
Model-supported Software Creation:
Towards Holistic Model-driven Software Engineering

Hans-Werner Sehring
Department of Computer Science

Nordakademie
Elmshorn, Germany

e-mail: hans-werner.sehring@nordakademie.de

Abstract—Software typically is developed based on descrip-
tions of a relevant section of the real world, the problem as well
as its solution. Methodologies and tools have evolved to create
and manage such descriptions, and to finally implement software
as specified. Model-Driven Software Engineering (MDSE) is one
approach of model management. A series of models that build
upon each other by means of model transformation is used to
describe a software solution in increasing detail. While MDSE
gained a fair amount of attention, it is not equally successful in
all application domains. We claim that one reason for this is that
MDSE is well-suited for formal domains and computation-centric
solutions. But it is not equally suited for software development
processes with a high degree of creativity involved, like, for
example, solutions with a focus on human-machine interaction or
content-centric applications. One reason is the fact that properties
of such software are designed by experts of certain domains who
use specific notations and tools. In this paper, we discuss an
approach for the creation of software that requires models that
are either defined in specific notations used by experts or that do
not allow formalized model transformations. The approach relies
on artifacts created using a heterogeneous set of languages. These
artifacts are described by formal models that add semantics and
that relate the informal artifacts. For such an approach, we coin
the term “model-supported software creation” in this paper.

Keywords—model-driven software engineering; model-driven ar-
chitecture; software engineering; software architecture

I. INTRODUCTION

Software is, in most of the cases, used to represent and
solve real-world problems. In order to be able to do so, a
relevant section of the real world needs to be captured, and
the problem as well as its solution need to be described in
sufficient detail. This includes defined requirements, test cases,
conceptual models, domain models, etc.

Methodologies and tools have evolved that capture problems
and solutions, model the real world with respect to the problem
at hand, and finally allow implementing software as specified.

The various description artifacts involved in software engi-
neering processes call for means to manage these descriptions.
In particular, they have to be related to each other to reach
goals like, for example, those of coherence and traceability.

Classical software engineering has a typical sequence of
an analysis phase, resulting in requirements, design phases,
resulting in solution designs, and implementation phases, re-
sulting in working software. In agile approaches, these phases
may be very condensed. The artifacts (descriptions, models,
code, etc.) created in each phase build upon each other. Still,

they are formally unrelated. Those artifacts contributing to a
phase consider the artifacts from previous phases, though.

Model-Driven Software Engineering (MDSE) or Model-
Driven Software Development (MDSD) is one approach to
a more formal management of artifacts. A series of models
that build upon each other is used to describe a software
solution in increasing detail. Typically, the models are refined
or transformed up to the point where actual running software
can be generated out of the most precise model.

While MDSE gained a fair amount of attention, it is not
equally successful in all application domains. We claim that
one reason is that MDSE is well-suited for formal domains
and computation-centric solutions. But is is not equally suited
for software development processes with a high degree of
creativity involved. For example, while it is feasible to model
technical domains, for example, involving mathematics and
physics, it is less common to formally model solutions with
a focus on creative and subjective aspects. Human-machine
interaction (online shops, for example) or content-centric ap-
plications (personalized marketing websites, for example) are
examples found in typical customer-facing commerce systems.

For models that experts require in specific notations, and
for ones that do not allow formalized model transformations,
a different approach is discussed in this paper. It relies on
models created using a heterogeneous set of languages that
are described by formal models that add semantics and that
relate the informal artifacts.

We introduce the name Model-Supported Software Cre-
ation (MSSC) in this paper to emphasize the fact that (formal)
models are supporting a creative process, but are not the
central resource of the process, and to describe the wider range
of activities involved.

Section II of this paper revisits some approaches to MDSE.
Shortcomings of simple MDSE applications are examined in
Section III. Requirements to a holistic MSSC approach are
listed in Section IV. Section V presents the Minimalistic Meta
Modeling Language (M³L) and how it is applied to holistic
MSSC. We conclude the paper in Section VI.

II. MODEL-DRIVEN SOFTWARE ENGINEERING

Various approaches to software generation from models are
discussed. In this section, we briefly revisit some of these.

113Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

A. Model-driven Architecture

The Model-Driven Architecture (MDA) [1] of the Object
Management Group (OMG) is an early and well received pro-
posal for an MDSE approach. It assumes models to be created
on (originally) three levels of abstraction. A Computation-
Independent Model (CIM; this term is not used in current
specifications) describes the software to be developed from
the perspective of the subject domain, as domain concepts
or requirements. It typically is an informal description, for
example, done in natural language. A first formal model is a
Platform-Independent Model (PIM), formulated in the MDA’s
Meta Object Facility (MOF). It is transformed into a Platform-
Specific Model (PSM) that in turn is used to generate a working
implementation.

B. Software Generation

Software generation has gained particular attention since
this step in an MDSE process can well be formalized.

a) Metaprogramming: Programs that generate programs
are an obvious means to software generation. The development
of such generators tends to be costly, but results may be
targeted optimally to the application at hand.

b) Templates: Code with repeating structures can be for-
mulated as templates with parameters for the variations of that
uniform code. For Concept-Oriented Content Management [2],
for example, code for CRUD operations is generated. This
code does not differ in functionality, but in the data types
used for domain entities.

c) Generative AI: The currently emerging generative AI
approaches based on large languages models provide another
means to generate code from descriptions. Based on a library
of samples, they allow interactively generating code from less
formal descriptions, in particular natural language expressions.

C. Domain-specific Languages

Languages can be associated with metamodels [3]. This
means that a model of a software application can be expressed
by a language for a subject domain. Such a language is called
a Domain-Specific Language (DSL).

The software generation process is simplified to defining an
application using a DSL, allowing to define the application in
terms of the subject domain. There is a trade-off regarding the
degree of abstraction: The more domain knowledge is put into
the DSL, the simpler it is to define an application. But a more
specialized DSL also means that the range of application that
can be defined becomes more limited.

D. Generic Software

The aim of MDSD and MSSC is custom software that is
tailored to solve one specific problem. Generic software, on
the other hand, encapsulates some domain knowledge that is
applicable in a set of scenarios.

The concrete application is defined by setting parameters of
the generic software. The application areas of generic software
are defined by the degree to which domain knowledge was
generalized and parameterized.

There are varying degrees of parameterization. This relates
to so-called low code and no code approaches. These are also
based on a generalized software that maps a section of the
real world, and they allow software to be customized within
the limits of the chosen section.

III. MDSE IN PRACTICE

MDSE approaches are not equally successful in all appli-
cation domains [4]. We see two main obstacles to applying
MDSE in some areas: heterogeneous modeling artifacts and
the stages of a software development that are covered.

A. Heterogeneous Modeling Artifacts

MDSE typically is based on a modeling framework that
supports all stages of a software development process. This
requires that model artifacts on every stage can be expressed in
a language that is supported by that framework. In many cases,
it is even required that all models involved are formulated
within the same metamodel.

Some application domains call for specific kinds of artifacts
that rely on certain established notations and cannot be forced
into a form given by a central metamodel. For such application
domains, the properties of software are designed by experts of
certain fields who use specific notations and tools. One exam-
ple of such an application domain is digital communication
like marketing and sales communication over a website.

In the retail sector, for example, we note that customers
interact with retail companies at different touch points, interact
on changing communication channels, use different payment
methods, are subject to different legal and tax systems, etc.
In such scenarios, a series of experts needs to gather (a part
of) the domain knowledge on one modeling stage in order to
communicate it to experts of the next stage (domain expert to
requirements engineers, these in turn to architects as well as
test engineers, architects to developers, and so on).

User experience designers and user interfaces designers, for
example, work with artifacts like personas, customer journeys,
wireframes, style guides, click dummies, prototypes, etc. Such
artifacts support creative processes. They are adequate means
to communicate with business experts, and they are used by
programmers to build usable software.

A pure MDSE approach of generating such artifacts from
models is not adequate for the work of experts and their clients.
It might be hindering the creative process.

B. Coverage of all Project Stages

Modeling starts at the point where there is consensus about
the kind of software to be developed. In fact, projects start at an
earlier stage at which a (business) need arises. In a commercial
setting, this may be, for example, increased revenue, a certain
number of new customers, or customer satisfaction. A solution
approach is not given. At this stage, it is not even decided that
new or improved software will be part of the solution.

The same holds for project stages after software generation,
namely roll-out, operations, and support.

114Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

TABLE I. STAGES OF SOFTWARE CREATION

Creation stage Model entities on the stage

(Business) Goals KPIs
OKRs

Subject domain model

Information architecture
Interaction design
Wireframes
Processes, data flows

Requirements

Solution hypothesis
Functional ~
Non-function ~
Customer journeys
Touch points

Solution architecture
Interfaces
High-level architecture
Functional mapping

Software architecture(s)

Components
communication between those components
interfaces to the environment
constraints of the resulting software system
requirements met by the architecture
rationale behind architecture decisions

Code
Metaprogramming
Software generators
Domain-specific languages

Systems architecture Infrastructure definition
Automated deployments

Operations Service level agreement
Monitoring

IV. HOLISTIC MODEL-DRIVEN SOFTWARE CREATION

In Section III, we pointed out two shortcomings with basic
MDSE approaches: Firstly, they do not consider early project
stages that precede software development. Secondly, they are
not suited to utilize heterogeneous models that are formulated
in different languages, are not all equally formal, etc.

As noted in the introduction section, we use the term MSSC
to describe a holistic approach to software creation that in
contrast captures all aspects of a project, not only the software
development phases, and that can cope with heterogeneous and
informal modeling artifacts.

In the following, we point out the modeling stages we con-
sider relevant for software creation processes, and we outline
typical model transformations of model-based development
processes.

A. Modeling Stages

Table I gives an overview over typical stages of software
creation and some examples of artifacts they deal with.

a) Business Goals: A project starts with the identifica-
tion of a problem to be solved. In many cases, the problem
does not lie within the computing domain. Accordingly, the
desired solution is typically formulated by means of (business)
goals that shall be reached (see Section III-B).

Goals have to be measurable in order to judge the success
of a project. Key Performance Indicators (KPIs) or Objectives
and Key Results (OKRs) are often used to define target values
that can be measured. The values that are measured often lie in
the business domain and have to be determined by controlling
means on the business level. The success of a software solution
that helps reaching the goal is then proven implicitly.

Since formal goals are set up as a first abstraction of the
business goals to be reached, they are subjective and depend
on a stakeholder who defines them. Approaches like i* [5] aim
to model this subjectivity.

b) Subject Domain Model: The later stages of software
design require a certain understanding of the problem domain,
for example, typical concepts of the area the software is to be
applied in. The requirements relate to the domain concepts.

Modeling means abstracting from the domain that is rep-
resented. Therefore, domain concepts cover a section of the
subject domain that is relevant for the solution.

In the MDA approach, the CIM may include the stage of
domain modeling.

c) Requirements: Requirements characterize the proper-
ties of a software solution. This means that this stage only is
entered if it is decided that software helps reaching the defined
goals. It also means that a first software solution hypothesis has
been recognized and is being detailed through requirements.

There is a wide range of requirements: functional require-
ments and the diverse kinds of non-functional requirements.
Additionally, constraints that limit the solution space belong
to this stage.

Other entities of this modeling stage depend on the problem
at hand. For example, conceptions of interactive applications
for digital communication typically begin by identifying per-
sonas as role models of target groups, determine the customer
journeys as the sequence of interactions users have at dif-
ferent touch points, before finally deriving artifacts like the
information architecture. To design user interfaces, artifacts
like wireframes, style guides, and click dummies are used to
help defining subject domain concepts and requirements.

There are various tools to help managing functional require-
ments. Deductive databases can help validating and completing
requirements [6].

d) Solution Architecture: Solution architecture is the set
of high-level definitions that relate subject domain concepts to
technical solutions.

As a high-level architecture, it does not prescribe an actual
implementation in full detail. It may contain the choice for
certain implementation technologies and products, though, in
particular if they are crucial to meeting some requirements or
to conform to the constraints.

Based on the chosen components, a solution architecture
defines the interfaces required to implement the processes and
data flows identified as requirements. For example, in a digital
communication like an e-commerce website, the information
demand at every touch point is derived from the customer
journeys, and data flows are designed accordingly.

e) Software Architecture: The detailed design of the
software to be developed is part of the software architecture. It
details definitions from the solution architecture up to the point
where they are concrete enough to guide the coding stage.

Shaw and Garlan [7] point out that there are different
approaches to the different perspectives on software. In a
structural approach, the software architecture is composed of
components, communication between the components, product

115Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

configurations, references to the requirements and constraints
from the requirements stage, boundaries within which the
software is designed to work as specified, the rationale of
design decisions, and design alternatives that were considered.

Many other architecture definitions contain similar modeling
entities. Architectural Description Languages (ADLs) allow
capturing these aspects.

Shaw and Garlan point out that besides structural models,
there are also framework models, dynamic models, and process
models. The latter, for example, focus on the dynamic aspects
of the software.

f) Code: When architecture models are precise enough,
code can be generated out of them using one of the approaches
from Section II-B.

In practice, coding is a manual task in most cases. The
architecture definition serves as a guideline to programming,
documentation, and quality assurance. Detailed design deci-
sions are added in the coding stage.

g) Systems Architecture: The systems architecture de-
scribes how software is deployed and set up. It defines
computing and communication infrastructure.

Deployment diagrams describe how software is packaged
and distributed on the infrastructure. Infrastructure and net-
work diagrams illustrate the technical setup.

Typically, infrastructure is virtualized and created automat-
ically from scripts in the Infrastructure as Code approaches.
This allows continuous deployments of many software compo-
nents, for example, in contemporary composable architectures.

h) Operations: Part of the requirements are typically for-
mulated towards operations. Service-Level Agreements (SLAs)
define measurable goals to systems operation. Fulfillment of
these goals is controlled by means of monitoring and timely
maintenance in the case of incidents. To this end, monitoring
and logging concepts connect development and operations.

B. Model Refinement and Transformations

An MDSE process relies on a series of models where
models are created from existing models by means of model
transformation. A model on one stage is created based on
the input of models of earlier stages or by refining models
from the same stage. There are three typical kinds of model
transformations.

Figure 1a shows the basic structure of model transforma-
tions on one stage and between stages. Figures 1b to 1g show
examples of typical model transformations between different
stages.

a) Model Combination: Domains often rely on base
domains. For example, business tasks rely on mathematics.
Accordingly, models are defined by integrating (existing)
models of the base domains. This way, models are reused.

b) Model Refinement: Within one stage, models are
refined to more concrete models of the same stage. This way,
the work in each stage starts with first, coarse-grained models,
that are then transformed into more concrete models. Different
refinements of one model may cover different perspectives
on the (software) solution. The process of refining involves

Model on layer n

Model on layer n+1

Model refinement
Delta Models

Model creation
Selection
Prioritization

(a) General model transformations

(Business)
Goals

Requirements

Domain
Model

Goal selection
Goal quantification

Solution hypothesis

Subject domain section
Conceptualization

Abstraction

(b) Model transforma-
tions for subject domain
model

Solution
Architecture

Domain
Model

Component design
General interfaces

Processes
Data flows

Requirements

Product selection
Service design

Systems architecture

(c) Model transforma-
tions for solution ar-
chitecture

Operations

Systems
Architecture

Infrastructure
SLAs

Monitoing points

(d) Model transforma-
tions for software archi-
tecture

Code

Software
Architecture

Language selection
Software design

Choice of libraries

(e) Model transforma-
tions for code genera-
tion

Systems
Architecture

Solution
Architecture

Software
Architecture

Communication paths

Runtime environments
Resource demand

Requirements

Non-functional requirements

(f) Model transformations
for system architecture

Operations

System
Architecture

Infrastructure
SLAs

Monitoing points

(g) Model transforma-
tions for operations

Figure 1. Different kinds of model transformations.

decision making. Decisions can be documented by explicitly
stating delta models that explicitly represent the refinements.

c) Model Creation from Existing Models: When process-
ing from one stage to another, initial models are required for
the subsequent stage that is entered. These models shall be
related to the most concrete models of the preceding stage. In
some cases, models can be transformed when proceeding to a
subsequent stage. In this case, the transformation establishes
the relationship. If new models have to be created, the model
elements should be explicitly linked to the elements from
models on which they are based. For example, Shaw [7]
demands that a software architecture description refers to
requirements.

116Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

V. AN MSSC APPROACH WITH THE M³L
An MSSC approach includes the creation and utilization of

diverse artifacts. Each of them serves a specific purpose, and
each is maintained by experts using established tools. Though
the artifacts from different stages of a software creation
process are related, they typically cannot be expressed using
the same language. They differ, for example, in the level of
detail, the degree to which they follow a formalism, and the
syntactic representation targeted at different audiences.

When, in contrast to MDSE, no single modeling language
can be used for a universal model, an overarching modeling
framework is required for model coherence [8]. Such a frame-
work cannot host the artifacts themselves. It shall, however,
put the artifacts in context and relate them to each other.

Relationships between artifacts clarify their contribution to
the software creation process. They explicate the provenance
of models, they put models in context, and they are the basis
for traceability and, therefore, the ability to cope with change.

In this paper, we propose using the Minimalistic Modeling
Language, M³L (pronounced “mel”) [9], as the modeling
framework required for MSSC.

A. A Brief Introduction to the M³L

The M³L is a meta modeling language. As such, it can be
employed for models for different kinds of applications.

In this section, we give a brief overview over the syntax of
the language. Sample applications in the subsequent sections
will demonstrate its use.

A statement A defines or references a concept named A.
The M³L does not distinguish definitions from references. If
A does not exist, it is defined.

Concepts can be refined with “is a”: A is a C. Using the
clause “is the” defines a concept to be the only specialization
of its base concept.

Concepts can be put in context. A statement A { B }
defines B in the context of A. B is said to be the content
of A. References are valid in the context they are defined in
and in all subcontexts. This means, that statements A { B }
and C make B and C visible in the context of A, but B is not
part of the content of C or of the topmost context.

Concepts can be defined differently in different contexts. For
example, the statements A { B is a C } and B define B
as a specialization of C in the context of A, but without base
concept in the topmost context.

A concept in a nested context is referenced as B from A.
Semantic rules can be defined on concepts, denoted by “|=”.

A semantic rule references another concept that is delivered
when a concept with a semantic rule is referenced. Like for any
other reference, a non-existing concept is created on demand.

Context, specializations, and semantic rules are employed
for concept evaluation. A concept evaluates to the result of its
syntactic rule, if defined, or to its narrowing. A concept B is
a narrowing of a concept A iff

• A evaluates to B through specializations or semantic rules,
and

• the whole content of A narrows down to content of B.

To evaluate a concept, syntactic rules and narrowing are
applied repeatedly.

With this evaluation, for example, a conditional statement
can be defined as (given Statement, Boolean, True, and False):
IfThenElse is a Statement {
Condition is a Boolean
ThenStmt is a Statement
ElseStmt is a Statement }

IfTrue is an IfThenElse {
True is the Condition } |= ThenStmt

IfFalse is an IfThenElse {
False is the Condition } |= ElseStmt

Concepts can be marshalled/unmarshalled as text by syntac-
tic rules, denoted by “|-”. A syntactic rule names a sequence
of concepts whose representations are concatenated. A concept
without a syntactic rule is represented by its name. Syntactic
rules are used to represent a concept as a string as well as to
create a concept from a string.

For example, rules for language-dependent code generation:
Java{IfThenElse |- "if" "(" Condition ")"

ThenStmt FalseStmt .}

B. Dimensions of Model Relationships

The three model relationships named in Section IV-B can be
expressed with the M³L. This way, models are put in context.
The following examples outline basic modeling approaches for
the three relationships.

a) Combining models: For example, on the layer of
domain models, a model
ProductDescriptions is a DomainModel {

ProductData
PaymentMethods from Commerce
PackagingInformation from Logistics }

combines parts of product details that come from different spe-
cialized models (assuming that concepts for models Commerce
and Logistics are given).

Likewise, on the layer of solution architecture, a model
OurInfoSys is a PlatformIndependentModel {

AppServer from SWComponents
DBMS from SWComponents
DataSchema from DBModeling
WebServer from SWComponents
WebPage from WebDesign }

combines technical components from different technical de-
scriptions.

b) Refining models: One model can be created as a
refinement of another. Concepts in the content of the refined
model are inherited and can be refined further.

An example from the solution architecture layer is:
OurInfoSysConcept is an OurInfoSys {

RDBMS from SWComponents is the DBMS
ProductDataSchema
is an RDBSchema from DBModeling,

the DataSchema
WebServer from SWComponents

is a ServletEngine from Java }

117Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

In this example, two aspects of the conceptual model are
refined: From a technical perspective, the DBMS is more
concretely specified to be a relational DBMS (RDBMS), and
the WebServer to be implemented as a Java Servlet engine
(ServletEngine). Regarding the domain model, it is defined
that the data schema is defined to store products (Product-
DataSchema).

c) Creating models in subsequent stage: A model can be
explicitly created as a transformation of another model using
a semantic rule. In the example of the information system:
OurInfoSysConcept |= OurInfoSysDataLayer {
RDBMS
ProductDataSchema {
ProductsTable is a Table from DBModeling

} }

RDMBS from the source model OurInfoSysConcept is re-
introduced in the transformed model. The database schema
ProductDataSchema is additionally redefined by naming one
table. WebServer from OurInfoSysConcept is not considered
in the transformed model, since it only models the data layer
of the information system.

C. Software Creation with the M³L

The models in MDSE ultimately reach the stage of gen-
erating code. The M³L allows creating code using syntactical
rules that can be added to models with sufficient concreteness.

Using the example from above, part of the information
system based on a relational database can be defined to create
a relational schema by SQL statements as follows:
OurInfoSysDBIm is an OurInfoSysDataLayer {
ProductDataSchema {
ProductsTable |- "PRODUCTS("Columns")" .
} |- "CREATE TABLE " ProductsTable . }

By defining the syntactical rules in the context of an
implementation model, different code generation schemes can
be defined for one software model.

VI. SUMMARY AND OUTLOOK

This section sums up this paper and outlines future work.

A. Summary

In this paper, we revisit MDSE approaches and conclude
that they are successful in certain application areas, while they
are not established in many other areas. In particular, in digital
communication, for example, in the construction of commerce
or marketing websites or mobiles apps, they are not used in
practice. One reason for this is a mismatch between established
means of conceptual work and formal models.

Under the name of Model-Supported Software Cre-
ation (MSSC) we study requirements to models for such kind
of applications. As early results, MDSE approaches cover the
stages of software creation well, but they do not cover early
inception phases. We claim that models used in MSSC need
to be able to cope with less formalism and preciseness as
required by typical MDSE approaches. Instead, they must deal
with heterogeneity and subjectivity.

We outline model creation with the M³L as a step towards
MSSC. It allows providing descriptive models of the artifacts
used in practical approaches and relating them as to drive
holistic software creation processes.

B. Outlook

We are at the beginning of our investigations towards
MSSC. Consequently, there are numerous questions to be
answered in the future. We highlight two of them.

There are numerous approaches to generate code from
models, and code written in a formal language can be managed
in a structured way. The syntactic rules of the M³L, for
example, allow this. To include artifacts from other stages into
the modeling process (like requirements or design documents),
abstractions are needed to reference, include, or generate parts
of artifacts the same way it is possible for code.

Testing is typically not found in model-based processes.
Though there may be no need to test generated software, a kind
of testing is required, nevertheless. This may include model
checking on each stage of the process and analysis of models
that are the result of model transformations.

In MSSC processes, success should ultimately be judged
based on the degree to which business goals have been
reached. To this end, they must be formalized, and effects
of the running software need to be measured.

ACKNOWLEDGMENT

Numerous discussions on topics of modeling and soft-
ware engineering led with colleagues, partners, and clients
are highly appreciated. The author thanks the Nordakademie
University of Applied Sciences for funding the publication of
this work.

REFERENCES

[1] Object Management Group. Model Driven Architecture (MDA), MDA
Guide rev. 2.0, OMG Document ormsc/2014-06-01, [Online] Available
from: https://www.omg.org/cgi-bin/doc?ormsc/14-06-01. 2023.9.5.

[2] H.-W. Sehring, S. Bossung, and J. W. Schmidt, “Content is Capricious:
A Case for Dynamic System Generation,” Proc. 10th East European
Conference (ADBIS 2006), Springer, 2006, pp. 430-445.

[3] T. Kühne, “Matters of (Meta-) Modeling,” Software & Systems Model-
ing, vol. 5, pp. 369-385, Dec. 2006.

[4] J. Cabot, R. Clarisó, M. Brambilla, and S. Gérard, S., “Cognifying
Model-Driven Software Engineering,” Proc. Software Technologies:
Applications and Foundations (STAF 2017), Springer, 2018, pp. 154-
160.

[5] E. S. K. Yu and J. Mylopoulos, “From E-R to “A-R” – Modelling
strategic actor relationships for business process reengineering,” Proc.
13th Int. Conf. on the Entity-Relationship Approach (ER’94), Springer,
1994, pp. 548-565.

[6] H. W. Nissen, M. A. Jeusfeld, M. Jarke, G. V. Zemanek, and H. Huber,
“Managing multiple requirements perspectives with metamodels,” in
IEEE Software, vol. 13, no. 2, pp. 37-48, March 1996.

[7] M. Shaw and D. Garlan, “Formulations and Formalisms in Software Ar-
chitecture,” Computer Science Today: Recent Trends and Developments,
Lecture Notes in Computer Science, vol. 1000, pp. 307-323, 1995.

[8] S. Bossung, H.-W. Sehring, M. Skusa, and J. W. Schmidt, “Concep-
tual Content Management for Software Engineering Processes,” Proc.
Advances in Databases and Information Systems, 9th East European
Conference (ADBIS 2005), Springer, 2005, pp. 309-323.

[9] H.-W. Sehring, “On Integrated Models for Coherent Content Manage-
ment and Document Dissemination,” Proc. 13th International Conference
on Creative Content Technologies (CONTENT 2021), 2021, pp. 6-11.

118Copyright (c) IARIA, 2023. ISBN: 978-1-68558-089-6

IARIA Congress 2023 : The 2023 IARIA Annual Congress on Frontiers in Science, Technology, Services, and Applications

