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Abstract- Brain decoding is a technology that interprets physical
and psychological states from brain activity, and it is expected
to serve as a means of medical support and communication for
people with disabilities. Recently, brain decoding has gained
considerable attention, especially with the advent of deep
learning techniques. This study builds on the concept of
tonotopy in the auditory cortex and aims to develop a method to
discriminate between two sounds with a 1 Hz difference, which
is difficult for humans to distinguish, using brain activation
images. In a previous work, the focus was on brain activation
imaging acquisition methods, and research was conducted using
the two main imaging designs in functional Magnetic Resonance
Imaging (fMRI) experiments: event-related design and block
design. The findings indicated that both designs were effective,
and further improvements in accuracy are anticipated.
Therefore, this report aims to further improve discrimination
accuracy. To improve accuracy, this report focused on Region
of Interest (ROI) expansion, hypothesizing that an increase in
activation information contributes to improved accuracy of
deep learning models. In this report involved the execution of
experiments in which Brodmann Areas (BA) 22 was introduced
as an additional ROIs, in conjunction with the existing ROIs,
BA41 and BA42. The results demonstrated that expanding the
ROI improved accuracy across both designs. Notably, the block
design yielded an over 30% improvement, reaching 100%
discrimination accuracy. The results demonstrated that ROI
expansion is an effective method for enhancing accuracy.
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1. INTRODUCTION

Brain decoding is a technology that decodes physical and
psychological states from brain activity, and it is a subject of
extensive research in the field of neuroscience. Recently, brain
decoding has gained considerable attention, especially with
the advent of deep learning techniques. A substantial body of
research has been dedicated to investigating the visual cortex
using fMRI. For instance, there are studies such as decoding
emotional expressions from visual cortex images using
Support Vector Machines (SVM) and Convolutional Neural
Networks (CNN) [1], and decoding objects seen in dreams
from visual cortex images using Deep Neural Networks
(DNN) [2]. Conversely, research in fMRI-based auditory
cortex decoding has lagged that of the visual cortex. This is
primarily because approximately 80% of human perceptual
information is visual, prioritizing research on the visual cortex.
Moreover, operational noise during fMRI scanning interferes
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with detecting neural activity in the auditory cortex. However,
advances in fMRI technology, including the implementation
of noise-canceling mechanisms, have facilitated research on
the auditory cortex.

Recent auditory decoding studies have reported decoding
everyday sounds from brain activity [3][4], as these are
directly related to people’s daily lives. Studies on decoding
brain activity for music have also progressed, with reports
identifying genres and moods (e.g., cheerful, somber,
uplifting) from neural responses [5][6]. However, most of
these studies have focused on qualitative musical
characteristics such as mood, whereas studies targeting
quantitative musical characteristics (e.g., frequency or sound
pressure) remain scarce.

Considering early disease detection and the identification
of cognitive decline, quantitative analysis is required rather
than qualitative examination. Therefore, our study group is
focusing on the decoding of quantitative musical
characteristics. In a previous work [7], an accuracy of 75%
was achieved in discriminating two sounds with a 124.5 Hz
difference using deep learning applied to brain activation
images. However, investigating even finer frequency
differences is necessary to advance the goals of early disease
detection and the identification of cognitive decline. Therefore,
this study addresses the recognition of finer frequency
differences to enhance frequency resolution. To investigate
brain responses to auditory stimuli, the auditory cortex was
defined as the ROI, following the concept of tonotopy.
Tonotopy refers to the spatial organization of frequency-
specific responses within the auditory cortex. This
phenomenon has been confirmed in many previous studies
[81[9][10][11], particularly in BA 41 and 42 (primary auditory
cortex). These studies typically employed a frequency range
of 1-40 kHz and focused primarily on continuous frequency
modulation. However, the investigation of the potential
efficacy of tonotopy functions in instances of minor frequency
discrepancies remains an uncharted territory. In this study, it
was motivated by the hypothesis that "even frequency
differences that cannot be perceived by humans could still
lead to distinct patterns of activation in the auditory cortex".
In general, healthy individuals can discriminate frequency
differences of about 5 Hz, while 2-3 Hz differences are
influenced by musical training and individual variability.
Accordingly, this study defines “imperceptible frequency
differences” as a 1 Hz gap between two pure sounds. The
primary aim of this study is to develop a method capable of
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discriminating between two pure sounds differing by 1 Hz
using fMRI data.

In this study, deep learning is employed to address
frequency differences that are imperceptible to the human
auditory system. Specifically, brain activation images are
acquired while presenting two pure sounds differing by 1 Hz,
and a deep learning model is used to discriminate which sound
was presented based on the brain activity images. The primary
challenges of this method pertain to the selection of a deep
learning model and the method of acquiring brain activation
images. To address the first challenge, a 3D Convolutional
Neural Network (3DCNN) based model was adopted,
considering the inherently three-dimensional structure of the
brain. To address the second challenge, the focus will be on
the two primary imaging designs employed in fMRI
experiments: event-related design and block design. The
event-related design is characterized by its limited capacity for
image clarity due to the constrained temporal parameters
allocated for imaging procedures. However, this design
facilitates the acquisition of a substantial volume of data.
Conversely, block design demonstrates superiority in terms of
image clarity, a consequence of its prolonged imaging
duration. However, this approach permits a more limited
acquisition of data.

In this study, we have verified the imaging designs (event-
related design and block design) that are effective for
discrimination experiments using both designs. In previous
works [12][13], an attempt was made to discriminate two
sounds with a 1 Hz difference using deep learning, with the
ROI set to BA41 and BA42 based on previous studies
[81[9][10][11]. The findings indicated a discrimination
accuracy of 55.90% for the event-related design and 63.41%
for the block design, suggesting that both experimental
designs are effective and hold promise for further
enhancement of accuracy.

However, since there are no comparable previous studies
for this study, we cannot rule out the possibility that accuracy
is low when viewed as an absolute value of 63%. Therefore,
this report aims to further improve accuracy compared to
previous works [12][13]. Data augmentation has been
recognized as an effective approach to enhancing accuracy.
While a variety of data augmentation methods exist, the report
focuses on ROI augmentation. The rationale for this focus is
that the increased activation information obtained through
ROI augmentation may enhance the performance of deep
learning models. The proposed region for augmentation is
BA22 (higher-order auditory cortex). As previously
mentioned, tonotopy has been primarily confirmed in BA41
and 42; however, its presence has also been suggested in
BA22 [14]. However, given the paucity of studies on tonotopy
in BA22, the efficacy of BA22 in studies targeting frequency
differences, as evidenced in this report, remains uncertain.
Consequently, in this report, BA22 is additionally designated
as a region of interest, assuming that tonotopy is also active in
this area alongside BA41 and 42. In addition, given the
utilization of two designs in previous works [12][13], this
report employs two designs as well. This report is an
individual analysis.

The structure of this report is as follows. Section II
delineates the methodologies employed in brain activation
imaging and frequency discrimination techniques. Section III
presents the discrimination results obtained using the
constructed deep learning model. Section IV investigates the
factors contributing to improved discrimination accuracy and
describes the discrimination techniques found to be effective
based on the study's findings. Section V provides a summary.

II.  METHOD

The procedure is outlined as follows. Brain activation
images are obtained using an fMRI scanner while presenting
two auditory stimuli differing by 1 Hz. These images are
annotated using Statistical Parametric Mapping (SPM) 12 for
input into deep learning. The annotated 3D data is then
employed to train the model and perform discrimination
using training data with a 3DCNN. A detailed explanation is
provided in the subsequent section.

A. fMRI experiment

The fMRI experiment was conducted to obtain brain
activation images for use in discrimination experiments. The
fMRI apparatus utilized is the MAGNETOM Prisma 3T,
manufactured by SIEMENS. The auditory stimuli consisted
of pure sounds at 523 Hz and 524 Hz, with sound pressure
levels ranging from 78 to 83 dB. Auditory stimuli were
generated using Steinberg Nuendo 10.3 and delivered to
participants via Opto ACTIVE thin headphones employing
Active Noise Control to attenuate fMRI scanner noise. In this
experiment, one 20-years-old healthy male subjects
participated, who do not have abnormality in the simple
hearing test. The imaging design will be a block design (Task
9's, Rest 15 s) and an event-related design (Task 3 s, Rest 3 to
21 sin multiples of 3). This report uses brain activation images
obtained in a previous work [12].

B. Annotation

The subsequent section will address the implementation of
data analysis for deep learning. The conversion of the DICOM
format to the NIfTI-1 format is necessary for the subsequent
analysis using brain image analysis software SPMI12.
Subsequently, the preprocessing and individual analysis
should be performed. Preprocessing included several steps:
realignment to correct head motion, slice timing correction to
adjust temporal differences across slices, coregistration with
structural images, spatial normalization, and spatial
smoothing. The objective of individual analysis is to extract
brain activation characteristics through the random selection
of multiple images, the implementation of statistical analysis,
and the creation of contrast. In this report, regarding the
training data, we created a single statistical image from two
scans of brain activation images that had undergone
preprocessing and obtained the following training data (per
frequency) for each design by changing the combination of
the two scans. There were 192 training data points for the
event-related design and 80 training data points for the block
design. The test data were obtained as a single statistical
image from one scan, resulting in 24 test data points (per
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TABLE I. NUMBER OF TRAINING DATA AND TEST DATA.
LINE 1 IS EVENT-RELATED DESIGN. LINE 2 IS BLOCK DESIGN.

Designs Training data Test data
Event-related 192 24
Block 80 24

TABLE II. HYPER PARAMETER IN LEARNING.

Kernel size (Ks) 3,4,5,6,7
Filters (F) 16, 32
Batch size (Bs) 8,16,32

frequency) for each design. These are shown in Table 1. The
ROIs are defined as BA41, 42, and 22, and for each contrast,
the corresponding t-values and spatial coordinates are
extracted. For each contrast, normalized values ranging from
0.0 to 1.0 are exported in CSV format. Using the spatial
coordinates, the data are transformed into 3D arrays with
dimensions H41xW50xD15 for input into the deep learning
model. Voxels outside the ROI are assigned to a value of 0.0.

C. Frequency discrimination method

In this report, we utilize 3DCNN, a variant of deep learning,
to discriminate auditory stimuli. 3DCNN represents a model
that extends the capabilities of CNN, which are designed for
image recognition, to three dimensions. 3DCNN utilizes
convolution and pooling operations in three dimensions to
extract features, thereby expanding the scope of image
recognition in the third dimension. The architecture of the
3DCNN consists of sequential convolution and pooling layers,
followed by a fully connected layer positioned directly before
the output layer. To perform binary discrimination, the model
employs two output neurons, with the softmax activation
function applied to convert the outputs into probabilistic
scores. The hyperparameters used for training are listed in
Table 2. A grid search was performed to evaluate all possible
combinations of parameter values specified in the table.
Training was considered complete when the error rate
dropped below the threshold of 0.1. The trained model was
subsequently applied to discriminate the two auditory stimuli
using test data.

III. RESULTS

The discrimination accuracy is defined as the number of
correct answers obtained by inputting the test data into the
trained model that has been successfully completed, divided
by the total number of test data points, which is 24. A grid
search was performed, and the discrimination accuracy and
hyperparameters that achieved the highest accuracy after ROI
expansion are shown in Table 3. Furthermore, as illustrated in
Table 4, the discrimination accuracy and hyperparameters that
were found to be most effective prior to ROI expansion are
documented, as outlined in [13]. Table 4 presents the results
for 192 training data and 24 test data.

IV. DISCUSSION

Given that this report constitutes a two-classification
discrimination, the probability of a correct guess by chance is
50%, and thus the chance level is also 50%. Previous studies
indicate that an accuracy exceeding 50% can be interpreted as
successful discrimination [15], while an accuracy above 60%

TABLE III. HYPERPARAMETERS AND DISCRIMINATION
ACCURACY IN TWO DESIGNS. (ROIS: BA41, 42,22)

Designs Discrimination accuracy Hyper parameter
Event-related 60.42% Ks:6, F:16, Bs:16
Block 100% Ks:4,7, F:32, Bs:8

TABLE IV. HYPERPARAMETERS AND DISCRIMINATION
ACCURACY IN TWO DESIGNS. (ROIS: BA41, 42) [13]

Designs Discrimination accuracy Hyper parameter
Event-related 55.90% Ks:6, F:6, Bs:16
Block 63.41% Ks:3, F:14, Bs:16

is considered sufficiently reliable [16]. As demonstrated in
Tables 3 and 4, an enhancement in discrimination accuracy
was observed with ROI expansion in both designs,
particularly in the block design. This enhancement is likely
attributable to the incorporation of activation information
from BA22, which contributed to the enhancement in
accuracy. Although methodological differences from a
previous study [14] preclude definitive conclusions, the
results suggest a potential presence of tonotopic organization
in BA22.

A substantial discrepancy in the degree of discrimination
accuracy enhancement was observed between the two designs.
While the event-related design demonstrated a 5%
enhancement in accuracy, the block design exhibited a
substantial 35% improvement. This discrepancy in accuracy
enhancement is hypothesized to be attributable to the clarity
of the images. The disparity in image clarity between the two
designs can be attributed to the following. The fMRI detects
changes in cerebral blood flow induced by variations in
oxygen demand following external stimuli, a phenomenon
known as the BOLD effect, to acquire brain activation images.
In essence, longer stimulus duration (presented for 9 s in the
block design, three times longer than in the event-related
design) enhances the BOLD effect, enabling clearer brain
activation imaging in the block design. Thus, the notable 35%
improvement in discrimination accuracy observed in the block
design is considered to result from ROI expansion in clearer
images, which substantially enhances the inclusion of
activation-related information. In a previous work [13], the
ROI was set to BA41 and BA42, the same as in [12], and
accuracy was examined by doubling the training data in the
block design. While this resulted in a 15% increase from
approximately 48% to 63%, in absolute terms, it only
achieved a marginally more reliable level of accuracy. In this
report, the training data remains the same 80 data points as in
[12]. However, the accuracy improvement achieved through
ROI expansion is twice as much as previous work. This result
demonstrates that ROI expansion yields higher accuracy than
simply increasing the training data. In contrast, the lower
image clarity in event-related designs likely limit the
effectiveness of ROI expansion in adding activation-related
information, compared to the block design. To achieve further
improvements in discrimination accuracy, potential strategies
include increasing the amount of training data.

Based on the results of previous works [12][13] and this
report, it was determined that the following approach is
effective for discriminating two tones differing by 1 Hz in
brain activation images of individuals using deep learning:
implementing the imaging design as a block design, creating

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL



HEALTHINFO 2025 : The Tenth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

statistical images from two scans (as in a previous work [12]),
and selecting ROIs BA41, 42, and 22. Therefore, the objective
of this study was achieved. The results of this study
demonstrate that discrimination within the 500 Hz band is
possible and highly accurate for individuals. However, since
sounds encountered in daily life exist beyond the 500 Hz band,
investigation of other frequency bands is also important.
Furthermore, as this study involved only one examinee and is
a preliminary investigation, increasing the number of
participants and verifying generalization to untrained
individuals is necessary. Furthermore, the test data used in this
report is limited to 24 samples. From the perspective of
generalization performance in the recognition model, there is
room for discussion, such as increasing the test data to verify
performance.

V. CONCLUSIONS AND FUTURE WORK

Given the limited number of studies decoding quantitative
musical characteristics, this study addressed the
discrimination of two sounds differing by only 1 Hz a
difference imperceptible to humans. The aim of this study was
to improve discrimination accuracy beyond that reported in
previous works [12][13]. ROI expansion was proposed as a
method, and discrimination experiments were conducted
using two fMRI experimental designs, event-related and block,
as in a previous works [12][13]. The results showed an
accuracy improvement of approximately 5% with the event-
related design and over 30% with the block design. These
findings demonstrate that ROI expansion is an effective
approach for improving accuracy. Moreover, based on both
the present results and those of previous works [12][13], it was
determined that, for discriminating two sounds with a 1 Hz
difference using brain activation images and deep learning, an
effective strategy is to employ a block design for imaging,
generate statistical images from two scans, and select ROIs in
BA41,BA42,and BA22. This study provides new evidence
that the brain responds even when humans are unable to
perceive the difference.

Future work will include verifying generalization
performance for untrained participants. With further progress,
this line of this study is expected to contribute to the early
detection of disease and to improvements in hearing aid
performance.
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