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Abstract—Distributed deployment of cooperating unmanned 
vehicles is increasingly becoming a key element for expanding 
the range of operations in many domains. The Management by 
Objective Demonstrators is used to investigate procedures and 
potential solutions for a holistic approach to generate 
cooperating vehicle teams based on global planning paired with 
local reactive autonomy of individual vehicles. The implemented 
procedures deducing local autonomy from global planning are 
presented. Based on this, the use of operation profiles for aerial 
reconnaissance, which are intended to enable cooperative team 
behavior with respect to the global mission, are analyzed. The 
operation profiles are compared to traditional methods and 
their advantages and disadvantages are highlighted. 

Keywords-swarming; mission planning; reactive autonomy; 
reconaissance. 

I.  INTRODUCTION 

Available autonomy within modern robotic systems is 
constantly increasing, opening up new fields of application 
and possible scenarios for corresponding systems. 
Autonomous Systems (AS) will be more and more considered 
critical for various types of missions in the future. As much as 
these increasing demands may drive AS development, many 
acute issues remain to be solved addressing individual 
solutions and specific operation requirements. 

Our vision is to evoke an intelligent, effective and efficient 
cooperating behavior by creating autonomous responsiveness 
of individual robots to the individual situation while 
considering the overall mission objective, the actions of 
assigned team members, as well as the environment and its 
potential dynamic change. The concept of local 
responsiveness based on global planning is providing this 
autonomous decision-making capability to individual vehicles 
organized in a team. In the work presented here, the basic 
approach to achieve this system autonomy as a part of the 
flexible control chain of the Management by Objective 
Demonstrator [1] is described. The performance of this 
solution is discussed in the context of a specific application 
scenario - the coordinated deployment of multiple AS 
operating in a team to fulfill aerial reconnaissance. 

The Management by Objective Demonstrator (MOD) is 
designed as a multi-layered flexible stacked architecture, 
integrating a modular, adjustable control chain of planning, 
monitoring, and evaluation algorithm. This is used to prepare 
and schedule collective actions at the global team level with 

respect to the mission objective, allocate resources, and 
provide the (physical or simulated) asset a framework for 
coordinated actions following the task-oriented Operation 
Profiles (OP) herein discussed. In this holistic approach, the 
OPs are used to create local behavior of the AS (also referred 
to as Reactive Artificial Intelligence (RAI)). These profiles 
provide the single team members the capability to 
autonomously decide and operate in their dedicated 
environment, while the global planning process assures that 
the mission target is fully contained by the cooperative assets. 

In comparison with traditional planning and operating 
alternatives for aerial reconnaissance, the advantages and 
disadvantages of the proposed non-deterministic movement 
profiles for autonomous operation are discussed and the 
possible applications are analyzed. 

The paper is structured as follows: After a brief overview 
of the state of the art in Section II, the concept of the 
Management by Objective Demonstrator is described in 
Section III. The structure of the multi-layer interest landscapes 
as well as their concrete application are considered in Section 
IV, and the simulated results are discussed in Section V. The 
paper is closed with a final discussion in Section VI. 

II. STATE OF THE ART 

Research and development in the environment of the 
parallel application of several, possibly heterogeneous sensor 
carriers, are a fast-growing field in different research areas 
[2]-[4]. 

Tan et al. [5] address the problem of navigating multiple 
individual vehicles in a swarm with respect to an anticipated 
environmental model. In order to navigate the vehicles, an 
Artificial Potential Field (APF) is generated that maps the 
obstacles and destinations of each vehicle as a mathematical 
function of attraction and repulsion. Each vehicle uses this 
information to find its way through obstacles to its 
destinations. This is a widely used approach (e.g., see [6][7] 
or [8]) that leads to good results if the environmental model is 
sufficiently precise in correctly representing the goals of the 
individual Unmanned Surface Vehicle (USV) or team 
members and real-world objects. As a promising approach, we 
have investigated APF solutions, but our findings indicated 
that, whilst providing inherent advantages regarding the 
determination of speed and course, pure APF introduces some 
significant shortcomings related to the movement decisions of 
an AS in complex situations (e.g., singularities). 
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Alfeo et al. [9] propose to encode the waste management 
infrastructure into a map by using artificial pheromones and 
organize the waste disposal process by mimicking the 
biological models of stigmergy-based foraging. While the 
described approach is extremely relevant for the self-
organization of a swarm, it bases it movement decisions on 
the fixed and reduced possibilities provided by the 
underlaying model of the existing streets. While this is 
perfectly sufficient for the waste disposal in urban area, it is 
not sufficient to organize a team of AS in a less-structured 
area, e.g., an open field. 

In [10], the authors describe a multi vehicle approach 
using an artificial pheromone approach, that seems to be 
promising. Based on the different objectives of a task, 
diffusing and bleeding (fading out and fading in) pheromones 
are used to guide the assets to scan the positions with 
increased uncertainty of a designated target cell for potential 
threatening persons or vehicles. In contrast, the solution 
presented here operates on geographical coordinates and not 
with an artificial division of the real world into cells. 
Additionally, we calculate with a significantly larger 
movement variance (currently 360 possibilities in two 
dimensions). Other aspects such as task assignment, which is 
also discussed in [11], are components of the higher Artificial 
Intelligence (AI) in the MbO Demonstrator that are not 
considered in detail in this paper.  

The proposed OPs for aerial reconnaissance are 
considering two basic approaches: the linear OP and the non-
deterministic OP. The search patterns used in the linear 
approach are basically discussed in [12] and [13]. In [14], two 
basic search patterns, a linear approach as well as a tube 
approach are also studied in different embodiments for 
cooperative use. It is interesting to note here that the vehicles 
reconnoiter the identical area in parallel and no local 
separation by assigning sub-areas is proposed. However, the 
coordination effort seems to be significantly higher in this 
case, since the planned trajectories are in close proximity to 
each other. Correspondingly, a higher effort must be expended 
to enable secure operation. The same applies to the tube 
approach. Similarly, Choi et al. are creating a path following 
a spiral pattern [15]. While this circular approach can be well 
performed by the afterwards described interest landscape, it 
follows a clear and predictive behavior and is, therefore, not 
further investigated in this context. Fricke et al. are also 
proposing a distributed deterministic spiral search algorithm 
mainly as benchmark for non-deterministic solutions [16]. 
While this approach seems to show good results, it suffers 
from the fact that the search needs to be started in the center 
of the search area, which is a very specific situation not 
suitable for a generic solution. 

III. MANAGEMENT BY OBJECTIVE DEMONSTRATOR 

CONCEPT 

Autonomous Systems operating in a team to cooperatively 
solve a common problem is challenging from a technical 
perspective as well as from an organizational one. A multitude 
of solutions, technologies and strategies that solve specific 
aspects of autonomous UxV operation do exist. But it 
certainly requires a holistic approach considering the 

challenges to enable the efficient, effective and flexible 
operational use of such a Systems of Systems (SOS) in a real-
world application. We addressed this problem by introducing 
the Management by Objective (MbO) concept [1]. MbO is not 
primarily focusing on the autonomy of the system, but on the 
question how a single operator can be meaningfully involved 
in the team's actions [17] [18]. Direct monitoring of individual 
vehicles is inefficient, as it usually exceeds the capacity of the 
operator, especially in high workload situations spread over a 
varying number of independent vehicles (see, e.g.: [19] [20]). 
Therefore, the MbO approach is not focusing on vehicle 
control, but on tuning the results or mission products (see 
Figure 1). The interaction between the operator and the assets 
take place via the adaption of the global mission tasks or 
finetuning of the mission product requirements. 

 

 
Figure 1.  Management by Objective control cycles for AS as used in the 

MOD. 

The concept can be decomposed into three main aspects: 
Mission Management, Product Creation and Asset Autonomy 
(see also Figure 1). The Mission Management, as part of the 
high-level AI, is fully responsible for planning and control of 
the cooperative actions. It is monitoring and analyzing the 
progress of the mission with respect to the defined parameters 
and objectives and is providing and manipulating the data 
basis of the low-level AI (reactive AI as part of the Asset 
Autonomy) for controlling the physical asset. The Product 
Creation within the high-level AI is responsible for processing 
collected data and provides aggregated products to the 
operator for evaluation. At the same time, the extracted 
information from the products is used as feedback to the 
Mission Management. The operator intervenes in the mission 
by adjusting the planning specifications based on the 
information retrieved. 

Three different configurations of the MOD have been 
evaluated in different physical system configurations. Within 
the full centralized configuration, the high-level AI is a unique 
centralized instance accompanied by a number of also 
centralized Low Level AI Instances that only transfer control 
commands via dedicated wireless links to the interlinked 
assets. In the second configuration, the low-level AI is hosted 
on board the asset assuming the physical assets provide 
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appropriate capacities. The third tested configuration is the 
full distributed approach, where the higher and the lower AI 
are hosted within the assets and each asset is capable of 
creating mission data for itself as well as for all team 
members. 

Converting a task into a cooperative mission, based on 
given OPs, is a central component of the high-level AI. It is 
important to understand how the cooperative mission plan is 
translated into information measurable by the asset, in order 
to act autonomously. To solve this the MOD is using OPs as 
described in Section IV to transform the abstract mission 
specification into measurable representations, that can be 
interpreted by any low-level AI. 

To create these representations, we propose to use a Multi-
Layer Artificial Interest Landscape (ML-AIL) (similar to [21] 
[22]). The single layers of the ML-AIL are representing a 
specific object context or dimension, separating different 
types of information instead of a single merged source. Hence, 
we separate targets, obstacles, team members, etc. into the 
individual layers of the interest field and treat them according 
to their associated sensing algorithms. The output of the 
corresponding stack of sensing algorithms is fused into a 
control decision (see Figure 2). This approach increases the 
computational workload linearly to the used number of layers, 
but also allows to create differentiated decisions regarding the 
divergent mappings of the surroundings of the AS. The 
behavior can be optimally tuned, considering cooperative 
mobile objects (team members), static and mobile obstacles, 
mission targets (static and dynamic), as well as the physical 
characteristics of the asset. 

 

 
Figure 2.  Multi-Layer Artificial Force Field Concept. 

The current MoB is operating on three different AIL layers 
with the capability to add additional layers as needed: 

The Target Layer is mimicking the biology inspired 
foraging process (e.g., see [8][9][23]). At the initial stage of a 
task-to-mission conversion the higher AI creates a collection 
of target features with appropriate parameterization, based on 
the mission requirements and the mission-specific chosen 
behavior patterns for the team and the team members. In the 
case of the herein discussed systematic area reconnaissance 
mission, the result is a set of uniformly distributed features 
with similar interaction behavior; in case of a non-
deterministic approach the resulting features are randomly 
distributed with deviating interaction behavior. Defined sub-

goals, a priori knowledge, mission requirements or the 
specified treatment of certain known objects or regions (e.g., 
bridges, buildings or streets that should be monitored more 
intensively) can be translated into accordingly adapted 
features, that represent the significantly higher interest in 
these regions. The AS is able to recognize the increased 
importance of these objects when analyzing the Target Layer 
of the ML-AIL and transfer this sensing results into 
corresponding target-based action recommendations. The 
basic behavior is not changed, but the specified areas receive 
increased attention. Scanning the areas is prioritized and 
happens on a more frequent basis (see also Section IV). 

The Obstacle Layer represents the known environmental 
information and is translated into an AIL by the higher AI 
algorithms when composing the mission. Based on a real-
world model, objects relevant for the mission area are 
extracted, translated into features of negative interest (leading 
to an avoiding behavior) and stored in the AIL. Objects that 
are detected during the mission, for example prior unknown 
obstacles, are dynamically integrated into this AIL and 
synchronized between the team members. 

The Cooperative Layer is closely related to the obstacle 
layer and is used to store cooperative obstacles and team 
relevant information, as well as their history. The individual 
AS constructs an individual image of the current state of the 
team using the status information received from the other team 
members, e.g., to inject marker based stigmergy comparable 
to the concepts using an artificial pheromone trail. At the same 
time, it can also be used to correlate specific mission data. For 
example, a target may be specifically assigned to an AS, but 
if this target is covered and processed by another AS, the team 
layer information can be used to indirectly manipulate the 
target layer of the original assigned AS. 

The individual layers use a geographic coordinate system 
and are described by a collection of data points called features. 
Each feature has inherent information, about the interaction 
between the layers, as well as between the layer and the AS, 
to be performed at layer update, based on the current situation.  

As representatives of real-world objects, like obstacles or 
team members and virtual action or interest points, the content 
in the individual layers of the AIL are composed of 
pheromone-like interest features with an inherent information 
set. This contains the type (e.g., obstacle, target, POI, no-go, 
track, etc.), position and spatial extent, as well as the behavior 
during interaction with any AS. 

Based on the type of the features the significance of the 
measured value is determined, e.g., the boundaries of a feature 
of type “no-go” should not be violated while the boundaries 
of a feature of type “obstacle” must not be violated. 

Decision of the AS is based on the sensing of these 
features. We distinguish between an attracting and repelling 
influence leading to avoiding or a searching behavior. In 
combination with the effect on the perception (the strength of 
the measurement taking the distance between AS and the 
feature), these values are used for the sensing within the single 
layers. Further important parameters used to modify the 
interaction are the dynamic degradability (the impact on the 
strength of the feature under influence of an AS, e.g., if 
mimicking the foraging process the maximum measurable 
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strength of a visited feature is decreased), the recovery 
procedure (if an who fast a once depleted feature can recover 
and to what maximum strength), the range of perceptibility 
(the distance in which the AS is still capable to sense the 
Feature) or the affiliation (a feature to AS mapping, providing 
the possibility to assign specific features to specific assets). 

For the translation of the AIL into movements of the AS, 
we use a temporal projection of the current geographical 
position 𝑃  to potential future positions 𝑃′௝  based on the 
current speed �⃗� of the AS (see Figure 3). Depending on the 
precision necessary to operate the physical asset in the given 
environment the granularity of 𝑃′௝ can be adapted. The MOD 
currently calculates with a scheme consisting of 360 
anticipated future geographical positions, one position per full 
degree (𝑗 = 360). For each 𝑃′௝  a State 𝑆௝ is calculated based 

on the measured influence (𝐹௥ሬሬሬ⃗  and 𝐹௔ሬሬሬ⃗ ) of a subset 𝑀௦௨௕ =
{𝑇௦௨௕,𝑊௦௨௕, 𝐶௦௨௕} of the surrounding objects in the associated 
AIL Layer (Target 𝑇, World 𝑊, Cooperative 𝐶) filtered by 
the sliding window only considering relevant objects in range 
of the original position 𝑃. 

 

 
Figure 3.  Sensing and decision making based on the ML-AIL for local 

reactive autonomy. 

As impact calculation of each feature upon 𝑆௝  different 
approaches have been implemented and evaluated (1) and (2). 

𝐹

𝑑௙
ଶ + 𝜎

 (1) 

𝐹  is the current maximum value of the feature to be 
measured, 𝑑௙  corresponds to the distance and 𝜎 is the slope 
coefficient that describes the fuzziness or expansion of the 
feature. A higher 𝜎 increases the distance and strength of the 
measurement of the feature. 

Alternatively, the harmonic oscillation approach was 
tested, where a full computation of the 𝑃′௝  values is not 
necessary. Based on the observation that each feature-specific 
value in 𝑆௝  given by (1) behaves computably for all other 𝑃′௝ 
based on a shifted harmonic oscillation function (2), regarding 
the given maximum measurement of the corresponding 
feature. 

𝑢 ∗ sin(𝜔𝑗 + 𝜑) (2) 
Here 𝑢 =

ி

ଶ
 translates the function to oscillate between the 

maximum measurable 𝐹 , 𝜔  identifies the constant angular 

velocity and 𝜑 = −
గ

ଶ
− 𝑆௔  is the phase shift, where 𝑆௔ 

corresponds to 𝑗 of the maximum measurement identical with 
the vector indicating the direction of the feature. 

Single feature measurements are not summed up, so that 
strong features superimpose weaker one’s or the ones that are 
further away. If, nevertheless, features are measurable above 
the baseline of the dominant feature, the harmonic oscillations 
are sequence wise composed. In both approaches, the output 
of 𝑇௦௨௕,𝑊௦௨௕ and 𝐶௦௨௕  is fused afterwards and the result is an 
anticipated best future state used by the low-level AI to 
identify the current intension 𝐶′, as well as the angle offset 𝛾. 
Based on this intension, the asset specific short-range 
navigation path is identified and translated into control 
commands. 

IV. CREATING TEAM BASED MULTI-LAYER AIL FOR 

RECONNAISSANCE MISSIONS 

The distributed multi-layer AIL approach for mission 
conversion in a coordinated team allows to create a specific 
mission environment for each AS. A central question is how 
to design the main target layer of the AIL via the translation 
of the mission aspects into corresponding features and how 
these features should be parameterized, so that the AS can 
fulfill its task in the mission context. 

In this context, several scenarios were investigated and 
evaluated for suitability with different feature distributions. 
Where possible, traditional methods were used as 
benchmarks. The results are compared in Section V. 

A. Area Reconnaissance 

A basic task, in which a team approach is valuable to 
increase efficiency, is reconnaissance for mapping and 
clearance of large areas with a parallel and coordinated 
deployment of several reconnaissance vehicles. This scenario 
requires, that the entire area defined in the mission (target 
area) must be inspected completely. 

In traditional approaches, a pre-planned trajectory for a 
single (or multiple) vehicle(s) is created to ensure complete 
coverage (see Figure 4). 

 
Figure 4.  Pre-calculated Flightpath for five AS. 

When using the ML-AIL in the MbO Demonstrator, 
preplanning is not intended. The AS acts autonomously and 
makes decisions based on the interpretation of the individual 
ML-AIL. 

Following the classical reconnaissance approach, we use a 
linear feature distribution oriented horizontally (see Figure 5), 
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vertically or along the main orientation of the target area. The 
special arrangement of the paths is defined by the resolution 
of the desired footprint, taking a potential overlap into 
account. 

 

 
Figure 5.  Linear Feature Distribution for 8 AS. 

In order to allow evenly spaced tracks with a minimum of 
course adjustments, the features are compacted in the 
direction of the main axis. Without condensing the features in 
the ML-AFF in the direction of the main axis, the AS do not 
recognize the axis of operation when they are converted into 
local control commands. Accordingly, the decisions would 
lead to movements with significantly less focus, which creates 
disadvantages in terms of endurance and mission time. 

B. Area Reconnaissance based on Chaotic Profiles 

Regardless of the generation of the reconnaissance 
patterns, linear behaviors suffer from some drawbacks. In 
non-cooperative scenarios, when the searched object does not 
intent to be localized, or the objects to be searched are placed 
unfavorably with respect to the individual areas to be 
searched, a linear behavior may be disadvantageous. Chances 
to avoid detection are significantly higher when the movement 
pattern of the searchers are predictable since it is easy to 
anticipate which areas will be checked next.  

 

   
Figure 6.  Chaotic Feature Distribution for 8 AS. 

 
At the same time, large, contiguous areas remain 

unobserved for a long period. For this form of reconnaissance 
and surveillance missions, we introduced a chaotic, non-
deterministic operational profile. For this purpose, the features 
for the operation area are not ordered linearly, but placed 
randomly and more densely (see Figure 6). At the same time, 
the features are generated with divergent properties in terms 

of their temporal existence and life cycle, resulting in a high 
fluctuation in the target layer of the ML-AIL. This fluctuation 
allows the AS to move unpredictably and individually in the 
operation area, regardless of the prior made movement 
decisions. In a short-term aspect this behavior leads to a more 
well-distributed coverage of the area, as the targets are not 
sequentially organized (all parts of the mission region are 
potentially visited next) and the feature distribution can attract 
the AS to search in a non-deterministic manor. However, this 
unpredictable behavior is bought by the drawback that a 
complete monitoring of the whole area, where all regions are 
reliable searched, is not guaranteed. 

C. Object Search based on Chaotic Profiles 

In contrast to the complete static area reconnaissance, 
where ideally every location is scanned only once by the 
sensor of the AS, the search for target objects in an area does 
not need to fulfill these requirements. In this case the mission 
target is to localize the searched objects as fast as possible. In 
case of static searched objects, the preconditions are close to 
the ones for the area reconnaissance. If targets are considered 
mobile, the complete coverage of the area cannot guarantee a 
detection rate of 100%, since a searched object may well pass 
undetected from a region not yet visited into a region already 
finally processed (active evasion) during the search phase. 

 

 
Figure 7.  Left: linear reconnaissance of eight AS after 15 Minutes, right: 

chaotic reconnaissance of eight AS after 15 Minutes. 

In this case, the proposed chaotic non-deterministic OP 
(see Figure 7, right side) provides some advantages over the 
deterministic one (see Figure 7, left side): First, the non-
deterministic behavior of the AS does not allow the searched 
object to predict the operations of the searchers and, thus, 
makes it significantly more difficult to evade detection. 
Secondly, a scanned area is not excluded from further 
operations, so that even if the detection is successfully 
avoided, hiding in already scanned areas is not permanently 
promising. 

D. Area Reconnaissance with Mission Focus 

To fully exploit the strengths of a non-linear, chaotic 
search approach, mission planning should consider a priori 
information and co-translate it into feature data for the ML-
AIL. In this scenario we assume that the entire mission area, 
as marked in the yellow rectangle (see Figure 9), is of 
importance. The probability that the searched objects are 
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located on or close by the red marked areas (building, road, or 
forest edge) is assumed to be significantly higher than in the 
rest of the area. 

 

 
Figure 8.  Mission area with high priority regions. 

To have these areas searched preferably, mission planning 
must mark them as prioritized targets. The entire mission area 
is flooded with random distributed target features of variable 
expression, as in the basic chaotic approach. At the same time, 
features are placed in said regions that have a higher attraction 
and thus, will be preferably investigated. The chaotic, non-
deterministic mission profile is preserved, while prioritizing 
appropriate objects and regions. 

 

 
Figure 9.  Chaotic Reconnaissance with high priority regions (eight AS 
after 15 Minutes). 

Figure 9 shows that the cooperating AS are scanning the 
area according to the chaotic behavior profile. However, 
especially at the beginning of the mission, a variance can be 
recognized with respect to the regions marked with increased 
importance. The individual assets operate in their subareas 
with a primary focus on the prioritized regions. 

V. RESULTS 

To analyze efficiency and effectiveness of the proposed 
chaotic OPs in comparison with traditional approaches, a 
series of simulations were conducted and analyzed. 

The simulation is conducted in a fixed mission area with a 
total size of 2.03 square kilometer, defined as the main target 
area (see also Figure 9). In order to increase the measurability 
and to simplify the evaluation procedure, a reduced sensor 
footprint is assumed, corresponding to a ground resolution of 
60x60 meters. The position angles of the sensor carrier are not 
considered and thus, have no effect on the simulated footprint, 

except for direction changes. The footprint is steadily aligned 
in nadir. The team consists of homogeneous virtual AS, 
moving at a maximum speed of approximately 20 km/h and 
reaching a maximum rotation rate to the vehicle's rotation axis 
of 28 deg/s. Tests were performed with several simulated 
vehicles, while the main test series was limited to missions 
with 5 and 8 vehicles. To complement the measurements of 
the Reconnaissance Factor (RF) (percentage of overall 
scanned area), objects were randomly placed in the target area 
to be found in mission. A hidden object is considered found if 
it is inside the simulated sensor footprint. The mission 
duration is defined by the timespan necessary for the assets to 
conclude the preplanned linear operation path, but is extended 
to follow the development over time for the other OPs. 

All four described methods were tested and compared: 
1. Linear search with deterministic pre-planned paths. 

2. Autonomous linear search with quasi deterministic 
search behavior 

3. Aerial reconnaissance with non-deterministic motion 
profiles 

4. Multi Target search with non-deterministic motion 
profiles and prioritized areas. 

The analysis shows, that linear methods achieve 
satisfactory results in terms of the Reconnaissance Factor (RF) 
(see Figures 11-14). The meander-shaped motion profiles 
allow a continuous scanning of the entire area, where only few 
areas are left out. As outcome, the linear methods achieve a 
stable RF of more than 90% to the end of the mission with the 
selected movement pattern. This is valid for teams of five 
vehicles as well as for eight assets and can be qualified 
increased close to 100% using a higher overlap and full 
utilization of the area with a small extension in mission 
duration. Compared to the preplanned linear approach, the 
procedure degrades slightly when operating autonomously. 
This can be explained by the absent pre-mission optimization 
and the associated potential lengthened route traveled in case 
of a non-optimized area entry as well as transversal 
movements via already scanned areas, especially at the end of 
the mission in case of remaining isolated sub-areas. 

Both, the chaotic and the multi-target chaotic procedures, 
can perform comparable, especially at the beginning of the 
mission. Significant performance losses manifests during the 
second half of the mission. This can be expected, since by 
design, the chaotic profiles do not exclude areas that have 
already been scanned from further processing. Thus, these 
areas are potentially scanned several times, while the 
trajectories are not aligned for minimal footprint overlap. In 
consequence, the profiles cannot compete with the linear 
optimized ones. The RF ranges from 60% to 80% at the end 
of the mission, depending on the mission type but reaches up 
to 90% in the simulation context with the appropriate time 
addition. 

It can be observed, that increasing the number of assets in 
linear procedures, allows a continuous increase in 
performance, which in turn results in a reduction of the 
mission duration. However, it is most interesting to note that 
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the chaotic procedures seem to benefit more from increasing 
the number of team members. In particular, the degradation of 
performance in the second half of the mission is significantly 
reduced by the use of eight assets compared to the mission 
with five assets, resulting in a final RF of more than 80% 
(compare Figure 10 and Figure 11). 

 

 
Figure 10.  Comparison of mission performance for five AS. 

 
Figure 11.  Comparison of mission performance for eight AS. 

Analyzing the performance of the profiles regarding the 
detection of local static objects, the linear methods show 
merits to a limited extent. Especially at the beginning of the 
mission, the chaotic methods are at least on par or demonstrate 
significantly better results. During the second half of the 
mission, linear methods can catch up and compensate the 
weak start, while all methods tend to stagnate to the mission 
end (see Figure 12 and Figure 13). 

The initial difficulties of the linear methods can be 
explained by the applied search patterns. Whether logically 
planned or linearly autonomously searched, the AS always 
start at a corner or edge of a region and work their way forward 
in a clearly structured manner. If targets are not present at the 
edges of the area the linear approach may take longer to 
achieve success. The chaotic procedures cover the area more 
evenly / widely distributed and thus, can show faster results in 
the first halve. In particular, the multi target method has an 
advantage over the purely random or linear methods, as the 

regions with an expected higher density of targets are 
prioritized. 

 
Figure 12.  Comparison of object detection for five AS. 

 

 
Figure 13.  Comparison of Object Detection for Eight AS. 

In the second half of the mission, this advantage is 
partially lost, which can also be explained by the multiple 
searched areas and the non-footprint-optimized path. As a 
result, significantly less area is observed (see also Figure 12 
and Figure 13), which makes it more difficult for the search 
method to find the last targets. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have presented and investigated several 
methods for team-based area reconnaissance. We have 
described how these methods are implemented in our MbO 
demonstrator to allow a team of vehicles (simulated or real) to 
cooperatively work on a joint mission. 

Encoding a Multi-Layered AIL via varying feature 
deployment in the lower AI layer of the MbO demonstrator, 
based on the planning data provided by the higher AI control 
cycles, have been described and how the ML-AIL is used to 
generate action recommendations and consolidated decisions 
to control the physical vehicle. Since the translation of a 
mission objective into feature distribution is the essential step 
to enable efficient and effective mission delivery by multiple 
vehicles, we simulated procedures for cooperative area 
reconnaissance and search for hidden objects in teams of 

134Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications



vehicles in the MbO demonstrator. This showed that, as 
expected, the proposed chaotic procedures perform less 
optimal in terms of RF compared to preplanned linear or 
autonomous linear procedures. At the same time, however, 
they offer advantages in terms of hidden object search, whilst 
the benefits of apparently chaotic movement profiles with 
regard to the unpredictability of the movement is not 
measurable in this context. Nevertheless, we expect a 
significantly improved search performance, especially in the 
case of non-cooperative evasive targets. As result the 
advantages of non-deterministic methods prevail the 
disadvantages in comparison to linear methods in applications 
that require an unpredictable behavior. 

At the same time, the experiments have shown potential 
for future improvement of the non-deterministic methods. 
Especially, if the higher AI is qualified via advanced planning 
algorithms to provide an improved feature distribution and 
parameterization in the context of mission objectives and 
environmental data, we expect a performance increase that 
further reduces the deviation to the linear profiles. Increased 
cross-correlation of layers of the ML-AFF in the lower AI 
cycle, especially to account for sensor footprint and team 
behavior are additional promising candidates for further 
development and performance enhancement. 
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