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Abstract—Up until now, it has been shown that big parts of the
so called Industry 4.0 are impacted by Machine Learning (ML)
in some way or another. In many shopfloor situations, there are
different sensors involved and all data is eventually structured,
accumulated and prepared for application in various ML-based
scenarios, e.g., predictive maintenance of a machine, quality
monitoring of manufactured workpieces or handling domain-
specific aspect of the respective fabricator or product. As the
physical environment of Cyber Physical System (CPS) can change
rapidly, the overall Data Acquisition (DAQ) process and ML
training is impacted, too. This work focuses on datasets which
consist of small amounts of tabular information and how to utilize
them in image-based Neural Networks (NN) with respect to meta
learning and multimodal transformations. Therefore, the concep-
tual utilization of an DAQ system in industrial environments is
discussed regarding a variety of techniques for preprocessing and
generating visual material from multimodal data. The outcome
of such operations is a new dataset which is then applied in
model training. Therefore, the presented approach is three-fold.
In first analysing the concept of predicting the similarity of
structured and numerical data in different datasets, indicators of
the feasibility when applying the methodology in related but more
sophisticated learning scenarios can be gained. Although ongoing
time-series data is differing from simple multi-class data in terms
of a chronologically dimension, basic classification concepts are
applied to it and evaluated. In order to extend the similarity
prediction with a temporal component, the discussed methods
are extended by multimodal transformations and an subsequent
utilization in Siamese Neural Networks (SNN). By discussing the
concept of applying visual representations of structured time-
series data in a meta-learning context, known trends and historic
information can be utilized for generating real-world test-samples
and predicting their validity on inference.

Keywords—Data Acquisition; Time-Series Analysis; Multimodal
Data; Meta Learning; Cyber Physical Systems.

I. INTRODUCTION

In recent years, the application of Machine Learning (ML)
techniques has increased in many parts of the manufacturing
domain. Since industrial-grade Internet of Things (IoT) setups,
which are also known as Cyber-physical System (CPS), are
fusing more and more with ML-based solutions, the term
Artificial Intelligence of Things (AIoT) [1] has also been
introduced as descriptive expression. The complexity of such
a system is increasing with the utilization of additional sensors
which are distributed in the environment or placed inside the
manufacturing machines. Therefore, concepts regarding a fully

integrated and distributed ML-based Continuous Integration/
Continuous Delivery (CI/CD) pipelines [2] can enhance the
overall project structure and management. There are many
different quality properties when it comes to CPS-based data
[3], [4], especially when it is applied in an subsequent ML
model training or inference phase.

In reality, there are situations in which only a few data points
are available for the utilization in the training a model. Current
proposals which tackle such restrictions are summarized as
Few-Shot Learning (FSL) [5], where one differs between trans-
fer learning and a variety of meta-learning techniques, e.g.,
metric-, optimization- and model-based approaches. Metric
learning is commonly assessing the similarity or dissimilarity
of two samples, based on a calculation which corresponds to
their respective distances [6]. Thereby, the distances between
mismatches is maximized while the length of an edge to a pos-
itive element, e.g., a matching sample, is minimized, enabling
analysis through clusters. One metric-based FSL technique
makes use of so called Siamese Neural Network (SNN)s,
which utilizes a pair of identical neural networks which are
sharing the same weights for processing the respective element
of a sample pair, eventually determine their distances. This
enables real-world applications, as for example calculating the
similarity of hand-written signatures or the structure of human
faces [7], where only a few data points of each class are used
during model training. Although there are some established
strategies for producing effective Convolutional Neural Net-
work (CNN)-based ML models from only a few structured
data points, the majority of published work targets image-
based implementations. When there are multiple modalities
of a specific happening, the transformation and fusion of
multimodal data [8], e.g., generating another representation
of a modality or combining them, is often part of the solution.
Such approaches are usually of generative nature, based on a
pre-defined grammar or is utilizing dictionaries for translating
between unimodal signal structures. When transforming and
fusing structured modalities within a unstructured modality as
in a visual representation, established image-based frameworks
can be utilized anyhow. Another aspect of this work is the
transformation of different datasets samples into visual data,
e.g., creating image representations of the Iris [9] dataset, the
”Mill Data Set” [10] as well as of the Sunspots [11] dataset.
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In addition to applying such new and synthetically generated
datasets for training a model in SNN manner, additional
experiments are considering ML approaches regarding the
original, numeric data. In visualizing and comparing results
of the respective approaches across the three varying datasets,
selected aspects of utilizing meta-learning approaches for
classifying multimodal time-series data are discussed.

A brief overview of requirements in the AIoT domain, as
well as procedures regarding multimodal data transformation
and applicable meta-learning methods is given in Section II.
By discussing the overall methodology and utilized datasets in
Section III, a deeper contextual understanding of the experi-
ments, which are carried out and discussed in Section IV, can
be gained. The work on hand is concluded in Section V.

II. RELATED WORK

In the last years, the potential of end-user IoT hardware
has evolved significantly, even allowing for small-scale CPS
setups. In [12], the ML-focused Data Acquisition (DAQ)
system dAta collectoR sysTem witH distribUted sensoRs
(ARTHUR) was proposed, suggesting Raspberry-Pi hardware
as worker nodes in combination with a distributed edge-
cloud environment. In [13], a comprehensive overview of
the AIoT domain is given, clarifying enabling technologies
and architectural elements of distributed and ML-dependent
operations. By considering Artificial Intelligence (AI) tools for
utilization in the IoT domain, a overview of potential use-cases
and open challenges is discussed. Although the ARTHUR
system is applicable in the work on hand, no holistic view of
comprehensive hardware considerations or use-case specifics
is given.

In [8], the different approaches in the domain of multi-
modal ML are extensively discussed. When having multiple
modalities of a specific event or happening, as for example
acoustic emission, vibration data, temperature and a visual
observations, there are situations in which a multimodal fusion
can be appropriate. In using such an approach, there is an
increased robustness of predictions due to handling missing
values by design, as well as exposing complementary informa-
tion which may be missed when processing unimodal samples
by themselves. Although multimodal transformations are used
on various datasets throughout the work on hand, the focus
is on applying the resulting representation with respect to
a time-series classification. Obviously, the feature-dimension,
e.g., modalities, of available samples is also impacting the
choice of an target representation. In [14], a simple two-
dimensional plot of numeric values was applied to a CNN
for further classification. Naturally, this transformation must
be well-defined, which is why multiple preprocessing steps
like cropping, rotating or framing had to be carried out.
The approach of generating visual material differs from the
proposal on hand, although a well-defined target transforma-
tion is necessary for stable predictions. The augmentation of
image data was discussed in [15], where a variety of visual
manipulation techniques were described with respect to their
utilization in deep learning approaches. Although approaches

like kernel filters, random erasing or color space transmissions
could be part of the multimodal transformation or simply be
utilized for increasing the available test- and training data,
no additional augmentation was implemented in the work on
hand. In [16], a solution to a temporal Common Representation
Learning (CRL) problem regarding image and time-series
data was introduced. The main idea is that the additional
result of an image classification is enhancing the time-series
classification task based on a triplet loss calculation, while the
actual inference of the model is exclusively concerned with
time-series data. In both synthetic, e.g., time-series sinus value
with noise and Gramian Angular Summation Field (GASF)
image representation, and real-world handwriting recognition
datasets, the cross-modal triplet selection enhanced the in-
ference even though only the main-modality was present. In
[17], numeric data was used for generating image filters which
were applied to a base-image in order to classify tabular
data. Therein, a specifically formed matrix was converted
into a convolutional kernel which was applied in the CNN,
significantly altering the base-image in a recognizable and
class-dependent manner.

In general, deep metric learning consists of informative
input samples, structure of the network model, as well as a
metric loss function [6]. In the context of chosing a metric
loss function, there are various approaches for finding relations
between samples [18] and relations between the respective
sample’s features. Usually approaches are based on distance
metrics [6], which are implemented in order to assess sample
distances in a triplet, e.g., an anchor element and a positive, as
well as a negative element. The aim is to learn a metric which
represents negative element further away from the anchor,
than the positive element. In his studies regarding the likeness
of different human races, Mahalanobis proposed a measure
procedure in 1930, where the Mahalanobis Distance was
applied for the purpose of craniometry, e.g., determining the
proportions of the human skull. Since then, his method was
increasingly applied and extended in a variety of domains [19],
ranging from archaeology to medical diagnosis and remote
sensing while solving a multitude of problems like classifi-
cation, numerical taxonomy or statistical pattern recognition.
In [18], the Sparse Compositional Metric Learning (SCML)
approach was introduced, where the focus was on learning the
Mahalanobis distances which are parameterized by a positive
semidefinite square matrix. The metrics are learned as a sparse
combination of rank-one basis elements, enabling local, global
and multitask metric learning.

In [20], a approach for learning to determine the identity of
a masked person was proposed, where a triplet loss function is
applied for learning meta-features by considering positive and
negative examples within a SNN while using only a few image
samples during the training. In [21], a unsupervised meta
learning method was proposed in the context of multivariate
time-series, e.g., data that contains multiple time-dependent
features. A time- and memory efficient system was proposed
for learning the universal embeddings in time-series datasets,
using an encoder which employs dilated causal convolutions,
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as well as triplets where elements can be of varying length.
Although there is the commonality of triplet creation in time-
series data, the approach on hand focuses on the classifica-
tion of potential future samples. In [22], a framework for
image-based feature extraction regarding visual time-series
data was proposed with respect to plant phenotyping, e.g.,
observations of biologic material over time. Therein, a novel
transfer learning approach of finding feature representations
from image time-series data was proposed. In applying an
pretrained ImageNet architecture as basic feature extractor,
triplet based learning is applied for reducing dimensionality.
A siamese-like architecture was proposed, where a series of
five temporal subsequent images are processed by five SNN,
each consisting of a feature extractor and a ranking module.
In [23], two ML approaches, e.g., using a CNN, as well as
an SNN, were presented for analyzing supernova phenomenon
time-series data with respect to the classification of spectral
light-curves, e.g., deciding if the combination of green, red
near-infrared and infrared is a type ’I.a supernovae’ or not. The
CNN approach is initially processing a matrix with four rows,
each of which is representing a ongoing color time-series,
transforming it into a one-dimensional representation and sub-
sequently analyzing and classifying the sample combination.
In the SNN approach, an additional anchor element, which
is a subset of the actual anchor’s time-series data, is applied
in order to tackle the sparsity of available data. Although the
work on hand is utilizing SNN technology for classification,
the primal focus is on using multimodal transformations in a
temporal context.

III. ENVIRONMENT AND METHODOLOGY OF THE
EXPERIMENTS

The generic and distributed DAQ system ARTHUR [12]
can be applied for rapid prototyping of productive CPS
environments with respect to streaming data, it’s analysis
and utilizing AI operations, while relying on low-cost end-
user IoT hardware and open source technologies. The DAQ
showcases are demonstrated using a Redis streaming system
for transmitting data originating from different sensors, which
are mounted on Raspberry Pi embedded devices, towards
a cloud infrastrucure. Every shopfloor, e.g., a collection of
spatial close worker nodes, is managed by a coordinating
node and occurring data can be preprocessed, e.g., cleansed,
taken into consideration for aggregation or even be utilized
in other quality assuring procedures like applying ML models
for predicting live insights into manufacturing processes. In
Figure 1, the context of applying deep integrated systems like
ARTHUR is depicted in a high-level manner with respect
to the overall methodology of the approach on hand. Every
worker node is equipped with a so called Digital Twin (DT),
which is the intermediate between the phsyical and digital
world, e.g., a set of logic for actuating the physical as well as
the digital environment according to sensed information. By
implementing the multimodal transformation of information
which was gathered regarding one or multiple shopfloors,
devices or sensors, in a cloud environment, virtual resources

Figure 1. A High-level depiction of the overall pipeline of transforming
structured shopfloor data into visual material and its utilization within cloud-
based machine learning environments.

can be utilized. With subsequently processing the generated
dataset in multiple meta learning approaches, a way of training
models for a multitude of situations is given. In deploying
the resulting model at a respective worker or coordination
node, added value can be created for multiple use-cases, as
for example predictive maintenance, the quality of a respective
work piece, an assessment of a manufacturing machines tools,
and many others.

A. Utilized Datasets

In the following, three relative simple but fundamentally
differing and well-known datasets are described with respect
to their utilization for meta-learning in Section IV. While
choosing them, a restriction was that each of them should
differ in the primarily domain of application or utilization,
e.g., data for classification of samples, for finding trends and
for classification in the context of time-series data.

1) Iris: The Iris [9] dataset consists of 150 samples of three
different flower species, differing in petal and sepal length
and width. Specifics of how the respective species are distin-
guishing themselves from each others can be obtained from
Figure 2-a, which contains all available values. In this balanced
dataset, no kind of preprocessing other than translating the
respective species labels into a numerical representation has
been done for the experiments. Although there are many
possibilities of applying the Iris dataset, there is no relation to
an additional dimension for expressing variations in time.

2) NASA Milling: The well known NASA Ames & UC
Berkeley ”Mill Data Set” [10] contains multimodal data of
a milling machine’s runs under various operating conditions
and is content of several works. In [24], a summary of best
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Figure 2. Depiction of datasets which were utilized in the experiments: a) Values in the Iris dataset; b) Plot of the Sunspots dataset; c) & d) Measured
tool-wear values (VB) across two cases in the NASA Milling dataset, expressing the mean values of processing two different materials throughout multiple
runs.

practices for applying ML in Computer Numeric Control
(CNC) machining was given, while considering the dataset
from [10]. Therein, each of the recorded runs was visually
inspected with the aim of selecting an approximate region of
stable cutting and additionally extract sub-cuts using a sliding-
window of 1024 data points, which were labeled according
to [25]. In [26], the concept of autoencoders is demonstrated
for predicting the tool wear over time using self-supervised
ML techniques and anomaly detection with respect to the
Milling [10] dataset. The dataset contains data of 167 dis-
tinct recordings of occurred vibration, acoustic emission and
consumed current of an spindle’s individual cuts on different
working material types. There are 16 cases, varying in amount
of cuts from six to 23, where different parameters are applied,
e.g., material type, feed rate of the cutting tool and the depth
of an cut. For each of the 167 cuts, 9000 sampling points
were collected at 250Hz and persisted within an structured
MATLAB array. After each of the recordings, a manual
assessment, e.g., an numeric representation VB, was carried
out with respect to the tool’s flank wear, manually measuring
the tool’s unwanted contact with already finished parts of an
workpiece using an microscope. According to [25], the flank
wear status can be interpreted as healthy when V B < .2mm,
worn or degraded when .2mm < V B < .7mm and failed
when V B > .7mm is exceeded. Given that definition of
an appropriate working condition, the obvious approach is a
three-class classification problem. When applying this inter-
pretation to the whole dataset, a representation of the VB’s
distribution can be further taken into consideration regarding
the most appropriate ML strategy. On one hand, a ML model
which utilizes a binary classification with respect to a VB
threshold of .2mm is presumably directly applicable. On the
other hand, a more granular view of the tool wear could be
applied in business models where non-premium customers are
satisfied with products which were manufactured with a certain
degree of tolerance.

In Figure 2-c, the median values across the 11th case in
the dataset are plotted. For the sake of visibility, the power
consumption, e.g., information regarding AC and DC during
the runs, was set to zero as it would conceal graphs of
the vibration and acoustic emission. Therein, it is clearly
visible that the VB value is increasing over the 23 runs of

case 11 when processing cast iron. In comparison with the
processing of a steel-based workpiece, a different course of
sensed information is recognizable, as shown in Figure 2-d.

There was a certain kind of preprocessing necessary for
further utilization in the experiments. First, the milling data
[10] was extracted from the matlab structure and visually
inspected. Although the majority of runs are free from sensing
errors, some obviously inaccurate recordings can be deter-
mined by considering the plotted information. Those specific
runs had been manually excluded from the experiment. By
associating all available runs to the respective measured tool
wear status, e.g., healthy, degraded or failed, three classes can
be distinguished. Since there are samples for which no such
value has been measured, a median value is calculated between
the surrounding runs where the flank wear was determined.

3) Sunspots: The Sunspots [11] dataset consists of monthly
observations regarding the number of counted sunspots, e.g.,
activities at the surface of the sun. Although there is only
one target value, e.g., the number counted within a respective
month as depicted in Figure 2-b, there are many observations
ranging from January 1749 until September 2013, resulting
in 3177 ongoing time-depended data points. Although there
are well-proven and established preprocessing techniques for
time-series data like normalizing values, solely the original
data was considered in the experiments.

B. Visual Representation of Structured Data

Although the data available in CPS environments is usually
structured, e.g., numerical values, a transformation of these
modalities into visual material is almost always possible.
When effectively applying a CNN as feature extractor regard-
ing visual material, the focus is primarily on textures, e.g., a
distinction between intact grass and burned grass will be more
successful than learning to predict the number of grass stalks
within a picture. In Figure 1, examples of data transformation
are contained and some of them are exemplary discussed in
the following, although there are virtually no boundaries to
creativity.

1) Feature-wise Color Pixels: Each numeric feature of a
sample can be represented by a RGB color represen-
tation, e.g, three features may be normalized to values
from zero to 255. On the other hand, each feature may
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be represented by a gray-scale pixel. When consistently
concatenate such pixel representations, time-series can
be expressed, which is also true for all following trans-
formations.

2) Geometric Shapes: There is a multitude of two-
dimensional shapes which can be applied as feature
representation, e.g., cubes, circles or triangles, where a
second dimension may be expressed by the color, stroke-
width or filling of the shape with a color map. Dependent
on amount of features per sample pentagons, heptagons
and higher-dimensional shapes can be build or multiple
basic shapes may be projected on top of each other.

3) Visual Data Analysis Approaches: Dependent on the
dataset, different approaches like pie charts, bars, lines
or cycle plots can be applied as representation of multi-
variate data. When for example generating a polygon
radar plot, the feature’s value is corresponding to a ver-
tex within the plot, preserving their relative magnitude.

4) Time-Series Plots: When there is a temporal component
to a dataset, the values can simply be represented by
a line- or scatter plot, where multiple modalities are
specifically colored or styled. Dependent on the respec-
tive problem, a grid, axis, labels and legends can be
either an obstacle or support when analyzed by the CNN.

5) Gramian Angular Fields: This method effectively in-
terprets a time-series as an polar coordinate system,
which is then transformed into an Gramian Angular
Field representation. As there are many textures within
the resulting image, it is assumed to be an appropriate
transformation for utilization within an CNN.

C. Utilizing Triplets with Time Series Data

In the following, a brief overview of the applied distance
learning and sampling strategies is given.

a) Learning with SCML: As the SCML methodology is
by now a established approach, it will be utilized in exper-
iments where only numerical data is considered. This well-
performing meta-learning technique will be used for creating
(baseline) models, which will be assessed and compared to
performances of subsequent experiments.

b) Learning with Siamese Neural Networks: One as-
sumption of the work in hand is, that when the amount of
existing image representations is way to low for traditional ML
approaches, it may be sufficient for SNN-based approaches
anyhow. Commonly, SNN architectures are created with re-
spect to the comparison of two visual inputs. Throughout the
three datasets, the capability of processing visual representa-
tions of numeric data in SNNs is investigated.

c) Triplet Sampling for Time-Series Data: Although
there are many real-world applications of predicting the sim-
ilarity of two data points, no standard exists regarding the
crafting of triplets with respect to time-series data. Another
aspect to consider is that the problem formulation is moved
from predicting a class affiliation by the relation of anchor,
positive and negative elements, towards an assessment of their
respective appropriateness. When considering classification

with respect to a regression problem, an approximate regres-
sion may be conducted by classification, e.g., a situation in
which well-defined classes are utilized as a representation of
an associated value. The choice of such a strategy may also be
impacted by a multitude of aspects, as one might for example
differentiate if possible data values are recurrent, exponential,
linear or seemingly random. For example, there can be a
static or dynamic ’sliding window’, where triplet elements are
positive when the window has proceeded the anchor within
a certain threshold, negative respectively when the threshold
was exceeded, e.g., learning to predict if a specific time-
frame is associated with a preceding one. Another strategy
may be a distinction and classification by splits for days,
weeks, months or certain events. One might also copy the
positive sample as the negative but overwriting a specific part
with random or conditional values. A completely different
approach was proposed in [21], where samples can be of
different length and the positive element is a random subset of
the anchor time-series, while the negative element is outside
the anchor time frame, another modality respectively when
multivariate time-series data is available. In [22], six triplets
are defined for a pre-defined ”time course”, where direclty
neighboring elements, e.g., t+1, are treated as positives and
non-neighboring elements as negative element. Specifics of
the further applied approach for utilizing time-series data in
distance learning by forming triplets is depicted in Figure 3.
The values involved in this example are depicted as circle
representation and associated with eight consecutive events,
e.g., t0 - t7 of the Sunspots [11] dataset, e.g., sample nr. 1000
to 1007 which are observations between April and November
of 1832. Throughout this example, it is recognizable that the
Frame Length is constant over all triplet elements and amounts
to four. In order to form a positive triplet element, the initial
frame which is expressed by the anchor element, e.g., t0 - t3,
is shifted by the amount of Positive Offset to the succeeding
position, e.g., t1 - t4. A negative or non-conforming element is
formed by selecting elements within a time-window of length
Negative Length, which is positioned Negative Offset elements
in the future regarding when the positive element has ended,
and overwriting the end of the positive time-frame with it.

IV. EXPERIMENT DESCRIPTION

In the following experiments, the datasets which were
described in Section III-A are applied to different meta-
learning approaches. In addition to processing the raw data for
learning a metric with SCML, synthetic datasets are formed
by generating different data representations and train on them
in an SNN. The experiments aim at investigating different
possibilities of multimodal data transformations with respect
to meta learning in an temporal context.

A. Learning Classification Metrics

Although the Iris [9] dataset has no temporal component,
it was applied during experiments as additional indicator of
the respective methodologies appropriateness. When forming
triplets with elements of the three classes and implement a
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Figure 3. An example of the configurable parameters when forming triplets in ongoing unimodal time-series data, using circle representations.

random selection of the negative class, the performance of a
SCML models is exceeding 90% accuracy with even a very
smal amount of triplets, as depicted in Figure 4-a. The SCML
algorithm was additionally applied to a simplified version of
the NASA milling time-series dataset. Based on the flank wear
status metric as defined in [25], three classes were considered,
creating conditions similar to the Iris dataset. For synthetically
decreasing the available information in training, solely the the
minimum, maximum and median of values associated with
a single run, e.g., power consumption, acoustic emission and
vibration values of the complete time-series, were considered,
alongside the processed material. The results are depicted in
Figure 4-b and are supporting the assumption that measuring
of distances between data points which represent different
states can be applied in such time-series prediction scenarios,
too.

B. Classification in Time-Series Forecasting

As there is no classification in the Sunspots [11] time-
series dataset, triplets have been generated by a configurable
function, as already described in Section III-C. The impact
of all applicable parameters was investigated in multiple
benchmarks, where the SCML model training indicated that
different offset sizes have not a huge impact within this dataset.
Therefore, the subsequent experiments results are depicted in
Figure 4-c, where different total- and negative frame lengths
were tested and results suggest that the negative frame length
is the most impacting parameter. This was confirmed during
experiments where the Positive Offset parameter was set to
the value of Negative Length, where comparable results were
achieved.

C. Classifying Image Representations in CNN

In order to assess the capabilities of SNN regarding a visual
representation of structured data, multimodal transformations
were carried out, beginning with the Iris [9] dataset. Beginnig

with the official tensorflow tutorial examples on CNNs and
making minor adjustments in the dense layer and loss function,
a grayscaled Filled Pie representation was passing the 90%
threshold within six epochs. The aim of the actual, subsequent,
experiment was to reach this encouraging result using the same
transformations in an SNN.

D. Classification of Time-Series in SNN

With having promising results from the previous experi-
ments which were based on structured data, the following
image-based approaches were conducted. The SNN architec-
ture begins with implementing a batch normalization of the
inputs, followed by a two-dimensional convolutional layer
with a stride of 2x2, 16 filters and ’tanh’ activation function.
Afterwards, a two-dimensional average pooling layer with a
pool-size of 2x2 is applied. This combination of convolutions
and average pooling resumes to 32, 64, 128 and finally 256
filters, before it is flattened, normalized and applied to a dense
layer with ’l2’ kernel regularizer, ’tanh’ activation function and
ten units. This SNN structure is effective utilized as feature
extractor of the information present in the image represen-
tations and trained with categorical crossentropy, RMSProp
optimization with a learning rate of 0.001 and an euclidean
distance function. In training multiple models with different
amounts of triplets, viable results are emerging, as depicted in
Figure 4-d.

1) Milling: For demonstrating the utilization of tabular data
in image-based ML methods, the numeric values of the mill
dataset [10] were transformed into various visual representa-
tions, divided into test- and train sets and subsequently fed to
an SNN in order to train a model for categorizing the flank
wear of an work piece. A simple RGB plot transformation was
applied regarding the various runs modalities, e.g., acoustic
emission, power consumption and vibration. The results of
training on different amounts of triplets in this three-class
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Figure 4. Results of the Experiments: a) SCML on different amounts of triplets for classifying samples in the Iris dataset; b) SCML on minimum, maximum
and median values in the NASA Milling dataset; c) Impact of the ’Negative Length’ parameter training on different amounts of triplets with positive and
negative offset of 1; d) SNN training on grayscale Pie-Chart transformation in the Iris dataset; e) Training a SNN with different amounts of triplets in the
NASA Milling dataset consisting of the particular signals RGB plots; f) Training a SNN with all possible Sunspots sample triplets with Frame-Length of 23,
offsets of 1 and Negative-Frame-Length of 4, transformed as Gramian Angular Field RGB image.

classification problem are depicted in Figure 4-e. Therein, an
accuracy similar to when utilizing SCML is recognizable.

2) Sunspots: Since there is only one value in samples of
this time-series data, it cannot be put into relation with another
modality. Therefore, the Gramian angular field transformation
was applied to the Sunspots [11] dataset. Since the total
frame length parameter of a triplet element is apparently not a
impacting factor, a window-length of 23 was chosen. In setting
the offsets both to one and configuring the negative frame
length to four, results similar to when training a SCML model
on numeric data were expected. In Figure 4-f, the results of
this experiment are shown.

E. Discussion of the Obtained Results

All in all, the experiments with SCML achieved good
accuracy results, even on a small amount of training triplets.
Although the chosen transformations have a heavy impact on
the feature extraction of SNN approaches, the results indicate
a comparative accuracy. In comparing different learning ap-
proaches or variations in their configuration, the significance of
model candidates can be determined. There are also situations,
where depending on the problem on hand and the amount of
available data, such examinations require the concurrent long-
term utilization of multiple ML models on production data.

1) Structured Data: The experiments with the Iris [9] and
Milling [10] dataset have shown, that a classification based on
the numeric values is realizable using an approach of distance-

based SCML. In Figures 4 a) and d), it can be found that the
random selection of triplets is causing doubtable results, e.g.,
accuracy scores of 1.0, where triplets are heavily biased. As
there is a decent score for SCML computations right away,
the SNN approach begins to perform on triplets ≥ 80 and
stabilizes after four epochs. When considering Figures 4 b)
and e), an related aspect is the flank wear assessment, which
is causing an unbalanced dataset interpretation as there are
naturally less samples for runs with a failed tool than for
degraded or healthy ones. Another point is that the image
representation in e) contains more information in terms of
signals when compared to the SCML experiment from b), but
is missing the type of processed material.

2) Similarity in Time-Series Classification: When consider-
ing Figures 4 c) and f), the experimentation with the Sunspots
[11] dataset suggests that with a growing negative frame lenght
parameter, accuracy is non-stop increasing. The chosen total
and negative frame length of 23 and for is scoring approx-
imately 75% accuracy with SCML approach as contrasted
with nearly 70% after eight epochs of training on the SNN,
while the loss is steadily decreasing. Although the used dataset
may allow for an arbitrary elevation of this parameter, the
respective use case data must allow for generating ’realistic’
negative samples, as well as different strategies of selecting
samples for the actual inference of the model. When increas-
ing the positive offset, the assumptions about future values,
which are usually not available in a productive environment,
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must be formalized. Therefore, historic data may be analyzed
for finding trends, outliers or other significant observations,
which can be combined with, or appended to, current values.
When there is only a small amount of possibilities or there
are unlimited resources, the model can be inferred with a
multitude of samples which consist partly of random values
and determining the most likely synthetic element.

V. CONCLUSION AND FUTURE WORK

In this work, an overview of the utilization of multimodal
data in meta-learning strategies was given with respect to time-
series analysis in the context of CPS operations. Therefore,
different approaches of distance-learning were investigated
and applied in experiments using SCML and SNN. In im-
plementing a novel approach of compiling temporal triplets,
a classification of future time-series data seems possible.
Although the results are capable of improvement, it was
shown that strategies for predicting specific situations in CPS
environments are possible for even small datasets using meta-
learning approaches.

As this paper is concerned with basic experimentation, a
better suited SNN architecture may be found and applied
to additional datasets, using a broader variety of multimodal
transformations and preprocessing approaches. In addition,
problem-specific significance tests could be implemented for
determining the feasibility of model candidates. There are
many promising applications of DT technology, as for example
the management and representation of concurrent modules in
a ML pipeline or model-specific preprocessing operations on
inference. The utilized datasets could in general be extended
with augmented [15] versions, e.g., adding samples which
initially were copies of the originals but are subject to random
noise, blurring, colorizing, rotating and other image manipu-
lation techniques. Such a methodology could then be assessed
with respect to increasing the samples of poorly-represented
classes and impacts on prediction accuracy. Regarding the
Milling [10] dataset, a more ganular flank-wear classification,
as for example in .2mm steps, could contribute to more stable
predictions. Another factor cold be to additionally fuse the
information of the applied material with the respective signal
plots, increasing the specifics of samples and potentially the
model’s accuracy, too. When forming a series of temporal
subsequent same-class samples, effects of the structured time-
series data could also be represented as video stream and
further be interpreted by ML methods for classifying short
visual sequences, challenging aspects like the compilation of
triplets, real-time inference or multimodal fusion.
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