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Abstract—This paper leverages historical fishing data in con-
junction with machine learning algorithms to uncover fishing
patterns and more precisely forecast fishing catches. The intro-
duction of Machine Learning techniques into the fishing industry
holds significant promise for enhancing operational performance.
Such methodologies can promote great efficiency and enhance
the decision-making processes, optimizing factors such as fishing
effort, location, and catch rates. Preliminary results illustrate the
efficacy of three distinct machine learning algorithms: Linear
Regression, RANdom SAmple Consensus (RANSAC), and Light
Gradient Boosting Machine (LightGBM). Throughout our exper-
imentation, it became evident that the modeling performance is
profoundly influenced by the sampling strategy. This influence
likely stems from inherent noise in the data, which degrades
overall performance. Our findings offer insights into the effective
employment of machine learning algorithms for data selection
and modeling.

Index Terms—Machine learning, big data, fishing catch, fore-
cast.

I. INTRODUCTION

Machine Learning (ML) has emerged as a valuable tool for
processing and analyzing big data [1]. Moreover, it proves
to be an effective and efficient approach in tackling the key
methodological issues and challenges encountered in modeling
and analyzing various datasets in resource management. The
integration of big data and Machine Learning can help to
improve fisheries management, optimize resource allocation,
enhance productivity and profitability, and overall sustain-
ability. The machine learning can help fishers optimize their
fishing efforts by analyzing historical catch data along with
environmental factors such as ocean temperature, salinity, etc.

Norway has one of the world richest fishing grounds, mak-
ing Norway the largest fishing country in Europe. Fishery has
been an important contributor to the Norwegian Economy after
the petroleum industry. Fish catches are affected by a multitude
of factors including fishing effort, location, types of fishing
vessels, socio-economic conditions and environmental vari-
ables. Climate is changing and the effects of climate change

have been observed, including higher temperature, shrink-
ing glaciers, altered precipitation patterns, frequent extreme
weather, sea level rise and more acidic oceans. These changes
are happening faster in the pole areas than the rest of the world.
This climate changes have shifted the productivity of marine
fisheries resources and habitats. Combing extensive data and
ML algorithms to explore fishing patterns and forecast fish
catches is a crucial aspect of aquatic research because of its
relevance to establishing effective fishery management and
resource allocation systems. In particular, it empowers fishers
to make better decisions by optimizing their fishing strategies,
thereby maximizing fishing productivity and profitability while
reducing operational costs in a dynamic environment [2].

Research on fishery catch forecasting has considered both
long-term catch forecasting on a scale of months or years and
short-term forecasting on a scale of days. The fishery industry
has reported challenges, particularly in short-term catch data,
when faced with limitations of available data. Due to work cy-
cles or actual work conditions, fishery practitioners responsible
for catch data often do not have complete and detailed records,
leading to a lack of real data and inaccuracies [3]. In a fisheries
management context, a more detailed information on the catch
composition including type of the fish at the actual haul may
allow for better adaptations of management measures. In other
words, at the scale of the individual fishing operation (with
each haul or each trip considered), a better information on the
type and catch distributions of target species may be learnt
[6] [7], which not only helps spatial avoidance but could
also increase the profit of fishing. Therefore, We investigate
each catching behavior from the haul and attempt to study
the fish catch in the long-term. We propose machine learning
approaches into modelling the fish catch w.r.t. fishing location,
vessel and gear type, the time of catch and other external
factors.

The main objective of the paper is to use ML to explore fish-
ing patterns and forecast fish catches. Particularly, we investi-
gate the application of ML methods for enhancing fish catch
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forecasting. The structure of the paper is as follows. Section II
provides an overview of the most recent developments in the
field, highlighting the growing importance of ML techniques
in addressing fish catch forecasting challenges. In Section
III, we introduce our proposed ML methods and compare
them with existing approaches, and then we demonstrate their
performance in Section IV. In Section V, we summarize our
findings and outline the future directions of our research.

II. RALATED WORK

While Machine Learning (ML) and Articifial Intelligence
(AI) have seen widespred application in various fields, their
use in natural resource management, especially in fisheries,
remains relative limited. Studies such as that of Zhang et
al. [3] applied ML algorithms and ensemble learning model
to predict the location of albacore tuna fishing in the South
Pacific, revealing that the ensemble learning model achieves
higher accuracy estimates than machine learning models. Sim-
ilarly, L. F. Rahman et al. [15] developed an ML approach
to predict marine capture fisheries and aquaculture produc-
tion in Malaysia based on past production data and climate
variables, highlighting the better performance of ensemble
ML model compared to the single ML model. Compared
to advancements seen in machine learning application in
other fields such as computer vision and healthcare systems,
the progress in employing machine learning algorithms for
predicting fish catches remains relatively nascent. Nonetheless,
nmerous emerging research avenues in fisheries show promise.
Notable attempts, like those in [8] [9] and [10], endeavor
to automatically predict fish catches using past catches and
meteorological information. Anothe study, [11] emphasized
that prediction errors should be evaluated in a manner that goes
beyond mere consideration of absolute error, regardless of the
predicted value. To illustrate this, it is important to recognize
that an error of 100 kg in a predicted fish catch of 5000 kg
should not be treated equivalently to the same error occurring
in a prediction of 500 kg. This perspective does not align with
fishers’ practical understanding As a result, it is suggested that
evaluation metrics should be tailored to optimize prediction
errors in a way that aligns with the fishers’ intuition and real-
world experience.

Research exploring the impact of climate change on fish
catch remains limited, but has seen recent advances. For
instance, O. S. Kjesbu et al. [4] examined the effect of climate
change on the migration patters of North Pacific spiny dog-
fish, employing a ML approach. additionally, Wikstrom [14]
evaluated supervised ML algorithms to predict recreational
fishing success and found that random forest algorithm proved
the most effective in the experiments and a combination of
variables contributes optimal predictions.

III. METHOD

A. Problem Formulation

Given data D = (x1, y1), (x2, y2)...(xi, yi), ...(xM , yM ,
where M is the number of the collected data. Each xi is the n-
dimensional vector, which represents the relative attributes per

haul per catch, for example, start position width, start position
length, sea depth start (meters), duration - (minutes), stop
position width, stop position length, sea depth stop (meters),
draw distance (meters), species, round weight, etc. There are
43 attributes in our studies data after some cleaning. From
the data set, we estimated the model parameter vector θ
appropriately expressed as:

y = f(x; θ) (1)

Our objective is to establish the estimation of Y , represented
as Ŷ , by modelling of X , so that it satisfies:

min∥ŷi − yi∥2, where ŷi = f(xi; θ) (2)

B. Proposed Pipeline
We have applied three machine learning methods to imple-

ment the modelling f in Eq. 2 and compared their performance
on cod catch forecasting.

1) Linear Regression
Linear Regression learns a model by minimizing the
objective function in Eq. 2:

f(x; θ) = θixi + b (3)

Equivalently, the objective is to minimize the loss in the
equation below.

(θ∗, b∗) = argminθ,b

M∑
i=1

(yi − θxi − b)2 (4)

2) RANSAC
RANSAC algorithm normally performs the following
steps [12].

Step1 Selection of samples randomly from D and have a
sample set S.

Step2 Model estimation by using S.
Step3 Counting the number of data with estimation error

within parameter ϵ.
Step4 Terminate the algorithm when the number of data

satisfying Step3 exceeds a threshold, and model
is built using those data. Otherwise, iterate the
procedure from Step1.

3) LightGBM
LightGBM is based on Gradient Boosting Decision
Tree (GBDT) [13], which is a widely-used machine
learning algorithm, due to its efficiency, accuracy, and
interpretability. However, GBDT is facing challenges,
especially in the tradeoff between accuracy and effi-
ciency, due to the reason that conventional implemen-
tations of GBDT need to scan all the data instances to
estimate the information gain of all the possible split
points. Therefore, their computational complexities will
be proportional to both the number of features and the
number of instances. To address such limitation, Light-
GBM was proposed by applying two new techniques
called Gradient-based One-Side Sampling (GOSS) and
Exclusive Feature Bundling (EFB), see more details in
[5].
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Fig. 1: Catch by depth.

Fig. 2: Catch by vessel length class.

Fig. 3: Catch with registered vessels by county.

Fig. 4: Catch by the harvesting month.

IV. EXPERIMENTAL RESULTS

A. Dataset Description

We used cod fishery as a case study to test the modeling
and prediction. The historical fishing data were extracted from
the Vessel Monitoring System (VMS) from the Norwegian
Fisheries Directorate, ranging from 2000 - 2022. The dataset
compromises haul time, draw distance, fishing location (width,
length, depth), catch weight, and vessel characteristics (e.g.,
length, tonnage, engine power, etc.). We visualized, explored,
and analyzed spatial relationships in ArcGIS Pro [16] to
identify and remove records with unreliable position (i.e.,
vessel positions and/or fishing activities on land). The ein-
vironmental variables included two oceanographic variables:
Sea Surface Temperature (SST) and sea surface CHlorophyll
a concentration (CHLa), three bathymetric and/or topographic
variables: depth, slope and terrain ruggedness (rugosity), and
two distance related variables: distance to coast and distance
to nearest port were used in this study. SST and CHLa were
derived from Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite measurements. The level 3 (4 km reso-
lution) monthly average SST data for both Aqua and Terra
satellites from the NASA Ocean Color [17] were downloaded.
Observations from the four temperature images for each month
(both Terra and Aqua, day – 10:30, 13:30, respectively – and
night – 22:30, 01:30 respectively) were combined to calculate
the monthly mean SST. Similarly, MODIS/Aqua monthly level
3 data of chlorophyll concentration were obtained from the
NASA [17], Goddard Earth Science [18], and Distributed
Active Archive Center [19]. The General Bathymetric Chart
of the Oceans (GEBCO) gridded bathymetric data were sued.
Slope was calculated from the depth data (GBECO 2023
grid). Rugosity, a measure of terrain complexity or the seabed
roughness, was derived using the Benthic Terrain Modeler
(BTM version 3.0). It is woth noting that seabed roughness
is strongly correlated to biodiversity in marine environments.
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Fig. 5: Predictions of Fish catches with Regression/RANSAC/LightGBM algorithm.

Fig. 6: Fish catch performance with Linear Regression.

B. Data visualization

We conducted an in-depth analysis of the data to determine
the correlation between catch weight (kg) and various influenc-

Fig. 7: Fish catch performance with RANSAC algorithm.

ing factors. Initially, we investigated the relationship between
locations and fish capture rates. The correlation between catch
and depth is illustrated in Fig. 1, and the relationship between
catch and vessel length class can be observed in Fig. 2. Further
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insights related to catch and registered vessels by county are
presented in Fig. 3. Then, the monthly total catch is depicted
in Fig. 4 (calculated by total weight in thousand tons). The
fish catch shows a strong correlation with factors, such as the
county where the vessel is registered, the traveling distance,
and the fishing month.

C. Performance of machine learning algorithms without pa-
rameter tuning

To visualize the forecasting of fish catch based on different
modeling approaches, refer to the accompanying figures. Fig. 6
illustrates the performance of a linear regression model, while
Fig. 7 depicts the performance using the RANSAC algorithm.
A comparative assessment of both figures clearly indicates that
RANSAC generally demonstrates superior performance over
linear regression. The x-axis represents sampled data points.
Additionally, it should be noted that the initial 100 data points
in Fig. 6 correspond exactly to the first 100 data points in
Fig. 7. These outcomes may be due to considerable noise
in the training data, which adversely impacts the forecasting
accuracy. Employing RANSAC allows for a more selective
use of data for training, potentially mitigating this issue.

The comparative analysis in Fig. 5 shows that LightGBM
outperforms the other two models. Due to misreporting data
per trip, or per vessel often contains noise, which can sub-
stantially degrade model performance. LightGBM’s data sam-
pling strategy results in improved forecasting accuracy and
performance. In gradient boosting, data points with larger
gradients (errors) are crucial for calculating information gain.
The Gradient-based One-Side Sampling (GOSS) technique
in LightGBM retains these critical data points and conducts
random sampling on the remaining data.

V. CONCLUSION AND FUTURE WORK

We have applied three machine learning methods on histor-
ical fishing data in this paper to tackle a fish catch forecasting
problem. Specifically, we conducted preliminary analyses to
showcase the effectiveness of linear regression, RANSAC,
and LightGBM, comparing their performances in fish catch
predictions. Our current method still exhibits limitations in
terms of model performance, particularly when dealing with
data that contains a significant amount of noise. Throughout
our experiments, it became evident that the influence of the
sampling strategy should not be underestimated. Therefore,
a more robust fish catch forecasting model that integrates
advanced data sampling techniques will be one of our future
research directions.

As our research evolves, several promising directions have
captured our attention. A notable focus is the transformation
of haul-level data into time series formats, targeting more
vessel-focused or trajectory-driven models. Furthermore, we
will delve into the influence of psychological factors and
introduce a novel metric for assessing the accuracy of fish
catch forecasting. This is especially crucial since existing
error-based metrics may not fully integrate external variables
and the perspectives of the fishermen.
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