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Abstract—Artificial Intelligence-centric Attacks (AIA) 
involving False Data Injection and False Command Injection 
have become increasingly sophisticated and have also involved 
Metamorphic Malware (MM), which leverages numerous 
transformation techniques to avoid detection. Accordingly, the 
use of AI defender systems requires continuous learning so as 
to decrease the advantage held by the high cycles of adaptation 
of attackers. This paper explored Exponential Linear Unit 
(ELU) Mish as a hybridized activation function that could 
avoid the cessation of learning when a substantive portion of 
the Neural Network (NN) neurons output zero and weights are 
no longer updated. The involved Robust Convex Relaxation 
(RCR)-based Convolutional NN capitalized upon its 
architecture by utilizing a Nonlinear Conjugate Gradient and 
Nesterov’s Accelerated Gradient approach to Adaptive 
Momentum (AdaM) so as to mitigate against oscillation, 
facilitate convergence, and achieve a more optimal global 
minimum. This more resilient foundational architecture could 
then better support a more accurate and expedient Entropic 
[Wavelet Energy Spectrum] Discernment (ED). Central to this 
was the use of Second-Order Cone Programming Relaxations 
to address certain nonconvex subproblems, which were 
inadvertently spawned via the utilized RCR framework. The 
described triumvirate approach constitutes the beginnings of a 
potential mitigation pathway, which exhibited some promise 
during the preliminary experimentation. 
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Operational Technology; Adaptive Momentum; Second-Order 
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I. INTRODUCTION 
Cyber Physical Power Systems (CPPS) are envisioned to 

enable Smart Grid (SG) technologies with more optimal 
monitoring and control. Numerous SG enablers have 
emerged at the convergence of Information Technology (IT) 
and Operational Technology (OT), and IT/OT engineers 
have increasingly utilized REpresentational State Transfer 
(REST) Application Programming Interfaces (APIs) to 
operationalize desired SG capabilities. However, the Open 
Worldwide Application Security Project (OWASP) notes 
the use of deprecated API versions as well as exposed debug 
endpoints (API9:2023) and potentially compromised third-
party APIs (API10:2023). This attack surface area at the 
IT/OT nexus is of concern to many. Security firms have 
noted that while advisories often contain a patch to 
ameliorate the cited vulnerability, oftentimes, it is difficult 

to implement due to the downtime risk for the involved OT 
system. Contemporaneously, the World Economic Forum’s 
(WEF) Global Risk Report notes that attacks on critical 
infrastructure operations (e.g., OT) are among the top five 
“currently manifesting risks” [1], and McKinsey & 
Company notes that these OT cyberattacks have particularly 
profound negative effects (e.g., outages, explosions, etc.) 
[2]. Among other attacks, polymorphic and Metamorphic 
Malware (MM) have beset CPPS, and advances in the area 
of mitigation have remained fairly nascent, particularly if 
patching is not an option. Yet, perhaps, of even greater 
concern for CPPS are Artificial Intelligence Attacks (AIA), 
which are designed to deceive AI-centric defense systems, 
such as via False Data Injection (FDI), False Command 
Injection (FCI), and other forms of insidious attack vectors.  

While CPPS/SG defenders have increasingly looked to 
AI to defend at machine speed, these defending systems may 
be at a disadvantage due to the adversarial cycles of 
adaptation and may not yet be sufficiently robust against 
adversarial AIA. Contemporary defense research tends to 
center upon improving Machine Learning (ML) approaches 
to attain higher detection accuracy and computational 
performance, but efforts to mitigate against AIA remain 
fairly nascent. This paper delineates a potential mitigation 
pathway, and the paper is structured as follows. Section I 
provided a backdrop and introduces the problem space. 
Section II provides the background by way of describing the 
operating environment as well as the state of the challenge. 
Section III provides some theoretical foundations and the 
posited/utilized approach. Section IV delineates some 
preliminary experimental forays regarding the posited AIA 
mitigation approach. Section V concludes with some 
preliminary reflections, puts forth envisioned future work, 
and the acknowledgements close the paper. 

II. BACKGROUND INFORMATION 
MM mitigation efforts have already illuminated the 

sophistication of modern attack vectors. For example, 
crypters (i.e., a paradigm, wherein the use of obfuscation 
and/or encryption is at play) and protectors (i.e., a paradigm, 
wherein a hybridization of packing — self-extracting 
archives that unpack in memory upon execution — and 
encrypting is utilized) are becoming increasingly successful 
at obfuscating their malicious intent from detectors. 
Likewise, AIA endeavor to obscure their intent from 

196Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications



Endpoint Detection and Response (EDR) applications and 
CPPS/SG Detectors (CSD) alike by leveraging Generative 
Adversarial Networks (GANs), among other approaches, to 
spawn/facilitate FDI, FCI, and other attack vectors, which 
are difficult to discern in real-time by the EDR and CSD. 

The literature tends to approach CSD by classifying the 
involved Machine Learning (ML) constructs as supervised, 
unsupervised, and Reinforcement Learning (RL) with the 
further nuance of conventional versus deep learning (e.g., 
via Convolutional NNs or CNNs). For sophisticated target 
attacks, wherein the perpetrator is already cognizant of the 
inherent weaknesses of AI/ML, such as the high number of 
false positives limiting supervised approaches, the high false 
negatives that beset unsupervised approaches, as well as the 
general strategy/approach taken by defensive AI/ML 
constructs amidst the current trend of Explainable Artificial 
Intelligence (XAI) and open AI, the perpetrator may bypass 
“Maginot Line” defenses and resort to a poisoning attack at 
the source (a.k.a., “poisoning the well”). In other words, 
AIA may seek to corrupt the source-derived training data 
used by the ML algorithm, thereby impacting the CSD’s 
performance under specific circumstances. Unfortunately, 
the inherent constraints and blindspots of the underlying ML 
algorithms, in this regard, remain an ongoing issue, have yet 
to be resolved, and reside in a fairly nascent space.   

Even when hybridized approaches are taken that combine 
the strengths of various ML approaches, the issue of 
numerical stability remains. Let us take the case of a 
particular CNN — a Constriction Factor (CF)-based Particle 
Swarm Optimization (PSO) Convex Relaxation (CR) Long 
Short-Term Memory (LSTM) Deep Learning NN (DLNN) 
construct. On the one hand, in terms of advantages, Khare 
and Bajaj have shown that CNNs tend to have a lower false 
positive rate [3], Osei-kwakye et al. have highlighted how 
CFs facilitate convergence stability [4], Zhao has highlighted 
how PSOs have fewer parameters to tune [5], Eltved has 
noted that CRs have been utilized with great efficacy for 
nonlinear optimizations [6] while [7] showed how Robust 
Convex Relaxations (RCR) may enhance efficacy. Also, 
Moradi et al. have described how LSTMs address the 
gradient vanishing issue (a consequence of the derivative of 
the activation function used for instantiation of the involved 
NN) [8], and Bai et al. have described how DLNNs enhance 
feature expression in terms of best-fit approximation [9]. On 
the other hand, in terms of disadvantages, You et al. and 
Zadiri et al. have noted how Adaptive Inertial Weighting 
(AIW) approaches may outperform CF approaches (when 
CF is used in isolation) [10]. Du et al. have noted how PSO 
is particularly prone to stagnation at local optima (e.g., if 
AIW is not utilized) [11], Song et al. have noted that CRs 
can segue to underestimations (e.g., if an approach for 
Robust CRs or RCRs are not adopted) [12]. Gong et al. have 
noted that the large model size issue for LSTMs impedes 
more prevalent deployments [13]. Shrestha and Mahmood 
have noted that the initial parameter selection for DLNNs 
have an “outsized influence” on how quickly the training 
converges [14]. Accordingly, regarding the referenced CF-
PSO-CR-LSTM-DLNN (CPCLD) construct, while its 

bespoke design and implementation was intended to foster 
numerical stability, an AIA can indeed target and exploit the 
intricate intrinsic counterpoising at play. 

III.       THEORETICAL FOUNDATIONS 

A. Numerical Stability Challenges 
As an exemplar case study, the current version of 

PyTorch is at v2.0.1. However, CPPS/SG implementations 
often lag further behind the most recent version. For one 
specific case study, certain functions, while stable in v0.4.1, 
encountered stability issues as of v1.0.0, and some of these 
were only resolved as of 2020, as affirmed in Github (e.g., 
“Update the div formula for numerical stability #43627, as 
higher order gradients were returning Not a Number or NaN 
quite often”) with an earlier partial resolution in 2019 (e.g., 
“Fix #11752: correct numerical issue with log_softmax 
#11866, as large inputs with small differences were 
producing numerical issues in the log_softmax”); there were 
also other issues (e.g., “nn.CrossEntropyLoss() yields wrong 
output for big logits #11752, as larger logits, which operate 
on the unscaled output of prior layers, were returning 
incorrect results”) that are yet to be fully examined. To 
further the complexity, the well-known open-source ML 
framework/toolkit Convolutional Architecture for Fast 
Feature Embedding (Caffe2) repository was merged into the 
PyTorch repository on Github in 2018, and maintainers, 
core-developers, and users have noted that there may be 
incompatible elements (although Open NN Exchange or 
ONNX is intended to help resolve that). In the interim, AIA 
may exploit these incompatabilities. 

 As the numerical stability paradigm of the CPCLD is 
predicated upon a Deep Convolutional GAN (DCGAN) 
(which serves as a mitigator against mode failure/mode 
collapse — a paradigm wherein two competing NN being 
trained concurrently fail to converge or have an unusual 
convergence), CNN#1 (which serves as the key solver for 
the involved convex optimization problems), and CNN#2 
(which serves as the key solver for the involved functions), it 
should be axiomatic that the aforementioned amalgam will 
likely (as is the case for prototypical DCGANs) exhibit a 
non-graceful degradation of performance even at 
imperceptible perturbation levels, which results in numerical 
instability. For the CPCLD, batch normalization (a.k.a., 
batchnorm) (a method of inducing stability into a NN, via 
normalization of the input layer and the layers of the NN), as 
one example, when selectively applied to the generator 
output layer and the discriminator input layer, avoids 
instability. However, if the AIA, such as via FCI Attack 
(FCIA), were able to induce application of batchnorm to all 
the layers of the involved NN, oscillation and instability 
would likely ensue. Alternatively, if the AIA were able to 
increase the learning rate of the NN, instability could ensue 
as well as an increased computational cost, which might 
trigger certain governor actions (that would be quite ironic, 
as it would be a contradictory unanticipated consequence) to 
reduce the utilization rate and energy consumption. Also, as 
previously discussed, the source of the training data is 
particularly vulnerable. 
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B. Potential Mitigation Heuristics 
By way of pertinent context, as higher dimensional 

spaces are quite sparse, the substantive portion of the training 
data is constrained to the comparatively small manifold 
region. Hence, the training data can, potentially, be readily 
subject to manipulation (i.e., the previously referenced 
“poisoning of the well”); this may have an adverse impact on 
the NN being trained. While NN are, technically, nonlinear, 
a favored Activation Function (AF) is the Rectifier Linear 
Unit (ReLu) (due to its ease/speed of training and inherent 
stability), which is linear (a non-zero gradient) for inputs 
greater than zero and has the characteristic that it does not 
saturate (for positive values). In comparison, by way of 
example, the Sigmoid or Tanh AFs tend to saturate at high 
activations (with gradients very close to zero). Yet, ReLu is 
more vulnerable to adversarial attacks, as it is more readily 
skewed. Hence, prototypical AFs are limited with regards to 
their efficacy/resiliency, and the use of diverse hybridized 
AFs may be prudent to provide a modicum of enhanced 
resiliency against poisoning attacks, particularly from AIA. 

Apart from AF, elongated training (with the notion that 
greater Volume and Variety — as well as Value, Velocity, 
and Veracity from the 5 Vs of Big Data — will assist the 
NN) for various NN architectures can actually degrade the 
performance [15]. Some architectures can be hindered by 
even a single hyperparameter (e.g., “epsilon”) [16]. As 
discussed in Section IIIA, certain applied functions or even 
increased learning rates can induce oscillations. However, 
particularly in the adversarial case, the oscillations can 
indeed be dampened via Momentum, which is an additional 
weighting parameter (that chronicles and considers the 
gradient of prior steps, rather than simply rely upon the 
gradient of the current step, which can be readily skewed, as 
previously discussed) that can provide enhanced resiliency.  

In cases, such as the CPCLD, the construct supports a 
Recurrent NN (RNN) to Feedforward NN (FNN) 
progression by facilitating an enhanced Entropic Wavelet 
Energy Spectrum (EWES) Discernment (a.k.a., ED) via a 
bespoke Nonnegative Matrix Factorization (NMF) to 
Multiresolution Matrix Factorization (MMF) to Continuous 
Wavelet Transform (CWT) Sequence of Transformations 
(SOT); this segues to ED accuracy, such as in the case of 
Indications and Warning (I&W) for MM. This mechanism 
(as a potential mitigation pathway), in particular, is referred 
to as MMED. 

In essence, the use of the described triumvirate 
constitutes the beginnings of a potential mitigation pathway: 
(1) the use of diverse hybridized AFs, (2) the use of 
Momentum, particularly Adaptive Momentum (a.k.a., 
AdaM), to serve as an oscillation dampener; and (3) the use 
of the CPCLD construct to operationalize ED accuracy and 
expediency (via the application of Second-Order Cone 
Programming Relaxations or SOCPR to apropros 
subproblems spawned by the RCR). The issue of 
subproblems, such as nonconvex, by the CPCLD RCR is 
shown in Figure 1, which depicts the pathway of complete 
(a.k.a., exact) and incomplete (a.k.a., relaxed) verifiers. In 
essence, wherein exact verifiers are typically based upon a 

Mixed Integer Programming (MIP), such as that of Mixed 
Integer Non-Linear Programming (MINLP) progression, 
relaxed verifiers are Mixed Integer Linear Programming 
(MILP)-centric. While MILP segues to convex, MINLP can 
segue to either convex or nonconvex, and the SOCPR is 
intended to address the nonconvex subproblems that are 
spawned. 

 
Figure 1.  Exact and Relaxed Verifier Pathways with SOCPR Support. 

As can be seen, convex problems can proceed directly to the 
utilized Solver. Hence, ideally, MINLP is linearized to 
MILP and convex along the way, but for some cases, 
wherein MINLP leads to nonconvex, SOCPR can be 
invaluable in facilitating the resolution of the potential 
problematic subproblems. 

IV. EXPERIMENTATION 

A. Experimental Considerations 
First, the preliminary experimental forays in the area of 

diverse hybridized activation functions are extrapolated 
from the works of, among others: (1) Privietha and Raj, who 
combined softmax (which maps the input values to 
probabilities that sum to 1 — a requisite for multi-class 
classification problems) and sparsemax (which has an 
advantage over softmax in its ability to assign a probability 
of 0 so as to filter out noise, among other facets) in the last 
activation layer of the involved DLNN so as to achieve 
improved computational performance and higher accuracy 
[17], (2) Zhang et al., who utilized Mish AF, which seems 
to overcome the disadvantages of prototypical AF (which do 
not readily learn when the activation is 0) [18], and (3) 
Mercioni and Holban, who utilized Soft Clipping 
[Learnable] Mish (SCL Mish), which was inspired by Mish, 
and has a “learnable parameter” [19]. As [20] was very 
close to the venue of classification undertaken by Zhang et 
al., the datasets of CIFAR-10 and CIFAR-100 were utilized 
for calibration purposes. Then, MM samples were obtained 
by using krmaxwell/maltrieve and jstrosch/malware-
samples (available via Github). 

Second, preliminary experimental forays in the area of 
AdaM as an oscillation dampener (as well as facilitator for 
convergence and a more optimal global minimum) were 
derived from/built upon the notions put forth by: (1) Sun et 
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al., who focused upon a more optimal AdaM approach 
rather than tuning a single Momentum hyperparameter 
(which, if set too high, can not only propel past the global 
minimum, but also segue to, ironically, oscillations or 
divergence during training) [21], (2) Hakimi et al., who 
noted that Momentum can exacerbate Gradient Staleness 
(GS) (thereby hindering convergence) and, therefore, 
concentrated on GS mitigation, via an approach called 
DANA (which undertakes the gradient calculation 
predicated upon the posited future position of the involved 
parameters) [22]; GS was further considered via Jelassi’s 
and Li’s unpacking of the matter [23], (3) Wang and Ye, 
who focused upon AdaM via the Nonlinear Conjugate 
Gradient (NCG) method (widely utilized for unconstrained 
optimization) [24], (4) Hu et al., who utilized an Iterative 
Soft-Thresholding Algorithm (ISTA), specifically an 
accelerated ISTA implementation referred to as Fast ISTA 
(FISTA), so as to explore the case studies of both convex 
and non-convex situations [25], (5) Amini and Faramarzi, 
who put forth a positive parameter requirement to control 
the condition number of the direction matrix and improve 
the efficiency of the algorithm (which fosters an expedited 
delineation of convex/non-convex) [26], as well as (6) 
Karimi and Vavasis, who leveraged Nesterov’s Accelerated 
Gradient (NAG) (which has better complexity bounds 
compared to NCG) so as to undertake a hybridized approach 
of NCG and NAG (i.e., NCG steps are taken until the point, 
wherein insufficient progress is made, at which time NAG 
steps are taken and resorts back to NCG at a certain point) 
and explored the convex/non-convex demarcation [27]. 
Again, CIFAR-10, CIFAR-100 were utilized for level-
setting purposes. Then, the same corpus of MM samples 
was utilized, as previously noted. 

Third, experimental excursions with regards to EWES, 
built upon those described by Wojnowicz et al., who utilized 
wavelet transforms to derive a Suspiciously Structure 
Entropic Change Score (SSECS) [28], Gilbert et al., who 
used EWES with regards to CNNs and malware [29], and 
Ling et al, who applied NMF for the purposes of MMED 
[30]. Furthermore, this paper builds upon the MMED case 
delineated in [31]. In particular, the CPCLD leverages 
SOCPR so as to address nonconvex subproblems via 
various Semi-Definite Programming (SDP) algorithms, 
which were implemented on a modified GNU Octave 
platform (m-GNU-O) (a numerical computation platform, 
which is mostly compatible with the likes of MATLAB). 
Fuzzy logic packages were obtained, via Octave Forge, for 
use on the m-GNU-O. A Quadratically Constrained 
Quadratic Programming (QCQP) Step-Down Algorithm 
was used to compute the resultant QCQP special class 
convex optimization problem in polynomial time.  

B. Experimental Design & Implementation 
First, for a NN to learn ever-increasing complexity, a 

nonlinear function is needed, such as via the involved AF. 
Many consider the AF as a defining facet for the NN, as in 

the case of Artificial NN (ANNs). As the desire for quickly 
ascertaining the global minimum and convergence have 
become key metrics, variations of ReLU, such as Leaky 
ReLU (LReLU) have risen in popularity (to mitigate against 
the “dying ReLU” issue of outputting a value of 0, when the 
input is negative, by introducing a small slope a) and 
Parametric ReLU (PReLU), wherein a becomes a dynamic 
“learnable parameter” versus simply a static parameter [19]. 
Other variants include Softplus (which has inclination and 
gradient properties besides 0), Swish (an amalgam 
composite function of ReLU and Sigmoid), Mish (a 
composite function comprised of ReLu, Tanh, and 
Softplus), SCL Mish (a composite function similar to Mish, 
wherein a is learnable), etc. However, as ReLU can have 
relatively large outputs, it is typically not utilized for 
LSTMs, which is an intrinsic component of the CPCLD 
construct. Moreover, as previously noted, ReLU may be 
particularly susceptible to AIA. Consequently, a composite 
function that utilizes Exponential Linear Unit (ELU) (which 
can produce negative outputs but tends to saturate for very 
large negative values) as an alternative to ReLU was 
investigated and is referred to as ELU Mish (a composite 
function of ELU, Tanh, and Softplus). Some of these 
composite function AFs are shown in Figure 2. 

 

 
Figure 2.  List of some Exemplar Composite Function AFs. 

Second, as it was found that Momentum can generate a 
Momentum Gap (MG) (e.g., when the batch size increases, 
the gap between the Momentum and non-Momentum curves 
can dramatically increase), which needs to be constrained 
and decreased by approaches, such as DANA, so as to foster 
the desired fast convergence and accuracy (even on large 
clusters, thereby successfully mitigating again “gradient 
staleness”). In addition, the Fletcher-Reeves formula applied 
to Gradient Descent (FRGD) and Stochastic Gradient 
Descent (FRSGD) shows promise with regards to increased 
robustness against adversarial attacks (e.g., robustness under 
large learning rates) and the use of NCG for AdaM (wherein 
no training for a momentum hyperparameter is required), as 
well as the FRGD/FRSGD approach to accelerate GD/SGD 
was explored. The delineated approach seems to have the 
value-added proposition of having higher efficacy in cases 
wherein the optimization problem is ill-conditioned (i.e., 
wherein certain directions, construed as “narrow canyons,” 
experience slower progress than others). Also, the technique 
of averaging over subsequent gradients can facilitate more 
stable directions of descent. Perhaps, for the overarching 
consideration, the sparse recovery consideration or 
“compressed sensing paradigm” for both convex and non-
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convex situations is vital, as it should be remembered that 
with regards to nonconvex to convex transformations, the 
transformations themselves may spawn further nonconvex 
problems. Restated, the architected NN (e.g., CNN) may 
incorporate a variety of approachs for the resolving of a 
succession of convex optimization problems. However, 
even when the involved construct is specifically designed so 
as to segue to a convex paradigm, the resultant may still turn 
out to be nonconvex, thereby necessitating a further 
transformation to a convex optimization problem via certain 
relaxation techniques. Yet, the referenced transformation, in 
itself, may spawn yet further nonconvex optimization 
problems, thereby highlighting the advantage of utilizing a 
RCR framework, such as the CPCLD, along with SOCPR. 

Third, in general, wavelet analysis predicated upon 
EWES can well delineate the complexity of the involved 
paradigm. In particular, ED can successfully ascertain 
potentially suspect patterns of entropic change across the 
code of an executable file. Moreover, as noted in [31], 
because NMF has the intrinsic constraint that the factorized 
matrices be comprised of non-negative (i.e., positive) 
elements, NMF can provide a better-fit interpretation of the 
original matrix data (given the more intuitive and logical 
structural representation by parts). It has been previously 
discussed in [31] that the sum of positive elements (e.g., 
“matrices, vectors, integers”) is “more intuitive, logical, and 
naturalistic given the matrices of positive integers, and by 
capitalizing upon NMF’s non-negative constraint, various 
high-level features are more readily discerned from the 
hidden layers of the involved NN.” Also, the “less contrived 
NMF-based approach reduces the need for feature 
engineering (i.e., a coarser and less elegant approach of 
extraction).” The CPCLD architectural construct, which 
supports the aforementioned for the discussed NMF-related 
SOT, is particularly apropos for supporting the positive 
parameter requirement so as to shape the condition number 
of the direction matrix and the ensuing operationalization 
efficiency. Hence, for this case, the CPCLD would not only 
utilize a bespoke AF (i.e., ELU Mish), but also a bespoke 
NCG/NAG for AdaM in conjunction with an ED schema 
leveraging SOCPR for rate-limiting key subproblems. 

C. Experimental Results 
For benchmarking purposes, the Architectural Construct 

used was that of a CNN; specifically, the classic LeNet-5 
CNN was utilized prior to experimentation on the CPCLD 
CNN. To level-set, epochs were set to 50, data samples from 
the previously discussed corpus were set to 50,000, and 
validation was performed on 10,000. The benchmarking can 
be seen in Table I below. 

TABLE I.  CNN EXPERIMENTAL RESULTS  

Architectural 
Construct 

Activation Function 
ReLu  Sigmoid Tanh Softplus 

 
CNN: 

LeNet-5/ 

64.32% 
[19] 

58.12% 
[19] 

56.83% 
[19] 

61.43% 
[19] 

Swish  Mish SCL Mish ELU 

CPCLD  Mish 
62.47% 
[19] 

61.77% 
[19] 

63.26% 
[19] 

61.74% 

 
It can be seen that while the highest value was achieved by 
ReLU, for an enhanced resiliency against AIA, the slightly 
lower performance by ELU Mish is still respectable and 
remains in the upper tier of the AF results. To further this, 
with regards to AdaM and SOCPR, this enhanced version 
was compared to a prior instantiation of [31].  

TABLE II.  CLASSIFICATION RESULTS OF VARIOUS ML METHODS 

Methods Models Accuracy (ACC) 
Prototypical 
ML methods 

Random Forest (RF)  91.43-97.74% [32] 
k-Nearest Neighbor (KNN)  97.17% [33] 

   
Prototypical 
DLNN 
methods 

Convolutional NN (CNN)  96.96% [34] 
Recurrent NN (RNN)- 
Bidirectional (Bi)LSTM hybrid  

98.2%-98.9% [35] 

   
Posited 
bespoke 
CPCLD 
method 

CF-PSO-CR-LSTM-DLNN 
(CPCLD) 

97.9%-98.2% [31] 

CPCLD with Triumvirate (T) 
(CPCLD-T) 

98.5% 

 
It can be seen that the construct with the Triumvirate (T) 
was able to achieve a slightly higher value than without. By 
way of comparison, as a rudimentary baseline, Khammas 
cites the study of Zhang et al, which reported an accuracy of 
91.43% using RF and himself attains even better results at 
97.74% [32]. More in line with the experimentation herein, 
Roy experiments with KNN along with MCDM and 
TOPSIS and attains results at 97.17% [33]. Lad and 
Adamuthe experimented with various CNN instantations, 
and their specific implementation was able to achieve 
96.96% [34]. For a RNN-BiLSTM hybrid, Samee et al. 
reported that 98.2%-98.9% was achieved for their 
application [35]. Experimentation based upon the 
aforementioned works was conducted. Preliminary 
experimentation for more rudimentary versions of the 
discussed CPCLD yielded results of 97.9%, as previously 
reported in [31], and the experimentation for this round 
attained similar results to that of the RNN-BiLSTM. 
However, when T was leveraged, 98.5% was attained. A 
comparative summary (using the lower bound figures) can 
be seen in Figure 3 below. 
 

 
Figure 3.  Comparative Summary by ACC for the Classification Results of 

Various ML Methods.  
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Although the CPCLD method did not achieve the 98.9% 
reported by Alam et al. [36], it is hoped that future iterations 
of the CPCLD will exhibit improvements in this regard. 

V. CONCLUSION 
In an era of MM and ChatGPT generating mutating 

malware [37], the potential lethality of AIA has become 
increasingly illuminated. Niazazari and Livani as well as 
others have affirmed adversarial capabilities, such as FDI 
Attacks, and the ensuing misclassification by CNN-based 
event cause analysis frameworks, among others [38]. In the 
case of this paper, the focus was on MM-centric AIA, 
particularly MM targeting Industrial Systems at the nexus of 
IT/OT, as this domain has been cited as among the top 
“currently manifesting risks” [1]. The nascent nature of 
mitigation pathways has been illuminated in [7] and [39], as 
contemporary research efforts have predominantly focused 
upon ML approaches for enhanced detection accuracy and 
computational performance while AIA mitigation pathways 
remain relatively unexplored and represent greenfield 
opportunities. Indeed, even defending constructs that 
operationalize MMED, such as the discussed 
CPCLD/CPCLD-T constructs, can be targeted by AIA to 
exploit intricate intrinsic mechanisms, such as the numerical 
stability paradigm. To buttress the CPCLD/CPCLD-T 
constructs, this paper explored the beginnings of a potential 
mitigation pathway. In particular, a bespoke AF (i.e., ELU 
Mish as a hybridized AF that avoids the cessation of learning 
so as to allow the AI defender system to be able to maintain 
continuous learning), NCG/NAG AdaM approach, and 
SOCPR-based ED (to assist with the RCR-based CPCLD 
construct) triumvirate was put forth. Future work will likely 
involve further exploration and experimentation in the area 
of defender NN stability issues amidst AIA. 
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