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Abstract— In recent years, there has been a significant 

exponential growth in the number of satellites from Global 

Navigation Satellite Systems (GNSSs). The proliferation of 

satellites could lead to noteworthy effects on different industries, 

such as aviation and autonomous driving, by substantially 

improving positioning accuracy and optimizing service 

efficiency. Nevertheless, deploying a large number of satellites 

comes with certain implications, such as an unavoidable 

increase in computational demands and higher power 

consumption for the receiver. A satellite selection algorithm can 

address these challenges by selecting a smaller subset of the total 

visible satellites, with comparable or even better positional 

accuracy. This paper introduces an algorithm for GNSS satellite 

selection in autonomous driving applications, which 

incorporates various factors including satellite elevation and 

signal strength. The algorithm identifies the optimal subset of 

satellites by applying a Sequential Updating Method (SUM) to 

generate multiple subsets and subsequently compare their 

Weighted Position Dilution of Precision (WPDOP). The subset 

with the lowest WPDOP is ultimately selected for use in the 

positioning process. The algorithm's performance is assessed in 

a dynamic scenario under challenging conditions, typical of 

autonomous driving context, and compared with other 

algorithms from the literature. Results show that the proposed 

algorithm is suitable for the target application, due to its ability 

to achieve higher positioning accuracy and reduce 

computational time compared to other methods in the 

literature. 

Keywords - Satellite Selection; GNSS; WPDOP; Computational 

Effort; Autonomous Driving. 

I.  INTRODUCTION 

Global Navigation Satellite Systems (GNSSs) are a vital 
component in today’s positioning and navigation landscape 
and stand as a key technology to society’s future. A high level 
of maturity has been achieved with the latest generation of 
satellites, providing new and improved positioning signals, 

contributing to the achievement of accuracies that highly 
surpass those originally planned. 

There are several error sources within a GNSS link that 
degrade the positioning accuracy of the system. Errors related 
to the atmosphere, clocks of both the satellite and receiver, the 
local environment, the geometry of the satellite constellations, 
their orbits and even intentional errors can cause discrepancies 
in the position of the user. To mitigate part of these effects, a 
multitude of correction methods have been developed, that 
seek to provide the best performance while offering the best 
price and versatility [1]. 

In open sky conditions, optimizing the Geometric Dilution 
Of Precision (GDOP) is sufficient to guarantee high accuracy 
solutions. When considering challenging conditions, such as a 
vehicle crossing an urban environment, optimizing GDOP is 
not enough, since different error magnitudes will affect each 
measurement due to multipath and Non-Line-Of-Sight 
(NLOS) conditions from the local environment.  

With the increase in satellite number, a good satellite 
selection algorithm is vital to decrease the signal-processing 
burden of the receiver, while providing good accuracy.  

A satellite selection algorithm could also benefit 
autonomous driving applications, contributing to achieve 
automation level 4, which only requires the driver to take 
control in very specific situations [2]. To reach automation 
level 5, where the vehicle is expected to operate under every 
condition and in every environment, GNSS could be a key 
component alongside other sensors, though a lot of features 
are still to be investigated [3]. The GNSS system can help 
overcome automation challenges like lane-level maneuvers, 
the oversight of vision systems, safety through independence, 
or even unlock interoperability through consistent timing and 
reference frames for vehicle to everything cooperation [4]. 

This work provides two key contributions: a satellite 
selection algorithm targeted for autonomous driving 
applications, and a performance comparison with well-known 
solutions from the literature using real dynamic data with a 
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highly accurate reference ground truth. Section 2 provides 
background in satellite selection algorithms and Section 3 
introduces the proposed solution, while Section 4 presents a 
performance comparison. In Section 5, a conclusion is given. 

II. BACKGROUND 

A. Geometric Dilution of Precision 

The GDOP is a metric related to the geometry of the 
solution, i.e., where satellites are in space, relative to the 
receiver. It is given by [5]: 

𝐺𝐷𝑂𝑃 = √𝑡𝑟𝑎𝑐𝑒((𝐺𝑇𝐺)−1) (1)  
 

where G is the design matrix for the position estimation 
solution (e.g., using a least-squares approach). For dual 
constellation case, the G matrix used for position and clock 
estimation is given by [5]: 

𝐺 =
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(2) 

 

 

e represents the line-of-sight vector with x, y, and z 
components for m satellites of the i-th constellation, and n 
satellites of the j-th constellation. The last two columns 
represent the clock biases common for each measurement 
within constellations. 

B. Optimal Method 

One of the objectives of a satellite selection algorithm is 
to minimize the GDOP for a subset of k satellites from a set of 
s visible satellites. An optimal (also known as brute force) 
approach is to compute the GDOP value for every subset of k 
satellites from the s satellites available (with k<s). 

 
 
The total number of computations of the GDOP function 

is given by the combinations’ equation [6]: 
 

𝐶𝑘
𝑠 =

𝑠!

𝑘! (𝑠 − 𝑘)!
(3) 

 
For real-time processing, this method is only possible for a 
low number of satellites, due to the exponential increase in 
number of combinations (e.g., selecting 10 out of 15 satellites 
results in 3003 GDOP computations). The brute force method 
is considered optimal because it always produces the best 
possible GDOP, but at the expense of high computational cost. 

Other algorithms are classified as sub-optimal or quasi-
optimal, depending on how close they are to the GDOP value 
given by the optimal method, but with less computational 
effort. The Ultra-Rapid satellite selection proposed in [7] is 
one example, where it utilizes a constrained downdate 
method. This approach starts by computing the weight 
coefficient matrix for the all-in-view solution, and in order to 
avoid matrix inversions, uses the inversion lemma to find the 
individual contribution of each satellite. The satellite that 
contributes the least for the increase of GDOP is removed, and 
the process repeats itself until the desired subset size is 
achieved. A method focused on dynamic scenarios is 
presented in [8]. Even though being smartphone based, it is 
one of the few examples in literature that use dynamic data in 
the performance analysis, and therefore will be taken in 
consideration in the performance comparison. 

C. Sequential Updating Method 

In order to compare the highest number of satellite subsets 
while reducing the computation effort to a minimum, a 
Sequential Updating Method (SUM) is introduced in [9]. 
Figure 1 depicts a flowchart of the method. The process starts 
by choosing 4 satellites from the constellation with the most 
satellites to act as an initial subset. It proceeds to add each of 
the remaining n-4 satellites available to create n-4 subsets of 
size 5, with n being the number of visible satellites. After the 
creation of this group of subsets, every satellite that comes 
after the last satellite added in each subset is included in the 
subset and the subsets that had a satellite added in common 
will compare the trace of the inverse matrix with each other, 
and the one with minimal value will go to the next iteration. 
The process is repeated until m subsets with the desired size k 
remain and the one with the lowest GDOP is chosen to be used 
for positioning.

Figure 1.  Process of the Sequential Updating Method. 
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D. Weight Function 

For the purpose of creating a holistic satellite selection 
algorithm, a weight function is designed to provide higher 
weights to satellites better suited to be used in the positional 
solution. The proposed weight function has the form: 

𝑤𝑖 = ∑ 𝑤𝑔𝑝𝑔

𝐹

𝑔=1

(4) 

where 𝐹  is the number of factors contributing to the 
function, 𝑤𝑔  is the weight of factor g and 𝑝𝑔  is the 

percentage assigned to the weight 𝑤𝑔, in order to determine 

the contribution to the total weight 𝑤𝑖 . The 𝑝𝑔 factors were 

determined through trial and error, iteratively refined until 
the optimal combination was identified, yielding the most 
favorable outcome. 

The first two factors of the weight function are 
presented in [10], with those factors being the elevation and 
Carrier to Noise Ratio (CNR) of each satellite. The weight 
of the elevation factor is given as: 

 

𝑤𝑒𝑙𝑖
=

𝜃𝑖

𝜃𝑚𝑎𝑥

(5) 

where 𝜃𝑖 is the elevation angle of the i-th satellite, 𝜃𝑚𝑎𝑥 is 
the maximum elevation angle among all the visible 
satellites at the current epoch, with all the angles being in 
degrees. The weight of the CNR is expressed as: 

 

𝑤𝐶𝑁𝑅𝑖
= (1 + 𝛼𝑚) ∙

𝐶𝑁𝑅𝑖

𝐶𝑁𝑅𝑚𝑎𝑥

(6) 

 
with 𝛼𝑚 being the multipath scaling factor given as [11]: 

 

𝛼𝑚 =
𝑅𝑐𝑜𝑒𝑓 − 1

𝑅𝑐𝑜𝑒𝑓 + 1
(7) 

 
where 𝑅𝑐𝑜𝑒𝑓 is the reflection coefficient and is expressed 

as [11]: 

𝑅𝑐𝑜𝑒𝑓 =
10

𝐶𝑁𝑅𝑚𝑎𝑥
20

10
𝐶𝑁𝑅𝑖
20

(8) 

For multipath free signals, the reflection coefficient is 
1, while the multipath scaling factor is 0, which will not 
affect (6). In the case of multipath presence, the multipath 
scaling factor will be different than 0 and is added to ‘1’ in 
(6) [12]. 

Another factor to complement the weight function 
introduced in [12] is the pseudorange variance. To 
calculate its value, the RTKLIB software default weighting 
system is used [13]. 

𝜎𝑖
2 =

𝑎2

𝑠𝑖𝑛2𝜃𝑖

(9) 

where a was determined empirically in [14] and 𝜃𝑖 is the 
elevation angle of the i-th satellite. Therefore, the weight 
of this factor is given by normalizing the pseudorange 
variance: 

 

𝑤𝑣𝑎𝑟𝑖
=

max(𝜎2) − 𝜎𝑖
2

max(𝜎2) − min(𝜎2)
(10) 

 
with the minimum and maximum values of 𝜎2  being 
calculated at each epoch. 

The final factor added to this function is the CNR 
variation from epoch to epoch. This factor can be seen as 
an indicator of multipath and including its contribution in 
the weight function allows multipath affected 
measurements to have lower weight [15]. The CNR factor 
is expressed as: 

 

𝜎𝐶𝑁𝑅𝑗
= √

𝑡 − 1

𝑡
∙ 𝜎𝐶𝑁𝑅𝑗−1

2 +
1

𝑡
∙ (𝐶𝑁𝑅𝑖 − 𝜇𝑗)

2 (11) 

 

𝜇𝑗 =
𝑡 − 1

𝑡
∙ 𝜇𝑗−1 +

1

𝑡
∗ 𝐶𝑁𝑅𝑖 (12) 

where t is the number of consecutive epochs in which the 
measurement was present, j represents the current epoch, 
𝜎𝐶𝑁𝑅  and µ are the standard deviation and the mean, 
respectively, of the carrier to noise ratio among all satellites 
and 𝐶𝑁𝑅𝑖 is the carrier to noise ratio of the i-th satellite. 
Hence, the weight is defined as: 

 

𝑤𝑣𝑎𝑟𝑖
=

max(𝜎𝐶𝑁𝑅) − 𝜎𝐶𝑁𝑅𝑖

max(𝜎𝐶𝑁𝑅) − min(𝜎𝐶𝑁𝑅)
(13) 

with 𝜎𝐶𝑁𝑅𝑖
 being the CNR standard deviation of the i-th 

satellite, the minimum 𝜎𝐶𝑁𝑅  is calculated in each epoch 
and the maximum 𝜎𝐶𝑁𝑅  is a fixed value obtained by 
calculating the maximum 𝜎𝐶𝑁𝑅 of all the epochs. 

III. THE PROPOSED ALGORITHM 

Following the definition of the weight function, the 
same can be incorporated within the SUM. Before going 
through the SUM process, the weight of each satellite is 
calculated in order to create the W matrix, containing all 
the satellite weights. Afterwards, the weight matrix is used 
in the calculation of the Weighted Position Dilution of 
Precision (WPDOP) [16]. 
 

𝑊𝑃𝐷𝑂𝑃 = √𝑡𝑟𝑎𝑐𝑒((𝐺𝑇𝑊𝐺)−1) (14) 
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𝐺 =
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𝑊 =

[
 
 
 
 
𝑤1 0 0 0 0
0 ⋱ … … 0
0 ⋮ ⋱ ⋮ 0
0 ⋮ … ⋱ 0
0 0 0 0 𝑤𝑛]

 
 
 
 

(16) 

 
By using the WPDOP for subsets comparisons in place 

of the GDOP, the positional accuracy is emphasized 
instead of the geometry of the satellites in the selected 
subset. Furthermore, the application of weights enhances 
the versatility and robustness since it takes in consideration 
multiple factors, hence making it a holistic algorithm. The 
proposed approach is labeled as Weighted Sequential 
Updating Method (WSUM) and takes the following steps: 

 
1. Calculate the weight for each visible satellite. 
2. Select the 5 satellites with the highest weight to 

be used as the initial subset. Making the initial 
subset bigger will reduce the number of iterations, 
therefore reducing the computational effort. 

3. Go through the process of the Sequential 
Updating Method to find m subsets with k 
satellites. 

4. Use the subset with minimal WPDOP for 
positioning. 

IV. RESULTS AND ANALYSIS 

GNSS data retrieved by the Vehicle Motion and Position 
Sensor (VMPS) designed by Bosch [17] installed in a car 
was used to evaluate the performance of the proposed 
algorithm. MATLAB was the software used to process the 
data and analyze results. The PC hardware is comprised of 
a 11th Generation Intel Core i7-11850H @ 2.50GHz, a 
NVIDIA RTX A3000 GPU and 32 GB of RAM. The 
location of the dataset collection was in Braga (Portugal) 
and the car goes through the urban environment of the city 
of Braga as well as some highway like roads. The GPS, 
GLONASS and Galileo constellations were considered in 
the experiments and Single Point Positioning (SPP) 
applying Kalman Filter was used to calculate the position. 
This dataset presents different types of conditions for the 
proposed algorithm to be tested, in order to verify its 
versatility and robustness. The optimal method, SUM, 
Ultra-Rapid and a smartphone-based satellite selection were 
also tested for comparison purposes. 

The path of the car is shown in Figure 2, where the blue 
points coordinates were collected by the device iMar 
iTraceRT-MVT 600, that allows to obtain errors from the 

positioning system under test, to be used as a reference [19]. 
Throughout the experiment, there are between 0 and 23 
visible satellites, as shown in Figure 3. The car went 
through some tunnels; therefore, no measurements were 
collected at some instances during the test. 

 

 

Figure 2.  Path that the car went through in the city of Braga, Portugal 

(Satellite Image by Google Maps ©). 

 

Figure 3.  Number of visible satellites along the experiment. 

     Figures 4 and 5 show the empirical CDF of horizontal 
and vertical positioning errors obtained with the all-in-view 
(no satellite selection) solution and the four methods 
introduced. The WSUM exhibits an overall better 
horizontal error distribution compared to the other methods, 
while in terms of vertical error, the proposed method 
provides an overall better distribution until the 90th 
percentile. 

 

 

Figure 4.  Empirical Cumulative Distribution Function (CDF) of 

horizontal positioning error for various satellite selection algorithms 

when selecting 9 satellites and no satellite selection. 
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Figure 5.  Empirical CDF of vertical positioning error for various 
satellite selection algorithms when selecting 9 satellites and no satellite 

selection. 

     Figures 6 and 7 display the distribution of the horizontal 
and vertical errors, respectively, where the y-axis is the 
percentage of trials each error range is obtained. WSUM 
demonstrates a higher percentage of errors between 0 and 2 
meters in the horizontal category it slightly falls short of the 
performance exhibited by the SUM algorithm. 

 

 

Figure 6.  Percentage of trials each horizontal positional error range is 

obtained when selecting 9 satellites and no satellite selection. 

 

Figure 7.  Percentage of trials each vertical positional error range is 

obtained when selecting 9 satellites and no satellite selection. 

     The WSUM presents 4.33 m and 8.52 m in terms of 
mean horizontal and vertical errors, while without satellite 
selection mean horizontal and vertical errors of 5.26 m and 
9.52 m were obtained, respectively. The SUM, Optimal 
method, Ultra-Rapid and Smartphone-Based algorithms 
provide 6.56 m, 7.65 m, 8.93 m, and 6.25 m values of mean 
horizontal error, respectively, and 13.69 m, 14.30 m, 18.88 
m, and 13.35 m values of mean vertical error, respectively. 

Stability and computational effort are also important 
performance indicators of a satellite selection algorithm. 
Computational time is measured through the ‘tic-toc’ 
MATLAB functions and several runs were made in order to 
obtain the average computational time, in seconds, of each 
algorithm. The stability metric is measured as the ratio 
between number of satellites changed/removed due to 
algorithm decision from epoch n to epoch n+1 (∆𝑁), and 
number of satellites used in epoch n (𝑁𝑠𝑎𝑡𝑛): 

 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (1 −
∆𝑁

𝑁𝑠𝑎𝑡𝑛
) ∗ 100 (17) 

 
Table I shows that the increase in the size of the initial 

subset from 4 to 5 slightly decreases the computational time 
over the SUM algorithm, therefore making it faster than the 
original method. Stability is also displayed and while the 
proposed algorithm presents a lower value than SUM, it can 
still be labeled as highly stable. 

TABLE I. STABILITY AND COMPUTATIONAL TIME OF ALL THE 

ALGORITHMS WHEN SELECTING 9 SATELLITES 

 
      When it comes to the empirical CDF of the GDOP and 
PDOP values, Figures 8 and 9 indicate that WSUM 
provides the highest values. This result is justified, given 
that the proposed algorithm uses the WPDOP in the 
comparison, thus the final chosen subset does not 
necessarily have the lowest values in terms of PDOP and 
GDOP. Furthermore, the high accuracy presented by the 
proposed method emphasizes the fact that a good satellite 
geometry does not directly translate to a good positional 
accuracy, and this factor by itself is not sufficient to select 
the best possible subset to be used in positioning. 
 

 

Figure 8.  Empirical CDF of the GDOP for various satellite selection 

algorithms when selecting 9 satellites and no satellite selection. 

Algorithm Computational Time (s) Stability 

Optimal Method 0.72261 94.78% 

SUM 0.00604 96.63% 

Ultra-Rapid 0.00036 95.51% 

Smartphone-Based 0.00017 90.44% 

WSUM (Proposed) 0.00447 93.55% 
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Figure 9.  Empirical CDF of the PDOP for various satellite selection 

algorithms when selecting 9 satellites and no satellite selection. 

V. CONCLUSION 

In this paper, we propose a satellite selection algorithm 
capable of being used in dynamic scenarios in order to 
optimize a solution for autonomous driving. The proposed 
algorithm excels in providing better accuracy compared to 
other algorithms from the literature, as well as using all 
visible satellites. The computational effort was greatly 
minimized from the optimal method and the increase of the 
size of the initial subset of satellites provided a slight 
decrease in computational time compared to the original 
SUM method. The addition of the weight function did not 
increase the computational complexity of the proposed 
algorithm in any substantial way. Furthermore, it enhances 
the performance and versatility by making it a holistic 
satellite selection algorithm. Results show that the WSUM 
provides an improvement of 0.93 m and 1 m in terms of 
average horizontal and vertical error, respectively, over the 
use of all the visible satellites available at each epoch. 
Further optimizations to the proposed algorithm can be 
made in terms of computational effort and the 
implementation of Precise Point Positioning (PPP) will be 
made alongside the use of correction services in order to 
obtain higher levels of accuracy. Finally, the algorithm 
discussed in this paper presents a novel method that can 
improve positioning accuracy in challenging environments, 
therefore making it a promising solution to be incorporated 
in Highly Automated Driving vehicles. 
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