
Database Technology Evolution II: Graph Database Language

Malcolm Crowe

Emeritus Professor, Computing Science

University of the West of Scotland

Paisley, United Kingdom

Email: Malcolm.Crowe@uws.ac.uk

Fritz Laux

Emeritus Professor, Business Computing

Reutlingen University

Reutlingen, Germany

Email: Fritz.Laux@reutlingen-university.de

Abstract— This paper reviews the changes in database

technology represented by the incorporation of property graphs

and associated language in the International Standards

Organization (ISO) standard 9075 (Database Languages –

Standard Query Language SQL) and the current development

of the draft international standard ISO 39075 (Database

Languages – Graph Query Language GQL), and presents an

implementation of the resulting combined technology in a single

relational database management system. These developments

continue a trend towards integrating conceptual modeling

design into the physical database.

Keywords—typed graph model; graph schema; relational

database; implementation; information integration.

I. INTRODUCTION

For many years, the process of database implementation
has included a conceptual data modeling phase, and this has
often been supported by declarative structures using
annotations or attributes, as reported in our previous
contribution [1]. Graph models have become popular for this
purpose, originally in relation to social networks, and
numerous graphical database products such as Neo4j have
applied these in many domains.

The growth in the use of graph models has led to the
development of standards including the publication of ISO
9075-16: Property Graph Queries [2], and the imminent
emergence of a draft international standard for GQL [3], [4].
These developments draw on experience with commercial
graph database products and envisage a clear convergence at
the conceptual level between graph-based and relational
database management, while GQL remains a separate
standard.

Our previous work has recommended the use of a Typed
Graph Model (TGM) for conceptual modeling [5], with the
help of additional data types in the Relational Database
Management System (RDBMS) specified using metadata. In
this paper we present an open-source RDBMS
implementation that is able to perform graph creation and
pattern matching including repeating patterns and also aligns
well with the draft international GQL standard.

The plan of this paper is to review the new implementation
details in Section II. Section III presents an illustrative
example, and Section IV provides some conclusions.

II. IMPLEMENTATION IN THE RELATIONAL DATABASE

SCHEMA

The implementation of a typed graph modelling system
can build on the user-defined type mechanism of an RDBMS.
Node and edge types can have special columns for leaving and
arriving properties, which should have additional automated
support from the RDBMS. It should be possible to convert
between standard types and node/edge types and rearrange
subtype relationships. These tables can be equipped with
indexes, constraints, and triggers in the normal ways.

Then, if every node type or edge type corresponds to a
single base table containing the instances of that type, one way
to build a graph is to insert rows in these tables. But a
satisfactory implementation needs to simplify the tasks of
graph definition and searching. Most implementations add
CREATE and MATCH statements, which we describe next,
and indicate how they can be implemented in the RDBMS.

A. Graph-oriented syntax added to SQL

The typical syntax for CREATE sketches nodes and edges
using additional arrow-like tokens, for example:

[CREATE (:Person {name:'Fred Smith'})<-[:Child]-
(a:Person {name:'Peter Smith'}),
(a)-[:Child]->(b:Person {name:'Mary Smith'})
-[:Child]->(:Person {name:'Lee Smith'}),
(b)-[:Child]->(:Person {name:'Bill Smith'})]

Without any further declarations, this builds a graph with
nodes for Person and edges for Child, as in Figure 2(b). There
is already a standard syntax for this in [2]. But an RDBMS
engine can and should without further declaration also build
base tables for Person and Child with columns sufficient to
represent the specified properties, and indexes to support the
edge structure.

The MATCH query can contain unbound identifiers for
nodes and edges, their labels and/or their properties, which are
bound by searching the database. This also has a standard
syntax in [2], but in this section we indicate how it can be
integrated into the SQL data manipulation language DML:

MatchStatement = MATCH Match {',' Match}
[WhereClause] [Statement] [THEN Statements END].
Match = (MatchMode [id '='] MatchNode) {'|' Match}.

In this syntax, Statement(s) and WhereClause are as in
ordinary SQL. The first part of the MATCH clause has an
optional MatchMode (see below) and one or more graph

215Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

expressions, which in simple cases appear to have the same
form as in the CREATE statement.

MatchNode = '(' MatchItem ')' {(MatchEdge|MatchPath)
MatchNode}.
MatchEdge = '-[' MatchItem '->' | '<-' MatchItem ']-' .
MatchItem = [id | Node_Value] [GraphLabel] [Document |
WhereClause] .

In all cases, the execution of the MATCH proceeds
directly on the tables, without needing auxiliary SQL
statements. The MATCH algorithm proceeds along the node
expressions, matching more and more of its nodes and edges
with those in the database by assigning values to the unbound
identifiers. If we cannot progress to the next part of the
MATCH clause, we backtrack by undoing the last binding and
taking an alternative value. If the processing reaches the end
of the MATCH statement, the set of bindings contributes a
row in the default result, subject to the optional WHERE
condition.

In this way, the MATCH statement can be used (a) as in
Prolog, to verify that a particular graph fragment exists in the
database, (b) to display the bindings resulting from the process
of matching a set of fragments with the database, (c) to display
a set of values computed from such a list of bindings, or (d) to
perform a sequence of actions for each binding found. In case
(d) no results are displayed, as the MATCH statement has
been employed for its side effects. These could include further
CREATE, MATCH or other SQL statements, or assignment
statements updating fields referenced in the current bindings.

Following the forthcoming GQL standard, repeating
patterns are supported by the MATCH statement (see [8]):

MatchPath = '[' Match ']' MatchQuantifier .
MatchQuantifier = '?' | '*' | '+' | '{' int , [int] '}' .
MatchMode = [TRAIL|ACYCLIC| SIMPLE] [SHORTEST

|ALL|ANY] .

MatchMode controls how repetitions of path patterns are
managed in the graph matching mechanism. A MatchPath
creates lists of values of bound identifiers in its Match. By
default, binding rows that have already occurred in the match
are ignored, and paths that have already been listed in a
quantified graph are not followed. The MatchMode modifies
this default behaviour: TRAIL omits paths where an edge
occurs more than once, ACYCLIC omits paths where a node
occurs more than once, SIMPLE looks for a simple cycle. The
last three options apply to MatchStatements that do not use the
comma operator, and select the shortest match, all matches or
an arbitrary match.

The implementation of the matching algorithm uses
continuations to control the backtracking behavior.
Continuations are constructed as the match proceeds and
represent the rest of the matching expression.

The MATCH statement can be used in two ways. The first
is make the dependent Statement a RETURN statement that
contributes a row to a result set for each successful binding of
the unbound identifiers in the MATCH, for example,

MATCH ({name:'Peter Smith'}) [()-[:Child]->()]+
(x) RETURN x.name

will yield a list of the descendants of Peter Smith. (See Figure

2(a).)
Without using RETURN or any dependent statements, the

result of a MATCH statement is the list of bindings. The
following example has two columns, one for each of the
unbound identifiers p and x, but p will be an array with an
element for each iteration of the pattern.

MATCH ({name:'Peter Smith'}) [(p)-[:Child]->()]+
({name:x})

The results are shown in Figure 2(a), which also shows all
of the statements needed to build and display this small
example, including two lines for authentication for browser
access to the database, and two for replacing the default
primary key ID. A feature of the implementation described in
this paper is the lack of structural clutter.

B. Graph versus Relation

The nodes and edges contained in the database combine to
form a set of disjoint graphs that is initially empty. Adding a
node to the database adds a new entry to this set. When an
edge is added, either the two endpoints are in the same graph,
or else the edge will connect two previously disjoint graphs.
If each graph in the set is identified by a representative node
(such as the one with the lowest uid) and maintains a list of
the nodes and edges it contains, it is easy to manage the set of
graphs as data is added to the database.

If an edge is removed, the graph containing it might now
be in at most two pieces: the simplest algorithm removes it
from the set and adds its nodes and edges back in.

The database with its added graph information can be used
directly in ordinary database application processing, with the
advantage of being able to perform graph-oriented querying
and graph-oriented stored procedures. The normal processing
of the database engine naturally enforces the type
requirements of the model, and also enforces any constraints
specified in graph-oriented metadata. The nodes and edges are
rows in ordinary tables that can be accessed and refined using
normal SQL statements. In particular, using the usual dotted
syntax, properties can be SET and updated, and can be
removed by being set to NULL.

C. Database Design by Example

From the above description of the CREATE statement, we
can see that this mechanism allows first versions of types and
instances to be developed together, with minimal schema
indications. The MATCH statement allows extension of the
design by retrieving instances and creating related nodes and
edges.

If example nodes and edges are created, the DBMS creates
suitable node and edge types, modifying these if additional
properties receive values in later examples. Since transactions
are supported, tentative examples can be explored and rolled
back or committed. Alter statements can change names,
enhance property types and modify subtype relationships, and
the SQL Cast function can be used to parse the string
representation of a structure value. The usual restrict/cascade
actions are available, and node and edge types can have
additional constraints, triggers, and methods. As each node

216Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

and edge type has an associated base table in the database, the
result of this process is a relational database that is
immediately usable.

As the TGM is developed and merged with other graphical
data, conflicts will be detected and diagnostics will help to
identify any obstacles to integrating a new part of the model,
so that the model as developed to that point can be refined.
The SQL ALTER TABLE and ALTER TYPE statements,
together with a metadata syntax, allow changes to the model
to be performed automatically, e.g., to enforce expectations on
the data.

An extreme case of this occurs where a graph has been
created using the server’s autokey mechanism for primary
keys, and the analyst has identified a more suitable numeric or
string-valued key. A single ALTER TABLE statement can
install this as the new primary key and the change
automatically propagates to the edge types that attach to the
node type in question. The previous primary key remains as a
unique key but can later be dropped without losing any
information. See Figure 2 and Figure 3 below.

Other restructuring of node types can be performed with
the help of the CAST function, which can be used to parse
complex types from strings, array and set constructors, and
UNNEST. Node and edge manipulations can also be
performed by triggers and stored procedures.

The points covered in the above section already go a long
way towards an integrated DBMS product that supports the
TGM. The resulting TGM implementation inherits aspects
such as transacted behavior, constraints, triggers, and stored
procedures from the relational mechanisms, since Match and
Create statements are implemented as Procedure Statements.
The security model in the underlying RDBMS, with its users,
roles, and grants of privileges also applies to the base tables
and hence to the graphs. Node and edge types emerge as a
special kind of structured type. It is thus a relatively simple
matter to support view-mediated remote access and object-
oriented entity management. Nodes and edges are entities and
the same access and Multiple Version Concurrency Control
(MVCC) models in our previous work [11] transfer with little
trouble into the new features.

Our database server implementation has for years
generated classes for C#, Python or Java applications
corresponding to versioned database objects. This leads to
object-oriented application programming, where node and
edge types correspond to classes whose instances are nodes
and edges (see Figure 2(c) for a C# example). The Match and
Create statements can be used (a) for SQL clients in
commands and prepared statements, (b) in the generated C#,
Java or Python and the widely used database connection
methods ExecuteReader and ExecuteNonQuery, or (c) in
JavaScript posted to the web service interface of the database
server.

The normal processing of the database engine naturally
enforces the type requirements of the model, and also enforces
a range of constraints specified in graph-oriented metadata. In
particular, using the usual dotted syntax, properties can be
SET and updated, and can be removed by being set to NULL.

As the TGM is developed and merged with other graphical
data, conflicts will be detected and diagnostics will help to

identify any obstacles to integrating a new part of the model,
so that the model as developed to that point can be refined.

It is natural to expect a user interface that displays a
graphical version of the property graph. Figure 3 shows that
Pyrrho's HTTP service can draw a picture of a portion of a
graph starting at a given node.

III. AN EXAMPLE

Examples for a graph structure usually choose social
networks. We want to show that the TGM is equally suitable
for Enterprise Resource Planning (ERP) and other business
systems. As a non-trivial example, we have chosen a
commercial enterprise, which buys parts and products, resells
the purchased products or assembles products from purchased
parts and sells these value-added products. It does not develop
and construct products from raw material but adds some value
to parts or assembles some products to form systems.

The data model is suitable for a customer-supplier
ordering system and comprises 3 company divisions or
departments: sales (green), stock (blue), and procurement
(red). These are framed in Figure 1(a) with a green dashed line
for sales data, with blue for stock data, and red for
procurement or purchase. The graph schema is visualized
using UML notation, which allows specifying the cardinality
of the edges. The correspondence between Typed Graph
elements and the UML is shown in Table I.

The sales division consists of Customer nodes with
properties CustNo, Name and Address. The Name and
Address might as well be structured data types for first- and
last name resp. street, ZIP code, and city. The CustOrder node
mainly comprises OrdNo, the (redundant) CustNo, order date
Date and the order total Sum in Euros. The CustOrder contains
1 to many order detail lines of OrderPos, which consist at least
of the order quantity as property. According to the semantics
of the TGM the edge arrows signify the reading direction of
the edge type. In the case of “belongs_to” the reading
direction is from OrderPos to CustOrder.

All other necessary properties for an order line (e.g.,
partNo, PartName, UnitPrice) could be determined by
following the edges of the model to the Part, Stock, and
CustOrder node. In Figure 1 (a), only the nodes Customer and
CustOrder are showing exemplified properties. More
properties are maintained in a real situation, e.g., planned
delivery, shipping date, etc. for a customer order. The same
applies to all other nodes, e.g., unit and quantity discount for
parts.

The procurement division mirrors the sales model
structurally and comprises supplier, the purchases (SupplOrd,
PurchPos) and the supplier catalogue. Purchase- and Sales
divisions have connections to the stock management.

The central node of the stock model is the Part node who
distinguishes between purchased parts (PurchasedParts) and
in-house products (InHouseProduct) modelled as subtypes of
Part. We have a BOM structurally represented as a recursive
edge “part_of” on the part nodes. The BOM forms a tree
structure with the product at the top. The product is made up
recursively of components (composed parts) and finally of
single parts. The stock itself is represented as a node with
properties like number of parts, reservations, and

217Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

commissions. A stock node is linked to a part and a storage
location. This allows knowing exactly which part is located at
a certain location in the warehouse.

Figure 1 (b) gives a high-level view of the scenario. Such
abstractions are important for complex graphs in order to keep
the model manageable. CASE tools that support zoom-in and
zoom-out functions would be beneficial to assist the graph
modelling.

The syntax of the above presented example ERP model
will be presented in the following subsection. Multiline
statements are enclosed in square brackets.

A. Syntax of the ERP example

First, we start with the sales graph (green schema),
followed by the supplier (red schema) and stock division (blue
schema), and finally the three divisions are linked by the edge
types “serves”, “supplies”, “canSupply”, “orders”, and
“from”.
// sales division
[CREATE
(a:Customer {CustNo:1001, Name:'Adam', Address:'122,
Nutley Terrace, London, ST 7UR, GB'}), // Customer
// …
(f:Customer {CustNo:1006, Name:'Eddy', Address:'72,
Ibrox Street, Glasgow, G51 1AA, UK'}), // customer
without order
 (o1:CustOrder {OrdNo:2001, CustNo:1001,
Datum:DATE'2023-03-22', SummE:211.00}), // CustOrder
// …
(o8:CustOrder {OrdNo:2008, CustNo:1002,
Datum:DATE'2023-04-24', SummE:808.00}),
(op1:OrderPos {Quantity:4, Unit:'piece'}), // OrdPos
// …
(op18:OrderPos {Quantity:10, Unit:'piece'}),
(a)<-[:ORDERED_BY]-(o1), // each order was ordered by
exactly 1 customer
(a)<-[:ORDERED_BY]-(o6),(a)<-[:ORDERED_BY]-(o7),
(b)<-[:ORDERED_BY]-(o2),
//…
(o1)<-[:BELONGS_TO]-(op1), // each orderPos belongs
to exactly 1 order
// …
(o8)<-[:BELONGS_TO]-(op9), // and an order has at least
1 orderPos
// …
(o8)<-[:BELONGS_TO]-(op18)]
// supplier division
[CREATE
(a:Supplier {SupplNo:101, Name:'Rawside Furniture',
Address:'58 City Rd, London , EC1Y 2AL, UK'}),
// …
// SupplOrd
(o1:SupplOrd {OrdNo:2001, SupplNo:101,
Datum:DATE'2023-01-11', "Sum€":260.00}),
// …
// OrdPos purchase details

(op1:PurchOrd {PosNo:1, Quantity:4, Unit:'piece'}),
// …
// (Supplier)<-[:SUPPLIED_BY]-(SupplOrd)
(a)<-[:SUPPLIED_BY]-(o1), // each order was ordered
by exactly 1 Supplier
// …
// (SupplOrd)<-[:IS_POS_OF]-(OrdPos)
(o1)<-[:IS_POS_OF]-(op1), // each PurchPos belongs to
exactly 1 order
// …

(o1)<-[:IS_POS_OF]-(op7), // and an order has at least
1 PurchPos
//…
// SupplCatalog
(sc11:SupplCatalog {SupplNo:101, SPartNo:'sp1',
description:'Hammer handle, Wood (ash), Weight:100 g',
unit:'piece', unitPrice:2.00}), //P15
//P16
// …
(sc46:SupplCatalog {SupplNo:104, SPartNo:'sp6',
description:'Shelf spruce, Color: white, Weight:6 kg,
Size:60w x180h cm', unit:'piece', unitPrice:20}),
// (Supplier)-[:HAS]->(SupplCatalog)
(a)-[:HAS]->(sc11), (a)-[:HAS]->(sc12), (a)-[:HAS]-
>(sc13), (a)-[:HAS]->(sc14), (a)-[:HAS]->(sc15), (a)-
[:HAS]->(sc16),
(b)-[:HAS]->(sc21), (b)-[:HAS]->(sc22), (b)-[:HAS]-
>(sc23), (b)-[:HAS]->(sc24), (b)-[:HAS]->(sc25)]

// stock division
// create Part types
create type Part as (PartID char ,Designation char,
Color char, Weight char, Size char) nodetype
// PurchasedPart
create type PurchasedPart under Part as
(PreferredSupplNo int, sumOrderedThisYear currency,
discountPrice currency)
// InHouseProduct
create type InHouseProduct under Part as
(ProductionPlan char, producedThisYear int,
manufacturingCosts currency)
[CREATE
(a1:Location {LocationNo:10011, Aisle:1, Shelf:'left
A', Rack: 'A1'}), // Location
// …
(l:Location {LocationNo:10111, Aisle:2, Shelf:'left
A', Rack: 'A1'}), // Location without parts
//Part will be filled implicitly
// PurchasedPart
(p1:PurchasedPart {PartID:'P01',
Designation:'Wallplug',Material:'Fiber',
Color:'grey', Weight:'6 g', Size:'12 cm',
PreferredSupplNo:103, sumOrderedThisYear:2000,
discountPrice:'0.04 €' }), //p1 Wallplug
(p5:PurchasedPart {PartID:'P05' ,Designation:'Metal
nail', Material:'Metal', Color:'grey', Weight:'2 g',
Size:'A 50 x2.2 mm',
PreferredSupplNo:102, sumOrderedThisYear:10000,
discountPrice:'0.005 €'}), //p5 Metal nail
// …
(p30:PurchasedPart {PartID:'P30'
,Designation:'Degreasing liquid', Material:'benzine',
Color:'clear', Weight:'100 g', Size:'100 ml bottle' ,
 PreferredSupplNo:101, sumOrderedThisYear:150,
discountPrice:'1.80 €'}), //p30 Degreasing liquid
// InHouseProduct
(p2:InHouseProduct {PartID:'P02' ,Designation:'Power
plug', Color:'white', Weight:'30 g', Size:'dia 5 cm
',
ProductionPlan:'P02 Power plug',
producedThisYear:1000, manufacturingCosts:'2.50 €'}),
// …
(p28:InHouseProduct {PartID:'P28'
,Designation:'Tableleg',
Material:'Metal',Color:'Silver', Weight:'1
kg',Size:'80w x120l cm',
ProductionPlan:'P28 Tableleg', producedThisYear:160,
manufacturingCosts:'7.00 €'}),
// Stock
(s1:Stock {PartID:'P02', LocationNo:10011,
available:55, commissioned:20,
reserved_until:DATE'2023-09-22'}),

218Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

// …
(s34:Stock {PartID:'P30', LocationNo:10101,
available:30, commissioned:5,
reserved_until:DATE'2024-09-21'}),
 //BOM
(p2)<-[:IS_Part_OF {no_of_components:2}]-(p12)<-
[:IS_Part_OF {no_of_components:1}]-(p13),
(p3)<-[:IS_Part_OF {no_of_components:1}]-(p14),
// …
(p26)<-[:IS_Part_OF {no_of_components:1}]-(p23),
// Links: Parts<-Stock->Location
(p1)<-[:stocked]-(s33)-[:at]->(i3),
),
// …
(p30)<-[:stocked]-(s34)-[:at]->(k)]

// linking together the 3 divisions
// links between Customer and Stock
// (OrderPos)-[:ORDERS]->(Part) (4)
[match (o1:CustOrder {OrdNo:2001})<-[:BELONGS_TO]-
(op1:OrderPos {Pos:1}), (p2:Part {PartID:'P02'})
 create (op1)-[:ORDERS]->(p2)] // P02 Power plug
[match (o2:CustOrder {OrdNo:2002})<-[:BELONGS_TO]-
(op2:OrderPos {Pos:1}), (p10:Part {PartID:'P10'})
create (op2)-[:ORDERS]->(p10)] // Rubber glue
// …
// (OrderPos)-[:FROM_]->(Stock) (5)
[match (o1:CustOrder {OrdNo:2001})<-[:BELONGS_TO]-
(op1:OrderPos {Pos:1}), (s1:Stock {PartID:'P02',
LocationNo:10011})
 create (op1)-[:FROM_]->(s1)] // Power plug
[match (o2:CustOrder {OrdNo:2002})<-[:BELONGS_TO]-
(op2:OrderPos {Pos:1}), (s30:Stock {PartID:'P10',
LocationNo:10083})
create (op2)-[:FROM_]->(s30)] // Rubber glue
// …
// links between Supplier and Stock
// (PurchPos)-[:SUPPLIES]->(PurchasePart) (2)
[match (o1:SupplOrd {OrdNo:2001})<-[:IS_POS_OF]-
(pp1:PurchPos {PosNo:1}), (p18:PurchasePart
{PartID:'P18'}),
 create (pp1)-[:SUPPLIES]->(p18)] // P18 Splint pin
[match (o2:SupplOrd {OrdNo:2002})<-[:IS_POS_OF]-
(pp2:PurchPos {PosNo:1}), (p10:PurchasePart
{PartID:'P10'}),
 create (pp2)-[:SUPPLIES]->(p10)] // P10 Rubber Glue
// …
// (SupplCatalog)-[:CAN_SUPPLY]->(PurchasePart) (3)
[match (sc11:SupplCatalog {SupplNo:101,
SPartNo:'sp1'}), (p15:PurchasePart {PartID:'P15'}),
create (sc11)-[:CAN_SUPPLY]->(p15)] //P15 Hammer
handle
[match (sc12:SupplCatalog
{SupplNo:101,SPartNo:'sp2'}), (p16:PurchasePart
{PartID:'P16'}),
 create (sc12)-[:CAN_SUPPLY]->(p16)] //P16 Table top
// …
// links between Supplier and Customer
// (PurchPos)-[:SERVES]->(OrderPos) (1)

[match (so1:SupplOrd {OrdNo:2001, SupplNo:101}) <-
[:IS_POS_OF]-(pp1:PurchPos {PosNo:1}), (o1:CustOrder
{OrdNo:2001})<-[:BELONGS_TO]-(op1:OrderPos {Pos:1})
create (pp1)-[:SERVES]->(op1)] //P16 Table Top
[match (so1:SupplOrd {OrdNo:2001, SupplNo:101}) <-
[:IS_POS_OF]-(pp7:PurchPos {PosNo:2}), (o2:CustOrder
{OrdNo:2002})<-[:BELONGS_TO]-(op12:OrderPos {Pos:2})
29. create (pp7)-[:SERVES]->(op12)] // P17 Table
Frame
// ..

There are opportunities here to alter some of these types to
implement some of the comments in the model. Table I
summarizes the schema objects (node and edge types) of the
ERP graph schema and Figure 1 presents the TGS in graphical
form using UML notation.

IV. CONCLUSIONS AND FUTURE WORK

The purpose of this paper was to report on a successful
mechanism for graph modeling, creation, and pattern-
matching in an RDMS. The software is available on Github
[8] for free download and use and is not covered by any patent
or other restrictions.

The current “alpha” state of the software implements all of
the above ideas. The test suite includes simple cases that
demonstrate the integration of the relational and typed graph
model concepts in Pyrrho DBMS.

Future work will include meeting the requirements of
successive drafts of the GQL standard and enhancing the
typed modeling features.

REFERENCES

[1] M. Crowe and F. Laux, “Database Technology Evolution”,
IARIA International Journal on Advances in Software, vol. 15
numbers 3 and 4, 2022, pp. 224-234, ISSN: 1942-2628

[2] ISO 9075-16 Property Graph Queries (SQL/PGQ),
International Standards Organisation, 2023.

[3] N. Francis et al., A Researcher’s Digest of GQL. 26th
International Conference on Database Theory (ICDT 2023),
Mar 2023, Ioannina, Greece,
doi:10.4230/LIPIcs.ICDT.2023.1, pp. 1-22.
https://hal.science/hal-04094449 [retrieved: 18 October 2023]

[4] https://www.GQLStandards.org, October 4, 2023 – GQL status
update [retrieved 18 October 2023].

[5] F. Laux and M. Crowe, “Information Integration using the
Typed Graph Model”, DBKDA 2021: The Thirteenth
International Conference on Advances in Databases,
Knowledge, and Data Applications, IARIA, May 2021, pp. 7-
14, ISSN: 2308-4332, ISBN: 978-1-61208-857-0

[6] M. Crowe and F. Laux, “Graph Data Models and Relational
Databe Technology”, DBKDA 2023: The Fifteenth
International Conference on Advances in Databases,
Knowledge, and Data Applications, IARIA, March 2023, pp.
33-37, ISSN: 2308-4332, ISBN: 978-1-68558-056-8

[7] M. Crowe, PyrrhoV7alpha,
https://github.com/MalcolmCrowe/ShareableDataStructures
[retrieved: Sept 2023]

219Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 1. Example TGM of a commercial enterprise showing two levels of detail

TABLE I. NODE AND EDGE TYPES IN AN EXAMPLE DATABASE (RELATIONAL DESCRIPTION)

Type name Informal Description SuperType

Customer (CustNo, Name, Address)

CustOrder (CustNo, Datum, OrdNo, Summ€)

OrderPos (Id, Quantity, Unit)

Location (LocationNo, Reihe, Shelf, Rack)

PurchasePart (PartID, Designation, Material, Color, Weight, Size) Part

InHouseProduct (PartID, Designation, Material, Color, Weight, Size) Part

Stock (PartID, LocationNo, Available, Commissioned, Reserved_Until)

Supplier (SupplNo, Name, Address)

SupplOrd (OrdNo, SupplNo, Datum, Sum€)

PurchPos (PosNo, Quantity, Unit)

SupplCatalog (SupplNo, SPartNo, Desription, Weight, Unit, unitPrice)

Type name Leaving Arriving Other properties

Ordered_by CustOrder Customer

Belongs_to OrderPos CustOrder

Is_Part_Of Part Part No_of_components

Stocked Stocked Part

At Part Location

Supplied_by SupplOrd Supplier

Is_Pos_of PurchPos SupplOrd

Has Sypplier SupplCatalog

Orders OrderPos Part

From_ OrderPos Stock

Supplied PurchPos ParchasePart

Can_Spply SupplCatalog PurchasePart

Serves PurchPos OrderPos

220Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 2. A simple repeating pattern (a) Command line SQL interaction to build and display a simple database

(b) Browser display of the graph: http://localhost:8180/ps/PS/PERSON/NAME=’Peter Smith'?NODE

(c) An extract from a C# client program to list Peter Smith’s descendants showing PyrrhoDB’s Versioned API

221Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

Figure 3. A part of the ERP example graph, after similar changes to primary keys (e.g., PART now has key PartID).

222Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

