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Abstract—This paper presents an automated pipeline for the
detection, segmentation, and severity classification of cutaneous
ulcers, addressing the clinical need for objective and remote
wound monitoring. Despite increasing interest, real-time and
interpretable Machine Learning tools in this domain remain
scarce. We propose a hybrid solution combining classical im-
age processing and Machine Learning techniques. Exploiting
the guaranteed Convolutional Neural Network performance in
binary segmentation tasks, a modified U-Net architecture, trained
on grayscale digital images enhanced via Contrast Limited
Adaptive Histogram Equalization, achieved high segmentation
performance with an Intersection over Union of (.82, Precision
of 0.93, Recall of 0.89, and Dice coefficient of 0.88, using
fewer than 2 million parameters. For severity classification,
superpixel-wise brightness histograms were used to extract six
discriminative features. A logistic regression model trained on
these features reached a classification accuracy of 94 %, effectively
distinguishing between ulcer classes despite intra-class variability.
The system offers robust performance with fast inference of 100
milliseconds per image and skin phototype-independence.

Keywords-machine learning; convolutional neural network; tele-
dermatology; skin ulcers monitoring.

I. INTRODUCTION

In recent years, the increasing demand for accessible and
remote healthcare services has accelerated the development
of telemedicine solutions. In particular, dermatology stands
out as a field where early intervention can drastically reduce
long-term complications, especially in the management of
chronic wounds and skin ulcers [1]. Artificial Intelligence
(AD) has demonstrated remarkable progress in dermatology,
particularly in the automated detection and classification of
pigmented lesions and melanoma, supported by large-scale
studies and Deep Learning (DL) advancements [2][3]. How-
ever, despite the clinical relevance and growing incidence of
chronic wounds, the application of Al to ulcer assessment re-
mains comparatively underexplored, with relatively few high-
quality studies and limited clinical integration [4][5][6]. This
imbalance highlights the need for further research on Al-driven
systems tailored specifically to the complex and heterogeneous
nature of cutaneous ulcers. In addition, among different kinds
of skin lesions, chronic skin ulcers represent a significant
clinical concern due to their prolonged healing time and
resistance to standard therapeutic interventions. These lesions
are defined by their failure to progress through the normal
stages of wound healing, often persisting for weeks or even
months. Their development is frequently associated with un-
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venous insufficiency, making them prevalent in elderly and
at-risk populations. Clinically, chronic ulcers are commonly
categorized into three primary types: pressure ulcers, diabetic
foot ulcers, and venous leg ulcers [7]. Pressure ulcers—also
referred to as decubitus ulcers or bedsores—are caused by
sustained mechanical pressure, typically over bony promi-
nences, which results in localized ischemia and subsequent
tissue necrosis. These lesions are especially common among
bedridden or immobilized individuals and are a major source
of morbidity and healthcare costs [8]. Diabetic foot ulcers,
on the other hand, arise due to the interplay of peripheral
neuropathy, ischemia, and repeated trauma in patients with
diabetes mellitus. This kind of lesion represents one of the
most severe complications of diabetes and is the leading
cause of non-traumatic lower-limb amputations worldwide [9].
Venous leg ulcers are primarily the result of chronic venous
insufficiency, where long-term increases in venous pressure
cause fluid leakage, inflammation, and eventual skin break-
down. Venous leg ulcers are the most frequently occurring
type of leg ulcer and are notorious for their tendency to recur
and resist conventional treatment [10].

Despite the widespread occurrence and impact of these
conditions, their clinical management remains highly reliant
on subjective and manual evaluations. In most cases, wound
assessments are carried out through visual inspection during
in-person consultations, using basic tools, such as rulers,
tracing paper, or planimetry software to measure wound size.
Additionally, tissue characteristics, such as color, presence of
exudate, or odor, are described qualitatively, introducing high
inter-observer variability and limiting the precision required
for effective longitudinal monitoring [11].

In light of these challenges, there is a growing need for
objective, reproducible, and accessible tools that can assist
healthcare providers in the accurate evaluation and follow-
up of chronic wounds. This demand is further amplified
by the global shift toward telemedicine and decentralized
healthcare delivery. Patients with mobility limitations or those
residing in remote areas could benefit greatly from systems
that enable remote wound documentation and asynchronous
specialist evaluation [12]. In response to these needs, this paper
presents the development of a Machine Learning (ML)-based
algorithm for the real-time elaboration of digital images to
detect, classify and assess the severity of cutaneous ulcers. By
leveraging Al techniques—specifically Convolutional Neural
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such as wound detection, semantic segmentation and severity
estimation based on dominant color classification.

The current study is taking part of the SALUTEDERM
research project, which is dedicated to explore telemedicine
techniques and solutions to enhance skin lesion healing and
skin care (see Acknowledgment section for project details).

II. RELATED WORK

In the clinical field of dermatology, the diagnostic process
for cutaneous lesions entails a multi-step procedure involving
lesion detection, morphological assessment, and subsequent
classification and staging according to established severity
criteria. Visual inspection and manual palpation by clinicians
remain the gold standard for ulcer classification. In some cases,
tools are also used to assess lesion depth. Accurate staging is
essential to determine effective treatment and reduce healing
time. However, misclassifications are not uncommon, due to
factors, such as skin tone variation, patient age, and overall
health status [13][14]. Despite standardized assessment pro-
tocols, wound classification by visual inspection and manual
palpation exhibits substantial inter-rater variability, with re-
ported agreement coefficients ranging from poor to moderate.
This variability arises from differences in clinician experience,
subjective interpretation of tissue characteristics, and patient-
related factors, which together challenge the reliability and
reproducibility of manual ulcer staging [15]. In the last few
years, to support clinical assessments, the use of digital image
analysis has emerged as a promising approach to improve the
evaluation of chronic wounds.

Delegating the diagnostic responsibility from human experts
to automated systems involves a sequential pipeline of three
fundamental and cascading tasks:

1) Segmentation task — automated identification and delin-
eation of the precise boundaries of the Region of Interest
(ROI) that is the ulcerated region within an image.

2) Classification task — division of the ROI into different
classes basing on the lesion severity.

3) Severity assessment task — evaluation of the main char-
acteristics extracted from the ROI.

Among the parameters useful to describe and evaluate the
staging and the damage progress, to consider the kind of the
involved cutaneous tissues is mandatory. In fact, the European
Pressure Ulcer Advisory Panel (EPUAP) classified pressure
ulcers into four main stages as:

e Grade I: intact skin with non-blanchable redness, which

may also present with warmth, hardness, or pain.

e Grade II: partial thickness skin loss involving the epi-
dermis and/or dermis, appearing as a shallow ulcer or
blister.

o Grade III: full thickness skin loss extending into subcu-
taneous tissue often showing slough presence (yellow),
but not exposing bone, tendon, or muscle.

e Grade IV: full thickness skin loss with extensive de-
struction, tissue necrosis, or damage to muscle, bone, or
supporting structures [16].

Automated image analysis methods—based on bag-of-

Vector Machines and K-Nearest Neighbors—have been widely
adopted for segmentation and classification tasks. Despite
promising accuracy levels, these models often struggle when
dealing with complex wound structures involving mixed tis-
sue types, increasing the likelihood of classification errors
[17][18]. Early efforts in this domain focused on basic com-
puter vision techniques, such as color-based segmentation and
edge detection, has been applied to 2D photographic data.
These methods enabled semi-automated estimation of wound
dimensions but were limited in their ability to capture complex
tissue characteristics or to generalize across different wound
types and imaging conditions [19]. The advent of ML and
DL has markedly advanced the field, particularly with the
introduction of CNNs for medical image analysis. CNN-based
models have demonstrated strong performance in tasks, such
as wound segmentation, classification of tissue types (e.g.,
granulation, slough, necrosis), and even prediction of healing
trajectories based on sequential imaging data [20][21]. These
models offer significant advantages over traditional techniques
by learning hierarchical features and complex patterns directly
from raw image inputs, thereby reducing the need for manual
feature engineering [22].

Among the studies most closely related to the topic is
the work by Zahia et al. [23] who developed a CNN-based
method to classify tissue types (granulation, necrosis, and
slough) using 20 high-resolution images, which were cropped
into 380,000 smaller RGB patches. These were manually
segmented and preprocessed with masking, grayscale conver-
sion, Otsu thresholding, and reflection correction. Their CNN
had 3 convolutional layers with increasing feature maps and
used ReLU activations. They reported high sensitivity and
precision for granulation and necrosis tissues (greater that
80%) but lower for slough (less than 60%). Garcia-Zapirain
et al. [24] employed a two-stage approach using a 3D CNN
(DeepMedic) to extract the region of interest and segment
tissues from a dataset combining original and Medtec images.
Pre-processing included Gaussian smoothing and HSI color-
space transformation to handle lighting variation. The first
network had dual pathways for ROI detection, and the second
network used four input modalities, including a prior visual
appearance model built using color probability and Euclidean
distances. The system achieved strong performance with Dice
Similarity Coefficient (DSC) and Area Under the Curve (AUC)
values around 95%. Aldughayfiq et al. [22] leveraged YOLOv5
for real-time detection and classification of pressure ulcers by
grade, demonstrating a precision of 78.1%, while Pereira et
al. [25] highlighted the importance of perceptually uniform
color spaces (CIELAB and CIELUV) for tissue discrimina-
tion, achieving 73.8% accuracy and an AUC of 0.82. More
recently, Liu et al.[4] integrated deep learning (Inception-
ResNet-v2) with a clinical questionnaire in a smartphone-
based diagnostic tool for pressure ulcer assessment, achieving
over 90% accuracy across both cellulitis detection and necrotic
tissue grading. Recent contributions have further emphasized
clinical applicability, real-time performance, and quantitative
wound measurement. Ramachandram et al. [26] proposed a
fully automated pipeline for wound and tissue segmentation
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ulcer and classify tissue types, such as epithelial, granulation,
slough, and eschar. Their models achieved an Intersection over
Union (IoU) of 0.8644 for wounds and 0.7192 for tissue
classification, while also quantifying the substantial inter-
and intra-rater variability among clinicians. Liu et al. [27]
combined U-Net and Mask R-CNN with LiDAR-based area
measurement for pressure injuries, reporting a Dice coefficient
of 0.8448 on external validation and a mean relative area error
of 26.2% compared to manual measurements, highlighting
both the potential and the current limitations of quantitative
wound assessment in clinical settings. Carvalho et al. [28§]
explored CNN and Transformer-based architectures, including
DeepLabV3+, SegFormer, and MedSAM, for segmentation
and real-world wound measurement. Using reference markers
to scale images, their pipeline achieved Dice scores above 92%
and area estimation errors as low as 5.36% on private datasets,
although performance decreased when the entire pipeline was
applied under diverse imaging conditions.

Despite these advances, several challenges persist. Learning-
based methods require large volumes of high-quality annotated
medical images, which remain scarce due to high annotation
costs, limited patient data, and ethical constraints [29]. Un-
like imaging modalities such as brain, retinal, or chest CT,
dermatological conditions have traditionally been assessed via
direct visual inspection, complicating the creation of large-
scale datasets. Additional challenges include differentiating
among tissue types, dealing with ill-defined lesion boundaries,
and ensuring robustness to variations in lighting, skin tone,
and image quality [30][31]. Data augmentation strategies have
been proposed to mitigate small dataset limitations [22][32].
Collectively, these studies indicate that automated segmen-
tation, tissue classification, and measurement are promising,
but fully integrated systems capable of robust performance
across heterogeneous conditions, severity assessment, and
telemedicine deployment remain an open research need.

III. METHODS

Building on the presented premises, the present study aims
to develop an algorithm that first achieves high-quality se-
mantic segmentation of skin ulcers, and subsequently enables
color-based lesion severity evaluation, with limited computa-
tional demands. Indeed, achieving strong segmentation accu-
racy is crucial, but it must be balanced with low computational
cost—implying a model with fewer learnable parameters and
lightweight architecture—to ensure real-world efficiency [33].
For this reason, small network sizes and high inference speeds
guaranteed by CNNs architectures have been preferred over
superior segmentation accuracy performed by more complex
methods, like transformer-based ones [34].

The proposed algorithm is structured as a sequential
pipeline, in which each task takes as input the output of
the previous one. Specifically, the process begins with a
pre-processing stage to standardize and enhance the input
data, followed by lesion segmentation with associated post-
processing to refine the obtained masks, and finally lesion
classification based on the segmented regions. This design
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information across tasks.

The entire system has been programmed in Python language
and built, trained, validated and tested on two public databases
from the 2021 MICCALI Foot Ulcers Segmentation Challenge,
the first composed by over 1200 de-identified diabetic foot
ulcers images and their respective labels [35], and the second
created in collaboration with the AZH Wound & Vascular
Center composed by 1109 cropped patches of foot ulcers [36].

A. Segmentation task

The first step of the pipeline is the ROI detection that
consists in the recognition of the ulcer area and its borders
highlighting.

Pre-processing: To perform the task, the dataset variability
reduction is recommended as a starting pre-processing strat-
egy. For this reason the images from the dataset need to be
normalized both in terms of size and in terms of pixels values
to make the training consistent and stable. Hence, a division
by 255 — the maximum pixel value— is applied to each of the
three color channels of the RGB color space, namely Red,
Green and Blue, so that the operational range per pixel is now
[0,1]; then each image undergoes a resize operation to the
standard 512 x 512 size. The size choice is a trade-off between
the need to preserve as much information as possible and a
reduced computational weight. It has also been demonstrated
that the exclusion of the brightness information, which carries
a big amount of variability and translates into the use of single-
channel grayscale (GS) images instead of three-channels RGB
ones, can further improve segmentation performance in der-
matological studies by making the algorithm less sensitive
to illumination artifacts [37]. For this reason, a comparison
between ulcers detection on RGB and on GS images, both
original and contrast-enhanced, will be evaluated.

Training: Among the most efficient and cost-effective neu-
ral network architecture employed for binary segmentation,
U-Net demonstrates relevant potential. We implemented a
deep U-Net variant tailored for high-resolution biomedical
image segmentation tasks. The network adopts a symmetric
encoder—decoder architecture with four levels of downsam-
pling and upsampling, and includes skip connections to pre-
serve spatial context and fine-grained features. The encoder
consists of four convolutional blocks, each composed of two
convolutional layers (kernel size 3 x 3, ReLU activation, He-
normal initialization, and same padding), followed by 2 x 2
max pooling for downsampling. The number of filters doubles
with each level, starting from 16 up to 128. A bottleneck layer
with two convolutional layers and 256 filters processes the
compressed representation. The decoder mirrors the encoder
structure. Each upsampling step (via 32 x 2 upsampling) is
followed by a concatenation with the corresponding encoder
feature map (skip connection), and two convolutional layers
that progressively reduce the number of filters back to 16.
The final layer is a 1 X 1 convolution with sigmoid activation,
producing a single-channel probability map for binary seg-
mentation. This architecture balances depth and computational
efficiency, maintaining the U-Net’s ability to integrate multi-

scale contextual information while enabhng the extraction of
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deeper features via the added encoder stage. The modified U-
Net architecture proposed by the authors is depicted in Figure
1 and more details, as the number of layers, are reported for
clarity in Table I.

TABLE I. ARCHITECTURE OF OUR U-NET-LIKE MODEL.

LE{(?E]ES) Feature Maps Kernel Size
Input 1 -
Encoder 1 16 — 16 3x3, 3x3
Pooling 1 16 2x2 (max pooling)
Encoder 2 32 — 32 3x3, 3x3
Pooling 2 32 2x2 (max pooling)
Encoder 3 64 — 64 3x3, 3x3
Pooling 3 64 2x2 (max pooling)
Encoder 4 128 — 128 3x3, 3x3
Pooling 4 128 2x2 (max pooling)
Bottleneck 256 — 256 3x3, 3x3
Decoder 1 | 256+128 — 128 — 128 | up 2x2, 3x3, 3x3
Decoder 2 128+64 — 64 — 64 up 2x2, 3x3, 3x3
Decoder 3 64+32 — 32 — 32 up 2x2, 3x3, 3x3
Decoder 4 32+16 — 16 — 16 up 2x2, 3x3, 3x3
Output 1 1x1 (sigmoid)

Training parameters, as the number of training epochs, batch
size and learning rate, and data augmentation techniques have
been tuned after several trainings. The training has been run
across 50 epochs with batch_size = 2 and learning_rate =
le~*. The Adam optimizer has been set to take advantage of:

o Automatically regulated learning rate useful to manage
ulcers borders that can produce different gradients in
respect to other areas.

« Faster convergence in presence of a U-Net architecture.

o Low sensitivity to unbalanced classes (e.g. 90% back-
ground, 10% object).

Data  augmentation  techniques  included  clock-
wise/counterclockwise rotations, width/height shifts, zoom
and horizontal/vertical flips and the fill mode was set as
"nearest’. Due to this method, the volume of data has
increased fourfold. Finally, the 80% of the whole dataset was
split using a 90/10 ratio between training and validation sets
and both RGB and grayscale enhanced images have been
used for comparison in different trainings.

Unlike many previous studies, where ulcer analysis is
performed in two sequential steps—first identifying a Region
Of Interest (ROI) and then segmenting the wound within
that ROI—we directly trained the U-Net to segment the
ulcer from the entire image. This decision was motivated
by both methodological and practical considerations. First,
ROI detection introduces an additional preprocessing stage
that may propagate errors and increase variability across
images. Second, U-Net architectures have proven effective
at simultaneously learning global contextual cues and
local boundary information, allowing reliable segmentation
even without prior cropping [38]. Finally, an end-to-end
segmentation pipeline reduces complexity and enhances
reproducibility, making the method easier to deploy in
real-world clinical workflows.

Post-processing: The predicted binary masks generated by
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have been observed and analyzed. The biggest issue came
from the background noise represented by disturbing elements
present into the image and characterized by a range of colors
similar to the one of the skin ulcers. Also, very small areas
of healthy skin are sometimes wrongly identified as ROIs.
After a resize operation at the original size of each input
image, these considerations led to two main post-processing
procedures:

1) Removal of very small object—For each mask, each seg-
mented object with area < area,,q. /6, where areaq.
is the area (expressed in pixels) of the biggest recognized
object, is ignored.

2) Background removal through skin segmentation—In ad-
dition to different appearances of ulcers of different
etiology and class, healthcare professionals usually take
pictures in diverse ways, in heterogeneous light condi-
tions and position. These factors further increase the
variability of the dataset, which is already limited in
size given the complexity of the problem. To limit
confounding elements and reduce the amount of data
to be analyzed, a strategy to isolate the affected limb by
removing the background has been implemented. First,
images are converted from RGB color-space to Y C,.Cy
one, useful to take advantage of the separation between
the luminance information represented by the Y channel
and the chrominance contribution expressed by the C;
channel, where subscript i can stand for red (C,.) or blue
(Cp). The luminance represents the brightness level of
the image, whereas the blue and red chrominances carry
the color information by indicating the shift of blue and
red channels from the luminance value [39]. As visible
in Figure 2, the C. channel shows the cutaneous area
highlighted in respect to other objects into the image
offering the strategy for skin segmentation.

B. Classtfication task

Among the various features used for skin chronic wound
classification, color information plays a prominent role due
to its partial correlation with the depth and extent of tissue
damage [40]. Indeed, first stage lesions, partial tissue loss
lesions, covered by slough lesions and necrotic lesions are
characterized by colors ranging from light red to vivid red
to yellow-tinged to brown/black. As the available dataset is
made of diabetic foot ulcers, Stage I lesions are not represented
and therefore are not recognized during the segmentation task.
Since the classification module operates exclusively on seg-
mented ulcers, the absence of Stage I lesions in segmentation
directly implies that their classification is not included in the
scope of the algorithm.

To enable chromatic differentiation of lesions, brightness
histograms of each R, G and B channel intensities were
computed and analyzed. The histograms show the possible
intensity values, [0, 255] along the x-axis, and the frequency of
pixels exhibiting each intensity value along the y-axis. Figure
3 displays an example of the different distributions of colors
intensities among different stages of ulcers.

To_reduce the hu/%s amount of data deriving from the
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Figure 1. Modified U-Net architecture proposed by the authors.

Figure 2. RGB image [17], Y C,.C}, image, Y channel, C'- channel, and C;
channel (from left to right).
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Figure 3. Partial tissue loss ulcer, necrotic ulcer and covered by slough ulcer
and respective brightness R, G and B histograms (from left to right).

processing of each single pixel, the related introduced variabil-
ity and because regions of pixels are more informative than
single pixels, the Simple Linear Iterative Clustering (SLIC)
algorithm-based on Superpixel technique—is performed. This
method segments an image into a chosen number of regions—
named superpixels— clustering pixels that appear similar ac-
cording to some perceptual features relying on measures based
not only on color similarity but also on the shape of the regions
delimiting areas significant changes in intensity [41].

As the dataset does not provide any class or tissue informa-
tion, the involvement of a medical expert for accurate labeling
was crucial. Consequently, the entire database was carefully
reviewed by the clinician, who selected 216 lesions deemed
representative of all severity classes, while deliberately avoid-
ing borderline cases that could introduce ambiguity or bias
due to subjective interpretation. Each selected lesion was then
manually classified under the expert’s supervision, ensuring
that the labels reflected both clinical relevance and consistency.
From each of these lesions, six parameters has been extracted

and, in addiction to the %round truth labels, fed into a multi
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logistic regressor for the class prediction by splitting the set
of labeled ulcers into 80% training set and 20% test set.

In the following section, the results achieved through the
implemented workflow are presented.

IV. RESULTS ANALYSIS

The results are organized according to the pipeline intro-
duced in Section II and Section III.

A. Segmentation task results

The described modified U-Net model has been trained
across 50 epochs. A notably small batch_size = 2 yielded
more favorable training dynamics compared to larger batch
sizes. The increased stochasticity in the gradient estimates,
induced by the smaller batch size, likely acted as an implicit
regularization mechanism, contributing to improved general-
ization and reduced overfitting also lowering GPU memory
usage. The most performing trainings derived from GS images
training, in particular on locally-contrast modified GS images
via CLAHE method. Contrast Limited Adaptive Histogram
Equalization (CLAHE) is an image processing technique that
enhances the contrast of images by applying histogram equal-
ization locally, in small regions, rather than globally. CLAHE
also incorporates a contrast-limiting step to prevent over-
amplification of noise in homogeneous regions. It does this by
clipping the histogram at a predefined threshold (clip_limit
parameter) before redistributing the clipped pixels evenly.
After several trials, the optimal value has been found to be
clip_limit = 0.8. An example of comparison among RGB,
GS and GS-contrast enhanced outcomes is reported in Figure
4.

Despite the discrete performance achieved, the segmen-
tation of confounding elements remained a challenge. For
this reason, post-processing is compulsory both in terms of
small object removal and in color-thresholding to discard out-
of-skin segmented element. Since in some cases the lesion

extremely small, while in others snnllarly sized objects
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Original image

Mask - RGB image Mask - GS image  Mask - GS contrast enhanced image

Figure 4. Example of comparison on a test image [35] between binary
segmentation masks predicted by training on RGB, GS and GS-contrast
enhanced images.

represent confounding elements, it is not feasible to define
a global size threshold that is consistently valid across all
images. To overcome this problem, it has been observed that
the biggest recognized object is always represented by the real
lesion to be segmented; in respect to this object, other selected
areas, smaller than % of the biggest identified area on the same
image, are for sure segmentation errors. In case only one object
is found, then it is considered as an ulcer unless it is discovered
not to belong to the skin area detected through the second
post-processing step. As illustrated in Section III, the Y C,.C},
color-space can be helpful for skin segmentation. Indeed, by
executing a global thresholding in the range of [0.55,0.70] for
C, channel, it is possible to easily remove the background
(Figure 5). Each detected object outside the segmented skin is
then ignored.

(a) (b)

Figure 5. Skin segmentation: (a) original image [35], (b) result after global
thresholding on channel C)..

At the end, the final best training provided good segmen-
tation performance represented by IoU = 0.82, Precision =
0.93, Recall = 0.89 and Dice Coef ficient = 0.88. Being in
a biomedical field, the Precision metric gains more importance
in respect to the Recall one since to reduce the amount
of false negative pixels (in this case meaning non-detected
ulcers) is considered more relevant than to have less false
positive pixels (meaning healthy skin recognized as damaged).
Thus, the elevated precision score is of particular relevance in
study scenarios where accurate discrimination is as inherently
difficult as relevant. Finally, the mean inference time per image
is 100 ms.

It is important to emphasize that our modified U-Net
achieves competitive results while maintaining a notably low
number of trainable parameters — fewer than 2 million. Table
IT presents IoU scores reported by some of the most frequently
cited studies within the same research domain, employing
comparable ML-based segmentation methodologies, alongside
their respective parameter counts. To ensure a fair and mean-
ingful evaluation, we compared our proposed model against
several widely used and high-performing U-Net variants in
biomedical image segmentation, namely_the standard U-Ne

2 . Net. .
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ResU-Net, Attention U-Net, and FU-SegNet. These architec-
tures represent the most commonly adopted baselines in the
field and cover different directions of improvement to the
original U-Net design, such as residual connections, attention
mechanisms, and enhanced decoder structures. This choice
allows us to directly assess the specific contribution of our
modifications within the same architectural family.

Finally, three examples are displayed in Figure 6 to show
the segmentation outcomes. The first image also assesses the
phototype-independence of the model, which should not be
taken for granted. Although the dataset does not provide
explicit information on skin phototype, a visual inspection
of the database revealed that only about 5% of the images
correspond to darker skin tones. Nevertheless, the first image
on the left demonstrates that, despite this underrepresentation,
darker phototypes do not compromise the robustness of the
algorithm.

TABLE II. COMPARISON WITH STATE-OF-THE-ART ULCER
SEGMENTATION RESEARCHES.

[ Model [ ToU [ Param. | Reference |
Standard U-Net 0.68 7.8M [38]
ResU-Net 0.72 8.9M [42]
Attention U-Net 0.75 8.9M [43]
FUSegNet 0.77 12.7M [32]
Authors” Modified U-Net | 0.82 1.9M -

Figure 6. Examples of segmentation outcomes on test images [35].

B. Classification task results

The brightness histograms approach allows for the extrac-
tion of color distribution patterns within each lesion, facil-
itating the identification of relevant visual features, such as
variations in redness, yellowness, or darkness associated with
different tissue types or stages of wound healing. The use of
this method would be computationally and time-consuming
if applied pixel by pixel. For this reason, the SLIC algorithm
paired with histograms analysis is the key of our solution to the
classification problem. Considering N as the number of pixels
in the input image, K as the desired number of superpixels, the
approximate size of a superpixel will be N/K and for roughly
equally sized superpixels there would be a center at every grid

interval S = resulting into a superpixel spatial extent

N
=
about S2. The input parameter for the SLIC algorithm are
then the input image, the parameter K and the variable m that
is a measure of superpixel compactness. For the current study,
K = 290 and m = 20 have been demonstrated to guarantee
the best tradeoff between minimizing color-variability and

computational costs and avoiding the loss of original color
d Digital Library https://www.thinkmTnd.org
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and shape information (Figure 7).

(2) (b)

Figure 7. SLIC technique: (a) original image [35], (b) SLIC processed
image with K = 290 and m = 20.

Each superpixel has then been enumerated so that the
interested areas could be manually selected by typing their
respective number. RGB histograms were computed for each
extracted superpixel, and six parameters—identified as the most
discriminative—were evaluated. These consist of the median
values of the three color channels and the intensity differences
among them. The ground-truth labels and the respective six
variables for each lesion have been exploited to train a multiple
logistic regressor. The extracted variables for the training set
are reported in Figure 8 to have an overview of the distribu-
tions. The total number of samples is higher than 216 because
some lesion are mapped by more than a single superpixel.
In addition, some samples from healthy skin areas has been
analyzed and inserted into the figure to demonstrate, once
more, how the distinction between injured and non-injured
skin is not trivial. Indeed, the extracted parameters from
healthy skin result into overlapping to all of the three ulcers
classes. Moreover, the limited representation of the necrotic
lesion class can be observed. This problem is counterbalanced
by the evident color separation from the other classes.

Despite the quite considerable variability of the features
given by different reasons (e.g. image acquisition device and
the huge variety of ulcers) the extracted features demonstrated
to be sufficiently discriminatory. Figure 9 present the data
as mean * Standard Error of the Mean (SEM) in order to
provide a concise summary of class-level differences. While
the SEM does not reflect the within-class variability, it effec-
tively represents the precision of the estimated class means,
allowing for clearer visualization of systematic differences
between classes. This choice is further supported by the
model’s high classification accuracy of 94%, suggesting that,
despite the high variability, the method proves to be both
effective and reliable. The notable inter-class discrimination
ability is, furthermore, expressed by the confusion matrix in
Figure 10. The vertical axis represent the ground truth class,
whereas the horizontal axis represents the class predicted by
our model.

Classes are assessed according to the EPUAP definition
and, as already discussed, class I is not considered as it
is not represented by the dataset. The classification error
reaches only 6% in the higher severity classes. Expanding
the dataset with a larger number of labeled images would
enable a more robust evaluation, potentially confirming that
the majority of misclassifications are conservative—i.e., the

%redicted severity tends to be higier than the actual one—
ourtesy of IARIA Board and IARIA
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outcome that is generally preferable in medical contexts to
avoid underestimation of critical conditions.

With regard to the propagation of segmentation errors to the
sequential classification task, although the segmentation model
does not achieve 100% accuracy in terms of IoU, this does
not cause a meaningful drop of performance. Segmentation
inaccuracies mainly occur at the lesion borders, whereas in
clinical practice the most severely affected tissue is often
located in the central region of the ulcer — a region that
tends to heal more slowly, and which becomes the critical
determinant of severity. Consequently, since that central area
is generally well captured by the model, the predicted class
remains accurate and robust despite minor segmentation errors.

V. CONCLUSION AND FUTURE WORK

This work presented the design and evaluation of an end-
to-end system for the automated analysis of cutaneous ulcers,
addressing two critical tasks in the wound care pipeline:
segmentation and severity classification. The proposed solu-
tion leverages a combination of classical image enhancement
techniques, DL architectures, and lightweight ML classifiers
to support clinicians in the timely assessment and monitoring
of chronic wounds.

For the segmentation task, a modified version of the U-Net
architecture was employed. The model, trained on grayscale
images enhanced via the CLAHE algorithm, demonstrated
superior performance compared to RGB-based approaches.
CLAHE proved particularly beneficial in enhancing local
contrast while avoiding noise over-amplification, allowing for
more reliable lesion boundary detection. The model achieved
a mean Intersection over Union (IoU) of 0.82, Precision
of 0.93, Recall of 0.89, and a Dice coefficient of 0.88,
which compare favorably to existing state-of-the-art solutions
while maintaining a significantly lower number of parameters
(< 2M). This makes the proposed model suitable for real-
time deployment, especially in resource-constrained clinical or
mobile environments. Despite the strong performance, certain
challenges were observed in the segmentation of confounding
elements, such as artifacts or visually similar skin regions.
These were effectively addressed through a post-processing
pipeline, which included object size filtering and color-based
thresholding in the Y'C,.C} color space. In particular, lesions
were robustly distinguished from non-skin elements by ana-
lyzing the C). channel, enabling the removal of out-of-context
segmented areas.

For the classification task, the model relied on the extraction
of color-based features from wound superpixels obtained using
the SLIC algorithm. This method significantly reduced the
computational burden compared to pixel-level analysis, while
preserving the spatial and chromatic properties of the lesions.
The most informative features—channel medians and inter-
channel differences—were used to train a multiple logistic
regression classifier, which achieved an overall classification
accuracy of 94%. Notably, the model performed well despite
significant intra-class variability due to differences in ulcer
morphology, acquisition conditions, and lighting. The use

lalresent class-level feature distributions
ww.thinkmind.org
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Figure 10. Confusion matrix for the classification task.

proved to be an effective strategy for visually conveying
discriminative trends, even in the presence of overlapping
data. Importantly, the classification error was predominantly
observed in the higher severity classes, where conservative
misclassifications are preferable in clinical settings, as they
reduce the risk of underestimating potentially critical condi-
tions. Moreover, the model demonstrated promising phototype-
independence, which is a crucial factor for broad applicability
iél diverse Patient opulations. - .
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Building upon the encouraging results obtained in both
segmentation and classification tasks, future developments
will focus on three main directions. First, authors plan to
significantly expand and diversify the dataset, with particular
emphasis on including underrepresented ulcer classes (such
as EPUAP Stage I and various necrotic subtypes) and a
broader range of patient skin phototypes. This will improve
the generalizability of the model and ensure its reliability in
real-world, heterogeneous clinical settings. Second, efforts will
be directed toward extracting clinically interpretable outcome
measures from the segmentation and classification results.
These outcomes will be used to derive a quantitative severity
score for each lesion, analogous to established metrics in the
literature—such as the Photographic Wound Assessment Tool
(PWAT)—but designed to be computationally lighter and fully
automatable, thus more suited for integration into digital health
systems. Third, all modules of the proposed pipeline will
be integrated into a dedicated telemedicine device, currently
under development by the authors. This device will be capable
of acquiring standardized digital images of the wound, will
incorporate the proposed algorithms to provide preliminary,
automated assessments of wound presence and will evaluate
the temporal evolution of the severity score.

The system has been trained, validated, and tested on
anonymized images from a public dataset that already com-
plies with General Data Protection Regulation (GDPR) re-
quirements. Regarding its future clinical use, procedures for
approval by the local ethics committee have already been
initiated, and a dedicated protocol for data encryption and
anonymization will be developed to ensure secure storage in
the databases that will be progressively built.

The system is designed to function as a medical decision-
support tool, especially in settings where specialist access is
limited, such as home care or remote rural areas. This in-
tegrated approach—combining robust Al algorithms, clinically

ind Digital Library https://www.thinkmind.org
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meaningful outcomes, and practical hardware implementation—
lays the foundation for a comprehensive and scalable solution
in the emerging field of Al-assisted wound telemonitoring.
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