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Abstract- Brain decoding is a technology that interprets physical 

and psychological states from brain activity, and it is expected 

to serve as a means of medical support and communication for 

people with disabilities. Recently, brain decoding has gained 

considerable attention, especially with the advent of deep 

learning techniques. This study builds on the concept of 

tonotopy in the auditory cortex and aims to develop a method to 

discriminate between two sounds with a 1 Hz difference, which 

is difficult for humans to distinguish, using brain activation 

images. In a previous work, the focus was on brain activation 

imaging acquisition methods, and research was conducted using 

the two main imaging designs in functional Magnetic Resonance 

Imaging (fMRI) experiments: event-related design and block 

design. The findings indicated that both designs were effective, 

and further improvements in accuracy are anticipated. 

Therefore, this report aims to further improve discrimination 

accuracy. To improve accuracy, this report focused on Region 

of Interest (ROI) expansion, hypothesizing that an increase in 

activation information contributes to improved accuracy of 

deep learning models. In this report involved the execution of 

experiments in which Brodmann Areas (BA) 22 was introduced 

as an additional ROIs, in conjunction with the existing ROIs, 

BA41 and BA42. The results demonstrated that expanding the 

ROI improved accuracy across both designs. Notably, the block 

design yielded an over 30% improvement, reaching 100% 

discrimination accuracy. The results demonstrated that ROI 

expansion is an effective method for enhancing accuracy. 

Keywords- fMRI; CNN; Brain decoding; Tonotopy; Region of 

interest. 

I.  INTRODUCTION  

Brain decoding is a technology that decodes physical and 
psychological states from brain activity, and it is a subject of 
extensive research in the field of neuroscience. Recently, brain 
decoding has gained considerable attention, especially with 
the advent of deep learning techniques. A substantial body of 
research has been dedicated to investigating the visual cortex 
using fMRI. For instance, there are studies such as decoding 
emotional expressions from visual cortex images using 
Support Vector Machines (SVM) and Convolutional Neural 
Networks (CNN) [1], and decoding objects seen in dreams 
from visual cortex images using Deep Neural Networks 
(DNN) [2]. Conversely, research in fMRI-based auditory 
cortex decoding has lagged that of the visual cortex. This is 
primarily because approximately 80% of human perceptual 
information is visual, prioritizing research on the visual cortex. 
Moreover, operational noise during fMRI scanning interferes 

with detecting neural activity in the auditory cortex. However, 
advances in fMRI technology, including the implementation 
of noise-canceling mechanisms, have facilitated research on 
the auditory cortex. 

Recent auditory decoding studies have reported decoding 
everyday sounds from brain activity [3][4], as these are 
directly related to people’s daily lives. Studies on decoding 
brain activity for music have also progressed, with reports 
identifying genres and moods (e.g., cheerful, somber, 
uplifting) from neural responses [5][6]. However, most of 
these studies have focused on qualitative musical 
characteristics such as mood, whereas studies targeting 
quantitative musical characteristics (e.g., frequency or sound 
pressure) remain scarce. 

Considering early disease detection and the identification 
of cognitive decline, quantitative analysis is required rather 
than qualitative examination. Therefore, our study group is 
focusing on the decoding of quantitative musical 
characteristics. In a previous work [7], an accuracy of 75% 
was achieved in discriminating two sounds with a 124.5 Hz 
difference using deep learning applied to brain activation 
images. However, investigating even finer frequency 
differences is necessary to advance the goals of early disease 
detection and the identification of cognitive decline. Therefore, 
this study addresses the recognition of finer frequency 
differences to enhance frequency resolution. To investigate 
brain responses to auditory stimuli, the auditory cortex was 
defined as the ROI, following the concept of tonotopy. 
Tonotopy refers to the spatial organization of frequency-
specific responses within the auditory cortex. This 
phenomenon has been confirmed in many previous studies 
[8][9][10][11], particularly in BA 41 and 42 (primary auditory 
cortex). These studies typically employed a frequency range 
of 1–40 kHz and focused primarily on continuous frequency 
modulation. However, the investigation of the potential 
efficacy of tonotopy functions in instances of minor frequency 
discrepancies remains an uncharted territory. In this study, it 
was motivated by the hypothesis that "even frequency 
differences that cannot be perceived by humans could still 
lead to distinct patterns of activation in the auditory cortex". 
In general, healthy individuals can discriminate frequency 
differences of about 5 Hz, while 2–3 Hz differences are 
influenced by musical training and individual variability. 
Accordingly, this study defines “imperceptible frequency 
differences” as a 1 Hz gap between two pure sounds. The 
primary aim of this study is to develop a method capable of 
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discriminating between two pure sounds differing by 1 Hz 
using fMRI data. 

In this study, deep learning is employed to address 
frequency differences that are imperceptible to the human 
auditory system. Specifically, brain activation images are 
acquired while presenting two pure sounds differing by 1 Hz, 
and a deep learning model is used to discriminate which sound 
was presented based on the brain activity images. The primary 
challenges of this method pertain to the selection of a deep 
learning model and the method of acquiring brain activation 
images. To address the first challenge, a 3D Convolutional 
Neural Network (3DCNN) based model was adopted, 
considering the inherently three-dimensional structure of the 
brain. To address the second challenge, the focus will be on 
the two primary imaging designs employed in fMRI 
experiments: event-related design and block design. The 
event-related design is characterized by its limited capacity for 
image clarity due to the constrained temporal parameters 
allocated for imaging procedures. However, this design 
facilitates the acquisition of a substantial volume of data. 
Conversely, block design demonstrates superiority in terms of 
image clarity, a consequence of its prolonged imaging 
duration. However, this approach permits a more limited 
acquisition of data. 

In this study, we have verified the imaging designs (event-
related design and block design) that are effective for 
discrimination experiments using both designs. In previous 
works [12][13], an attempt was made to discriminate two 
sounds with a 1 Hz difference using deep learning, with the 
ROI set to BA41 and BA42 based on previous studies 
[8][9][10][11]. The findings indicated a discrimination 
accuracy of 55.90% for the event-related design and 63.41% 
for the block design, suggesting that both experimental 
designs are effective and hold promise for further 
enhancement of accuracy. 

However, since there are no comparable previous studies 
for this study, we cannot rule out the possibility that accuracy 
is low when viewed as an absolute value of 63%. Therefore, 
this report aims to further improve accuracy compared to 
previous works [12][13]. Data augmentation has been 
recognized as an effective approach to enhancing accuracy. 
While a variety of data augmentation methods exist, the report 
focuses on ROI augmentation. The rationale for this focus is 
that the increased activation information obtained through 
ROI augmentation may enhance the performance of deep 
learning models. The proposed region for augmentation is 
BA22 (higher-order auditory cortex). As previously 
mentioned, tonotopy has been primarily confirmed in BA41 
and 42; however, its presence has also been suggested in 
BA22 [14]. However, given the paucity of studies on tonotopy 
in BA22, the efficacy of BA22 in studies targeting frequency 
differences, as evidenced in this report, remains uncertain. 
Consequently, in this report, BA22 is additionally designated 
as a region of interest, assuming that tonotopy is also active in 
this area alongside BA41 and 42. In addition, given the 
utilization of two designs in previous works [12][13], this 
report employs two designs as well. This report is an 
individual analysis. 

The structure of this report is as follows. Section II 
delineates the methodologies employed in brain activation 
imaging and frequency discrimination techniques. Section III 
presents the discrimination results obtained using the 
constructed deep learning model. Section IV investigates the 
factors contributing to improved discrimination accuracy and 
describes the discrimination techniques found to be effective 
based on the study's findings. Section V provides a summary. 

II. METHOD 

The procedure is outlined as follows. Brain activation 

images are obtained using an fMRI scanner while presenting 

two auditory stimuli differing by 1 Hz. These images are 

annotated using Statistical Parametric Mapping (SPM) 12 for 

input into deep learning. The annotated 3D data is then 

employed to train the model and perform discrimination 
using training data with a 3DCNN. A detailed explanation is 

provided in the subsequent section. 

A. fMRI experiment 

The fMRI experiment was conducted to obtain brain 
activation images for use in discrimination experiments. The 
fMRI apparatus utilized is the MAGNETOM Prisma 3T, 
manufactured by SIEMENS. The auditory stimuli consisted 
of pure sounds at 523 Hz and 524 Hz, with sound pressure 
levels ranging from 78 to 83 dB. Auditory stimuli were 
generated using Steinberg Nuendo 10.3 and delivered to 
participants via Opto ACTIVE thin headphones employing 
Active Noise Control to attenuate fMRI scanner noise. In this 
experiment, one 20-years-old healthy male subjects 
participated, who do not have abnormality in the simple 
hearing test. The imaging design will be a block design (Task 
9 s, Rest 15 s) and an event-related design (Task 3 s, Rest 3 to 
21 s in multiples of 3). This report uses brain activation images 
obtained in a previous work [12]. 

B. Annotation 

The subsequent section will address the implementation of 
data analysis for deep learning. The conversion of the DICOM 
format to the NIfTI-1 format is necessary for the subsequent 
analysis using brain image analysis software SPM12. 
Subsequently, the preprocessing and individual analysis 
should be performed. Preprocessing included several steps: 
realignment to correct head motion, slice timing correction to 
adjust temporal differences across slices, coregistration with 
structural images, spatial normalization, and spatial 
smoothing. The objective of individual analysis is to extract 
brain activation characteristics through the random selection 
of multiple images, the implementation of statistical analysis, 
and the creation of contrast. In this report, regarding the 
training data, we created a single statistical image from two 
scans of brain activation images that had undergone 
preprocessing and obtained the following training data (per 
frequency) for each design by changing the combination of 
the two scans. There were 192 training data points for the 
event-related design and 80 training data points for the block 
design. The test data were obtained as a single statistical 
image from one scan, resulting in 24 test data points (per  
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TABLE I. NUMBER OF TRAINING DATA AND TEST DATA. 
LINE 1 IS EVENT-RELATED DESIGN. LINE 2 IS BLOCK DESIGN. 

Designs Training data Test data 

Event-related 192 24 

Block 80 24 

 
TABLE II. HYPER PARAMETER IN LEARNING. 

Kernel size (Ks) 3, 4, 5, 6, 7 

Filters (F) 16, 32 

Batch size (Bs) 8, 16, 32 

 
frequency) for each design. These are shown in Table 1. The 
ROIs are defined as BA41, 42, and 22, and for each contrast, 
the corresponding t-values and spatial coordinates are 
extracted. For each contrast, normalized values ranging from 
0.0 to 1.0 are exported in CSV format. Using the spatial 
coordinates, the data are transformed into 3D arrays with 
dimensions H41×W50×D15 for input into the deep learning 
model. Voxels outside the ROI are assigned to a value of 0.0. 

C. Frequency discrimination method 

In this report, we utilize 3DCNN, a variant of deep learning, 
to discriminate auditory stimuli. 3DCNN represents a model 
that extends the capabilities of CNN, which are designed for 
image recognition, to three dimensions. 3DCNN utilizes 
convolution and pooling operations in three dimensions to 
extract features, thereby expanding the scope of image 
recognition in the third dimension. The architecture of the 
3DCNN consists of sequential convolution and pooling layers, 
followed by a fully connected layer positioned directly before 
the output layer. To perform binary discrimination, the model 
employs two output neurons, with the softmax activation 
function applied to convert the outputs into probabilistic 
scores. The hyperparameters used for training are listed in 
Table 2. A grid search was performed to evaluate all possible 
combinations of parameter values specified in the table. 
Training was considered complete when the error rate 
dropped below the threshold of 0.1. The trained model was 
subsequently applied to discriminate the two auditory stimuli 
using test data. 

III. RESULTS 

The discrimination accuracy is defined as the number of 
correct answers obtained by inputting the test data into the 
trained model that has been successfully completed, divided 
by the total number of test data points, which is 24. A grid 
search was performed, and the discrimination accuracy and 
hyperparameters that achieved the highest accuracy after ROI 
expansion are shown in Table 3. Furthermore, as illustrated in 
Table 4, the discrimination accuracy and hyperparameters that 
were found to be most effective prior to ROI expansion are 
documented, as outlined in [13]. Table 4 presents the results 
for 192 training data and 24 test data. 

IV. DISCUSSION 

Given that this report constitutes a two-classification 
discrimination, the probability of a correct guess by chance is 
50%, and thus the chance level is also 50%. Previous studies 
indicate that an accuracy exceeding 50% can be interpreted as 
successful discrimination [15], while an accuracy above 60%  

TABLE III. HYPERPARAMETERS AND DISCRIMINATION 
ACCURACY IN TWO DESIGNS. (ROIS: BA41, 42, 22) 

Designs Discrimination accuracy Hyper parameter 

Event-related 60.42% Ks:6, F:16, Bs:16 

Block 100% Ks:4,7, F:32, Bs:8 

 
TABLE IV. HYPERPARAMETERS AND DISCRIMINATION 

ACCURACY IN TWO DESIGNS. (ROIS: BA41, 42) [13] 

Designs Discrimination accuracy Hyper parameter 

Event-related 55.90% Ks:6, F:6, Bs:16 

Block 63.41% Ks:3, F:14, Bs:16 

 
is considered sufficiently reliable [16]. As demonstrated in 
Tables 3 and 4, an enhancement in discrimination accuracy 
was observed with ROI expansion in both designs, 
particularly in the block design. This enhancement is likely 
attributable to the incorporation of activation information 
from BA22, which contributed to the enhancement in 
accuracy. Although methodological differences from a 
previous study [14] preclude definitive conclusions, the 
results suggest a potential presence of tonotopic organization 
in BA22. 

A substantial discrepancy in the degree of discrimination 
accuracy enhancement was observed between the two designs. 
While the event-related design demonstrated a 5% 
enhancement in accuracy, the block design exhibited a 
substantial 35% improvement. This discrepancy in accuracy 
enhancement is hypothesized to be attributable to the clarity 
of the images. The disparity in image clarity between the two 
designs can be attributed to the following. The fMRI detects 
changes in cerebral blood flow induced by variations in 
oxygen demand following external stimuli, a phenomenon 
known as the BOLD effect, to acquire brain activation images. 
In essence, longer stimulus duration (presented for 9 s in the 
block design, three times longer than in the event-related 
design) enhances the BOLD effect, enabling clearer brain 
activation imaging in the block design. Thus, the notable 35% 
improvement in discrimination accuracy observed in the block 
design is considered to result from ROI expansion in clearer 
images, which substantially enhances the inclusion of 
activation-related information. In a previous work [13], the 
ROI was set to BA41 and BA42, the same as in [12], and 
accuracy was examined by doubling the training data in the 
block design. While this resulted in a 15% increase from 
approximately 48% to 63%, in absolute terms, it only 
achieved a marginally more reliable level of accuracy. In this 
report, the training data remains the same 80 data points as in 
[12]. However, the accuracy improvement achieved through 
ROI expansion is twice as much as previous work. This result 
demonstrates that ROI expansion yields higher accuracy than 
simply increasing the training data. In contrast, the lower 
image clarity in event-related designs likely limit the 
effectiveness of ROI expansion in adding activation-related 
information, compared to the block design. To achieve further 
improvements in discrimination accuracy, potential strategies 
include increasing the amount of training data. 

Based on the results of previous works [12][13] and this 
report, it was determined that the following approach is 
effective for discriminating two tones differing by 1 Hz in 
brain activation images of individuals using deep learning: 
implementing the imaging design as a block design, creating 
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statistical images from two scans (as in a previous work [12]), 
and selecting ROIs BA41, 42, and 22. Therefore, the objective 
of this study was achieved. The results of this study 
demonstrate that discrimination within the 500 Hz band is 
possible and highly accurate for individuals. However, since 
sounds encountered in daily life exist beyond the 500 Hz band, 
investigation of other frequency bands is also important. 
Furthermore, as this study involved only one examinee and is 
a preliminary investigation, increasing the number of 
participants and verifying generalization to untrained 
individuals is necessary. Furthermore, the test data used in this 
report is limited to 24 samples. From the perspective of 
generalization performance in the recognition model, there is 
room for discussion, such as increasing the test data to verify 
performance. 

V. CONCLUSIONS AND FUTURE WORK 

Given the limited number of studies decoding quantitative 
musical characteristics, this study addressed the 
discrimination of two sounds differing by only 1 Hz a 
difference imperceptible to humans. The aim of this study was 
to improve discrimination accuracy beyond that reported in 
previous works [12][13].  ROI expansion was proposed as a 
method, and discrimination experiments were conducted 
using two fMRI experimental designs, event-related and block, 
as in a previous works [12][13]. The results showed an 
accuracy improvement of approximately 5% with the event-
related design and over 30% with the block design. These 
findings demonstrate that ROI expansion is an effective 
approach for improving accuracy. Moreover, based on both 
the present results and those of previous works [12][13], it was 
determined that, for discriminating two sounds with a 1 Hz 
difference using brain activation images and deep learning, an 
effective strategy is to employ a block design for imaging, 
generate statistical images from two scans, and select ROIs in 
BA41, BA42, and BA22.  This study provides new evidence 
that the brain responds even when humans are unable to 
perceive the difference. 

Future work will include verifying generalization 
performance for untrained participants. With further progress, 
this line of this study is expected to contribute to the early 
detection of disease and to improvements in hearing aid 
performance. 
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