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Abstract—This paper presents a Simultaneous Localization And 
Mapping (SLAM)-based mapping method for last-mile delivery 
automation using a scanning Light Detection And Ranging 
sensor (LiDAR) mounted on a quadruped robot. Distortion in 
scan data from the LiDAR, caused by the swinging motion of the 
robot, is corrected by estimating the robot’s pose (three-
dimensional positions and attitude angles) in a period shorter 
than the LiDAR scan period using an extended Kalman filter. 
LiDAR-scan data related to stationary objects are detected from 
the corrected scan data using an occupancy grid method. Local 
maps in small areas where robots deliver goods to customers are 
built using normal distributions transforms and Graph SLAM. 
A feature-based loop detection is also performed using surface 
features and point feature histograms. The local maps are 
corrected in the Graph SLAM framework using the scan data 
from LiDAR mounted on a truck stopping at robot depots. 
Experimental results obtained in our university campus 
demonstrate the effectiveness of the presented method. 

 Keywords—LiDAR; NDT Graph SLAM; map building; loop 
detection; quadruped robot; delivery automation. 

I. INTRODUCTION 
Recently, last-mile delivery automation using wheeled and 

legged robots has progressed due to increased e-commerce 
and demand for contactless delivery during the COVID-19 
pandemic [1][2]. Delivery robots are designed to move short 
distances at pedestrian speed. Owing to their low speed and 
limited range, delivery robots are usually combined with 
trucks to enable a fast and efficient delivery process [3][4]. As 
shown in Figure 1, a truck transports delivery goods with 
robots and releases the robots at dedicated drop-off locations 
(robot depots). The robots deliver goods to customers and 
return to the robot depots by themselves.  

In such truck-and-robot delivery systems, map building 
(mapping) and map-matching-based self-localization using 
built maps are important technologies for autonomous 
navigation of delivery robots [5]. In the domain of mobile 
robotics and Intelligent Transportation Systems (ITS), many 
related studies using cameras and Light Detection And 
Ranging sensors (LiDARs) have been presented [6]–[8]. 
Mobile mapping systems are typically used to build High-
Definition (HD) maps for autonomous driving and advanced 
driver assistant systems in wide road environments, such as 
highways and motorways. In truck-and-robot delivery 
systems, autonomous driving and pose estimation of trucks 

   

 
Figure 1. Image of truck-and-robot delivery system. 

 
moving in wide road environments can be performed using 
HD maps. However, because HD maps building by mobile 
mapping systems incur high cost, Simultaneous Localization 
And Mapping (SLAM)-based mapping has been proposed as 
an efficient method for mapping narrow residential 
environments, in which robots deliver goods to customers.  

In this paper, we focus on LiDAR SLAM-based mapping. 
We previously presented mapping methods using LiDAR 
mounted on cars, motorcycles, and driver’s helmets based on 
Normal Distributions Transforms (NDT) SLAM [9]–[11] to 
build a three-dimensional (3D) point cloud map in community 
road environments.  

To build 3D point cloud maps by robot-mounted LiDAR 
using scan matching based-SLAM, such as NDT SLAM and 
iterative closest point SLAM, the scan data captured in the 
LiDAR coordinate frame are mapped onto the world 
coordinate frame using the self-pose (position and attitude 
angle) of a robot. Mechanical LiDARs, where laser beams are 
scanned in omnidirection (rotation of 360° of the laser beams 
in the horizontal direction), are typically used for LiDAR-
based mapping. Hence, the complete data within one scan 
(one rotation of the laser beams in the horizontal direction) 
cannot be acquired simultaneously when a robot is moving 
and swinging. Therefore, if such data are transformed based 
on the robot’s pose at the same time, distortion appears in the 
mapping results.  

To reduce the distortion in scan data, many methods for 
distortion correction have been presented using linear 
interpolation and its variants [12][13]. In our previous work, 
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a Kalman filter-based method was presented [10][11]. 
Because Kalman filter-based localization is widely used in 
the fields of mobile robotics, distortion correction in a 
Kalman filter framework can be easily incorporated in the 
self-localization system of a robot. 

Scan matching-based SLAM causes a drift (degradation of 
accuracy over time); to reduce the drift, Graph SLAM is 
typically used in conjunction with scan matching-based 
SLAM. In Graph SLAM, the detection of revisit places (called 
loops) is an important issue, and many methods for loop 
detection have been presented [14][15]. In our previous work, 
a detection method using surface features and matching 
distance indicators was presented [9]. However, some 
improvements are required to reduce missed and false 
detection of loops. 

This paper presents a LiDAR SLAM-based mapping 
method for truck-and-robot delivery systems. The LiDAR 
SLAM-based mapping method involves integrating 
components that we previously proposed [9]–[11]: distortion 
correction of LiDAR scan data, extraction of scan data related 
to stationary objects from the entire corrected LiDAR scan 
data, and point cloud mapping based on NDT Graph SLAM. 
Another contribution of this paper is to improve the 
performance of loop detection in our previous Graph SLAM 
by introducing Fast Point Feature Histograms (FPFH) [16]. 
In addition, the mapping accuracy of robot-mounted LiDAR 
is improved using scan data from truck-mounted LiDAR. 

The rest of this paper is organized as follows. Section II 
describes the experimental system. Section III explains the 
method of map building and correction, and Section IV 
presents the method of loop detection. Section V presents 
experimental results to verify the proposed method, followed 
by the conclusions in Section VI. 

II. EXPERIMENTAL SYSTEM 
Figure 2 shows an overview of a quadruped robot 

(Unitree A1). A scanning 16-layer LiDAR (Velodyne VLP-
16) and an Inertial Measurement Unit (IMU, MTi-300) are 
mounted on the upper part of the robot. The maximum range 
of the LiDAR is 70 m, the horizontal viewing angle is 360° 
with a resolution of 0.2°, and the vertical viewing angle is 30° 
with a resolution of 2°. The LiDAR provides 384 
measurements (the object’s 3D position and reflection 
intensity) every 1.33 ms (at 4.8° horizontal angle increments).  

 

 
Figure 2.  Overview of experimental quadruped robot. 

The time that the LiDAR beam takes to complete one rotation 
(360°) in the horizontal direction is 100 ms, and 30,000 
measurements are obtained in one rotation. 

The IMU provides attitude angles (roll and pitch angles) 
and angular velocities (roll, pitch, and yaw velocities) every 
10 ms with an attitude angle error of ±0.3° (typ.) and an 
angular velocity error of ±0.2 °/s (typ.). 

Meanwhile, a scanning 32-layer LiDAR (Velodyne HDL-
32) is used as a truck-mounted LiDAR. The maximum range 
of the LiDAR is 70 m, the horizontal viewing angle is 360° 
with a resolution of 0.16°, and the vertical viewing angle is 
41.34° with a resolution of 1.33°. The time that the LiDAR 
beam takes to complete one rotation (360°) in the horizontal 
direction is 100 ms, and 70,000 measurements are obtained 
in one rotation. 

III. MAP BUILDING AND CORRECTION 

A. Local Map Building by Robot-Mounted LiDAR 
The captured scan data from the robot-mounted LiDAR 

in a single scan are mapped onto a 3D grid map (voxel map) 
represented in the LiDAR coordinate frame b  attached to 
the LiDAR. A voxel grid filter is applied to downsize the scan 
data. The block used for the voxel grid filter is a cube with a 
side length of 0.2 m. 

In a world coordinate frame w , a voxel map with a voxel 
size of 1 m is used for NDT scan matching [17]. For the i-th (i 
= 1, 2, …n) measurement in the scan data, the position vector 
in b  is denoted as bip  and that in w as ip . The following 
relation is obtained: 

( )
1 1

i bip p
Τ x  (1) 

where ( , , , , , )Tx y zx  denotes the robot’s pose. Tzyx ),,(  
and T),,(  denote the 3D position and attitude angle (roll, 
pitch, and yaw angles) of the robot, respectively, in w . T(x) 
denotes the homogeneous transformation matrix: 

The scan data obtained at the current time step t (t = 0, 1, 
2, …) are called the new input scan, and the scan data 
obtained in the previous time step, i.e., before ( 1)t  , are 
called the reference scan (local map). The robot pose at t is 
determined by matching the new input scan at t with the 
reference scan data obtained before ( 1)t . The robot pose is 
used for coordinate transform using (1). The new input scan 
can then be mapped to w , and the local map is updated.  

NDT SLAM based on NDT scan matching is performed 
by mapping LiDAR scan data captured in b  onto w  using 
the self-pose information of the robot. The LiDAR obtains 
range measurements by scanning laser beams. Thus, when a 
robot moves and swings, the complete scan data cannot be 
acquired in a single scan (LiDAR beam rotation of 360° in a 
horizontal plane) simultaneously. Therefore, if the entire scan 
data obtained within one scan are mapped onto w  using 
robot-pose information at a single point in time, distortion 
arises in mapping results.  

The distortion in the scan data from the LiDAR is 
corrected by estimating the robot’s pose in a period of 1.327 
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ms, which is shorter than the LiDAR scan period of 100 ms. 
The extended Kalman filter-based algorithm [11] is applied 
to distortion correction based on information from NDT 
SLAM and an IMU.  

Corrected scan data relating to road surfaces are removed 
using a rule-based method [11], and scan data relating to 
objects are mapped onto the grid map (cell size of 0.3 m in 
this study). Scan data relating to moving objects (called 
moving scan data), such as cars and pedestrians, are removed 
using an occupancy grid method, and those relating to 
stationary objects (stationary scan data) are then extracted. 
The stationary scan data are used for NDT SLAM-based 
mapping. 

NDT SLAM degrades mapping accuracy over time due to 
accumulation errors. To reduce the error, Graph SLAM is 
employed. The robot poses, which are calculated by NDT 
SLAM every 100 ms (LiDAR scan period), are mapped onto 
a pose graph, as depicted in Figure 3. When revisit places 
(loops), where the robot has already visited places during 
map building, are detected using a method described in 
Section IV, the current robot’s pose relative to its pose at the 
revisit node is set to the pose graph as a loop constraint (blue 
arrow in Figure 3). The objective function of (2) is then 
minimized to improve the accuracy of the map built by NDT 
SLAM: 

1 1, 1 1,( ) {( ) } {( ) }T pose
i i i i i i i i

i
J χ x x δ Ω x x δ  

   , ,
, loop

{( ) } {( ) }
A B

T loop
B A A B B A A B

x x
x x δ Ω x x δ      (2) 

where the first and second terms on the right side indicate the 
constraints on NDT SLAM and loop, respectively. 

1 2( , , , , )T T T T
iχ x x x . ix denotes the robot’s pose at the i-

th time step. 1,i iδ  denotes the relative pose of the robot 
between the i-th and (i+1)th time steps, which is calculated 
from NDT SLAM. Ax  and Bx  denote the robot’s poses at the 
revisit and current nodes, respectively. ,A Bδ  denotes the 
relative pose of the robot at the two nodes, which is calculated 
from the LiDAR scan data using NDT scan matching. poseΩ  
and loopΩ  denote the information matrices. 

  

 
Figure 3. Pose graph for map building. The robot’s poses are represented as 
graph nodes (black triangles), and relative poses between two neighboring 
nodes are represented as graph edges (black arrows). 
 

B. Map Correction by Truck-Mounted LiDAR  
 When the robot returns to the robot depot, the local map 

built by the robot is corrected using the LiDAR scan data 
captured by the truck-mounted LiDAR. Such map correction 
is performed in Graph SLAM framework by the following 
steps:  

Step 1: Mapping by truck-mounted LiDAR; the map is 
built using the truck-mounted LiDAR at the robot depot, and 
the truck poses, obtained by the map-matching method using 
an HD map, are mapped onto a pose graph, as depicted in 
Figure 4; 

Step 2: Encounter node detection; nodes, where the robot 
encounters the truck are detected in the pose graph;  

Step 3: Relative pose estimation; the robot’s poses relative 
to the truck at encounter nodes are estimated from scan data 
captured by the truck and robot-mounted LiDARs using NDT 
scan matching;  

Step 4: Map correction; the local map built by the robot is 
corrected using pose graph optimization. 

The relative poses of the robot at the encounter nodes are 
set to the pose graph as the loop constraint (red arrow in Figure 
4). The following objective function is then minimized to 
correct the local map: 

( ') ( )J Jχ χ  

*

* *

, loop

{( ) } {( ) }
A

T loop
A A A A A

x x

x x δ Ω x x δ  

* * * * *( ) ( )Tx δ Ω x δ                                           (3) 

where *' ( , )T T Tχ x χ  and 0 1( , , , , )T T T T
iχ x x x . *x  

denotes the truck pose, and χ  represents a set of the robot 
poses. ( )J χ  denotes the objective function of the pose 
graphs in (2). The second term on the right side is the 
constraint on the relative pose of the robot at encounter nodes 

Ax . Aδ  denotes the robot pose relative to the truck at the 
encounter nodes. The third term on the right side is the 
constraint on the truck pose (green arrow in Figure 4). *δ  
denotes the truck pose. loopΩ  and *Ω  denote the information 
matrices. As the truck pose is typically obtained accurately, 

*Ω  is set to a large value. 

IV. LOOP DETECTION 
The method of encounter node detection during map 

correction (Section III. B) is similar to the method of revisit 
node detection (SectionIII. A). Therefore, in this section, we  

 

 
Figure 4.  Pose graph for map correction.  
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describe the method of revisit node detection during local map 
building. 

A. Detection of Candidate of Revisit Nodes 
To detect revisit nodes, a candidate for revisit nodes is first 

obtained using the self-location information of the robot by 
NDT SLAM. If the distance of an old node from the current 
node is less than 10 m, the old node is recognized as a 
candidate for revisit nodes.  

Thereafter, the Loop Probability Indicator (LPI) [18] is 
calculated using stationary scan data captured at the candidate 
for the revisit and current nodes. Each grid of the voxel map 
is first classified into three types: line, plane, or other voxels 
in Figure 5. Three eigenvalues ( 1 2 3 0 ) are calculated 
from LiDAR scan data in voxels based on principal 
component analysis, and the following features are calculated: 

1 2
1

1

q , 2 3
2

1

q , 3
3

1

q               (4) 

When the maximum values are q1, q2, and q3, the voxel is 
determined as being of line, plane, or other types. 

Based on the surface normal vector of the plane voxels, 
the plane voxels are further divided into nine classes: (1, 0, 0), 
(0, 1, 0), (0, 0, 1), (1/ 2,1/ 2,0) , (1/ 2, 1/ 2,0) , (1 / 2,0,
1/ 2) , ( 1/ 2,0,1/ 2) , (0,1/ 2,1/ 2) , and (0, 1/ 2,1/ 2) . 

Two feature descriptors U = 1 2 11( , , , )Tu u u  and V =
1 2 11( , , , )Tv v v are defined. U is calculated from LiDAR scan 

data captured at the candidate for revisit nodes, and V is 
calculated from the LiDAR scan data at the current node. 1u  
and 1v  denote the numbers of line voxels in the voxel map. 

2u – 10u  and 2v – 10v  denote the numbers of plane voxels 
divided into nine classes. 11u  and 11v  denote the numbers of 
other voxels. 

From the feature descriptors U and V, the LPI is given by  

11

1
11

1

{max( , ) }
LP I

max( , )

i i i i
i

i i
i

u v u v

u v
                    (5) 

A higher degree of similarity between the LiDAR scan 
data at both nodes leads to a larger LPI. Thus, the loop can be 
detected from the candidate of the revisit nodes using a large 
LPI value (a threshold of 80% in this study). 

 
 

         
(a) Line voxel                 (b) Plane voxel                  (c) Other voxel 

 
Figure 5.  Classification of voxels. 

B. Detection of Revisit Nodes and Calculation of Relative 
Pose 
Revisit nodes are determined from the candidate for 

revisit nodes using a Matching Distance Indicator (MDI). 
From two LiDAR scan data captured at the current node and 
each candidate for revisit nodes, the relative pose of the robot 
is calculated using NDT scan matching. The MDI is then 
given:  

1

1MDI
N

i
i

d
N

                                  (6) 

where N represents the number of measurements in the 
LiDAR scan data captured at the candidate for revisit nodes. 
di denotes the nearest neighbor distance. 

A higher degree of similarity between the LiDAR scan 
data captured at two nodes leads to a smaller MDI. The loop 
can then be detected by a smaller MDI value (a threshold of 
1.5 m in this study).  

In NDT scan matching, if an initial value of the relative 
pose is given incorrectly, both the relative pose estimate and 
MDI become inaccurate due to local minima issues. To 
correctly set an initial value of the relative pose, an FPFH [16] 
is used.  

Point features are extracted using FPFH from two LiDAR 
scan data captured at the current node and each candidate for 
revisit nodes. First, LiDAR scan data (stationary scan data) 
captured at the current node are mapped onto a voxel map 
(grid size of 0.2 m) in b  and downsampled using a voxel 
grid filter. The centroid of the stationary scan data in the i-th 
voxel (i = 1, 2, …) on the voxel map is then obtained. The 
centroid is called the feature point Ai. From stationary scan 
data captured at each candidate for revisit nodes, the feature 
point Bi is obtained in the same way in b . 

Point feature histograms (33 dimensions in this study) are 
calculated based on the feature points Ai and Bi, and their 
feature points are matched as follows: 

Step 1: The three-feature point iA  (i = 1, 2, 3) is randomly 
extracted from the set of feature points obtained at the current 
scan. Then, 100 feature points Bj (j = 1, 2, …, 100) with similar 
feature histograms as those of iA are extracted using the k-
nearest neighbor method from the set of feature points 
obtained by each candidate for revisit nodes. We denote the 
triangle consisting of the three-feature point {A1, A2, A3} as A’, 
while that consisting of any three-feature points from 100 
feature points Bi as B’. The three-feature point {B1, B2, B3} is 
selected so that the two triangles A’ and B’ are congruent. 

Step 2: The pose of the candidate for revisit node relative 
to the current node is denoted by ( , , ,x y zX  

, , )T , where ( , , )Tx y zx  and ( , , )Tθ  
denote the relative position and attitude angle (roll, pitch, and 
yaw angles), respectively. 

In the matched triangles A’ and B’, the centroid positions 
of the three-feature points {A1, A2, A3} and {B1, B2, B3} are 
denoted by a  and b , respectively. The feature point 
matrices are denoted by 1 2 3( , , )Ta a a a  and 

1 2 3( , , )Tb b b b , where *
i ia a a  and *

i ib b b , 
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and *
ia  and *

ib  are the 3D positions of the feature points iA  
and Bi, respectively. Based on  the matrices W1 and W2, which 
are defined by the singular value decomposition (H = 

1 2
TW ΣW ) of the matrix TH b a , the relative position 

x  and the rotational matrix ( )R θ  related to the relative 
attitude angle θ  are given by 

2 1( ) TR θ W W   
cos cos sin sin cos cos sin
cos sin sin sin sin cos cos

sin sin cos

 

cos sin cos sin sin
cos sin sin sin cos

cos cos

            (7) 

( )x a R θ b                                   (8) 

Based on the relative pose, the 3D position ib  of the 
feature point Bi in wcan be transformed to the 3D position 

' ( )i ib R θ b x  in b . The feature point nearest to '
ib  is 

extracted from the set of feature points Ai (i =1, 2, ...), and the 
3D position of the nearest feature point is denoted by ia  . 
Then, the cost function is given by 

' '

1

1 ( ) ( )
BN

T
i i i i

iB

J
N

a b a b                      (9) 

where NB represents the number of the feature points Bi. 
Step 3: Steps 1 and 2 are repeated 100 times to find the 

relative pose X  with the smallest J in (9). Then, the relative 
pose 0X   is obtained. In NDT scan matching, the relative 
pose 0X   is used as the initial value, and the iterative 
calculation is performed. Therefore, the accurate relative 
pose is calculated, and the MDI in (6) is accurately obtained.  

V. FUNDAMENTAL EXPERIMENTS 
Mapping experiments are conducted on our university 

campus, as depicted in Figure 6. A truck stops at the yellow 
circle in Figure 6, and the robot starts from the yellow circle, 
moves on the red and green paths in areas 1 and 2, and returns 
to the yellow circle. LiDAR and IMU data of the truck-and-
robot system are recorded, and mapping is performed offline. 

The distances travelled by the robot in areas 1 and 2 are 
250 and 95 m. respectively, and the maximum velocity is 
approximately 5 km/h. Figure 7 depicts the attitude angle of 
the robot during movement, which is observed by the IMU. 

For comparison, maps are built in the following cases: 
Case 1: NDT SLAM-based local map building using 

robot-mounted LiDAR, 
Case 2: NDT SLAM-based local map building without 

distortion correction of LiDAR scan data, 
Case 3: NDT Graph SLAM-based local map building, 
Case 4: Correction of local map using truck-mounted 

LiDAR. 
Note that, in cases 1, 3, and 4, the distortion correction 

 
Figure 6.  Experimental environment. The yellow circle indicates the truck 
location and start/goal position of robot. The red and green lines indicate the 
movement paths of robot. 

 

 
(a) Area 1 

 
(b) Area 2 

Figure 7.  Roll (black) and pitch (red) angles of robot. 
 

method is implemented.  
Figures 8 and 9 show the mapping results in areas 1 and 

2 (local maps 1 and 2), respectively, using case 4. These 
figures show that the proposed method can build an 
environmental map.  

In SLAM-based mapping, the mapping accuracy is 
equivalent to that of the self-pose estimate of the robot. 
Therefore, to evaluate the mapping accuracy, the error of 
position estimate of the robot at the goal position is measured 
using a GNSS/LiDAR positioning system installed on the 
truck.  

Tables I and II show the results in areas 1 and 2, 
respectively, shown in Figure 6, where the robot moves twice 
in each area. From theses tables, we can conclude that case 3  
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(a) Overall map (top view)                                                                                      (b) Enlarged map (bird’s-eye view) 

Figure 8.  Mapping result in area 1 (local map 1). 
 
 

                 
(a) Overall map (top view)                                                                                              (b) Enlarged map (bird’s-eye view) 

Figure 9.  Mapping result in area 2 (local map 2). 
 

 

TABLE I.  ERROR IN POSITION ESTIMATE OF ROBOT AT GOAL POSITION 
(LOCAL MAP 1).  

 CASE 1 CASE 2 CASE 3 CASE 4 
Run 1 3.09 m 3.63 m 0.15 m 0.13 m 
Run 2 3.30 m 4.54 m 0.10 m 0.10 m 

 
 

TABLE II. ERROR IN POSITION ESTIMATE OF ROBOT AT GOAL POSITION 
(LOCAL MAP 2).  

 CASE 1 CASE 2 CASE 3 CASE 4 
Run 1 0.92 m 1.17 m 0.28 m 0.10 m 
Run 2 0.47 m 1.89 m 0.25 m 0.13 m 

 
 
 

provides better results than cases 1 and 2. Furthermore, case 
4 provides better results than case 3.  

VI. CONCLUSION AND FUTURE WORK 
 This paper presented a LiDAR SLAM-based mapping 
method in truck-and-robot system for last-mile delivery 
systems. Distortion in scan data from robot-mounted LiDAR 
was corrected using a Kalman filter-based method. LiDAR 
scan data related to stationary objects were extracted from 
corrected scan data using an occupancy grid-based method, 
and local maps were built using NDT Graph SLAM. 

 Furthermore, a feature-based loop detection method was 
presented using surface features and FPFH. The local map was 
corrected in the Graph SLAM framework using scan data 
from truck-mounted LiDAR. The efficacy of the presented 
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mapping method was demonstrated through experimental 
results obtained in our university campus.  

We are currently performing quantitative evaluations of 
the proposed method in various environments. In future works, 
map building using small and lightweight solid-state LiDAR 
instead of the mechanical LiDAR used in this paper will be 
performed. In addition, map update and maintenance will be 
studied.  
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