optimization of sFASILL programs in an unified, similarity-
based symbolic framework.

As ongoing work, we are nowadays developing the formal
proofs that ensure the correctness of the transformation under
certain safe applicability conditions.

ACKNOWLEDGMENT

This work has been partially supported by the EU (FEDER),
the State Research Agency (AEI) of the Spanish Ministry of
Science and Innovation under grant PID2019-104735RB-C42
(SAFER).

REFERENCES

[1] J. M. Almendros-Jiménez, A. Becerra-Terón, G. Moreno, and J. A.
Riaza, “Tuning fuzzy sparql queries,” International Journal of Ap-
proximate Reasoning, vol. 170, pp. 109209, 2024.

[2] P. Julián, G. Moreno, and J. Penabad, “Thresholded semantic framework
for a fully integrated fuzzy logic language,” J. Log. Algebr. Meth.
Program., vol. 93, pp. 42–67, 2017.

[3] P. Julián, G. Moreno, and J. A. Riaza, “Seeking a safe and efficient
similarity-based unfolding rule,” Int. J. Approx. Reason., vol. 163, pp.
109038, 2023.

[4] P. Julián, G. Moreno, and J. A. Riaza, “Some properties of substitutions
in the framework of similarity relations,” Fuzzy Sets Syst., vol. 465, pp.
108510, 2023.

[5] P. Julián and C. Rubio, “A declarative semantics for bousi∼prolog,” In
Proc. of 11th Int. ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, PPDP’09, ACM, pp. 149–160, 2009.

[6] P. Julián, “A procedure for the construction of a similarity relation,” In
Proc. of the 12th International Conference on Information Processing
and Management of Uncertainty in Knoledge-based Systems, IPMU’08,
U. Málaga (ISBN 978-84-612-3061-7), pp. 489–496, 2008.

[7] A. Kandel and L. Yelowitz, “Fuzzy chains,” IEEE Trans. on Systems,
Man, and Cybernetics, vol. SMC-4, no. 5, pp. 472–475, 1974.

[8] G. Moreno, J. Penabad, J. A. Riaza, and G. Vidal, “Symbolic execution
and thresholding for efficiently tuning fuzzy logic programs,” In
Logic-Based Program Synthesis and Transformation, Proc. of the 26th
International Symposium LOPSTR’16, vol. 10184 LNCS-Springer, pp.
131–147, 2016.

[9] G. Moreno, J. Pérez, and J. A. Riaza, “Fuzzy logic programming for
tuning neural networks,” In Rules and Reasoning - Proc. of the Third
International Joint Conference, RuleML+RR’19, vol. 11784 LNCS-
Springer, pages 190–197, 2019.

[10] G. Moreno and J. A. Riaza, “An online tool for unfolding symbolic fuzzy
logic programs,” In Advances in Computational Intelligence - Proc. of
the 15th International Work-Conference on Artificial Neural Networks
(Part II), IWANN’19, vol. 11507 LNCS-Springer, pp. 475–487, 2019.

[11] G. Moreno and J. A. Riaza, “A safe and effective tuning technique for
similarity-based fuzzy logic programs,” In Advances in Computational
Intelligence - Proc. of the 16th International Work-Conference on
Artificial Neural Networks, IWANN’21, vol. 12861 LNCS-Springer, pp.
190–201, 2021.

[12] G. Moreno and J. A. Riaza, “FASILL: Sandbox,” https://dectau.uclm.
es/fasill/sandbox. Accessed: 2024-06-24.

[13] H. Naessens, H. De Meyer, and B. De Baets, “Algorithms for the
computation of t-transitive closures,” IEEE Trans. Fuzzy Systems, vol.
10, no. 4, pp. 541–551, 2002.

[14] A. Pettorossi and M. Proietti, “Rules and strategies for transforming
functional and logic programs,” ACM Computing Surveys, vol. 28, no.
2, pp. 360–414, 1996.

[15] L. De Raedt and A. Kimmig, “Probabilistic (logic) programming
concepts,” Mach. Learn., vol. 100, no. 1, pp. 5–47, 2015.

[16] F. Riguzzi and T. Swift, “The PITA system: Tabling and answer
subsumption for reasoning under uncertainty,” Theory Pract. Log.
Program., vol. 11, no. 4-5, pp. 433–449, 2011.

[17] K. F. Sagonas, T. Swift, and D. S. Warren, “XSB as an efficient
deductive database engine,” In Proc. of the ACM SIGMOD International
Conference on Management of Data, pp. 442–453, ACM Press, 1994.

[18] M. I. Sessa, “Approximate reasoning by similarity-based SLD resolu-
tion,” Theoretical Computer Science, vol. 275, no. 1-2, pp. 389–426,
2002.

[19] H. Tamaki and T. Sato, “Unfold/Fold transformations of logic pro-
grams,” In Proc. of the Second International Conference on Logic
Programming, pp. 127–139, 1984.

125Copyright (c) IARIA, 2024. ISBN: 978-1-68558-180-0

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

IARIA Congress 2024 : The 2024 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

