
Using a Large Data Model Explorer to Maintain a Healthcare Information System

Rubén Martínez Martínez∗, Francisco Javier Bermúdez Ruiz ∗

Manuel Campos Martínez ∗†, José Manuel Juarez Herrero ∗†
∗MedAI Lab, University of Murcia, Spain

†Murcian Bio-Health Institute (IMIB-Arrixaca)
Email: {ruben.martinez11, fjavier, manuelcampos, jmjuarez}@um.es

Abstract—Maintaining large scale healthcare information sys-
tems poses significant challenges due to their evolving complexity
and sparse documentation. This paper presents a methodology
and supporting tool for exploring and understanding extensive
data models, motivated by and applied on the Wise Antimi-
crobial Stewardship Support System (WASPSS) application, an
antimicrobial stewardship support system in production across
several Spanish hospitals. The proposed tool enables incremental,
interactive visualization of the Java Persistence API (JPA) based
domain model in WASPSS, including inheritance and relationships,
facilitating maintenance and onboarding. Key features include
partial view saving, entity tagging, and dynamic inheritance
propagation. An evaluation based on the Technology Acceptance
Model (TAM) confirms the tool’s perceived usefulness and ease
of use among software professionals, supporting its applicability
in real world maintenance workflows and its potential reuse in
other healthcare contexts.

Keywords-WASPSS; healthcare system; maintenance; large data
model; model explorer.

I. INTRODUCTION

Hospital acquired infections, also known as Nosocomial
Infections (NI), have become a serious public health problem.
They are defined as infections that appear 48 hours after hospital
admission and are often caused by multidrug resistant bacteria,
which have lost susceptibility to common treatments, increasing
their spread, severity, and lethality [1] [2]. Misuse of antibiotics
contributes to the emergence of new resistances, limiting
available therapeutic options [3]. NIs increase morbidity,
mortality, and hospital costs due to more complex treatments
and prolonged stays [4].

In the context described above, the WASPSS tool [5] (Wise
Antimicrobial Stewardship Program Support System) emerges,
as a decision support platform for Antimicrobial Stewardship
Programs (ASP). WASPSS was initially developed by the
University of Murcia and the Getafe University Hospital, where
it was implemented in 2015, and has since been used daily
by ASP teams as part of the National Plan against Antibiotic
Resistance. In 2018, it began piloting in seven hospitals across
various autonomous communities. Currently, WASPSS is in
production in all hospitals of the Basque Country and the
Murcia Health Service of the Region of Murcia.
WASPSS is a web application developed following the Model-

View-Controller pattern and based on standard Java technolo-
gies. It offers interactive interfaces tailored to different ASP
team profiles. The business logic is organized through façade
objects, encapsulating specific functionalities and accessing
persisted data via data access objects. Persistence is managed
by Java Persitence API (JPA) and a PostgreSQL relational

database, which serves as the central information core for
all modules. WASPSS integrates with hospital systems via an
HL7 interface, a widely used standard in clinical environments
for real time information exchange. Finally, the knowledge
modules use Drools, allowing clinical rules to be applied to
hospital data to generate alerts and support clinical decision
making by the ASP team.

The WASPSS project has been under development for over
12 years. Over this time, its codebase has grown organically,
incorporating new features and adapting to changing business
requirements. However, the project documentation has not
scaled at the same pace as the application. This hinders
onboarding new developers and maintaining the system. This
growth has far outstripped the capacity of the existing static
documentation, which has not been systematically updated at
the code’s pace. The commitment of the developing team to
software quality and ongoing development makes the effort to
enhance the application maintainability, both meaningful and
motivating. This will, in turn, facilitate to add new features,
fix bugs, or make improvements without significant prior
knowledge of the code. In addition, this also will speed up
development, reduce the risk of errors, and ease knowledge
transfer between developers. Examining further, the project
includes over 1,000 Java classes, many organized in inheritance
hierarchies and complex relationship networks. Additionally,
the JPA domain model includes over 200 Java classes, and the
database contains 166 tables across 9 schemas. These figures
contrast sharply with the sparse documentation available. A
good percentage of the code is undocumented, and there are few
tool reports. Maintenance tasks thus become difficult due to the
challenge of understanding the underlying model. Furthermore,
existing market tools for exploring information system data
models face difficulties in generating complete visual reports
or diagrams containing all the model information. This feature
is unsuitable for very large data models, as in the WASPSS
project. In other words, trying to visually represent hundreds of
entities in a single diagram becomes unintelligible to humans,
with graphics that overlap and hide much of the information.
All of this highlights the challenge of maintaining the tool, both
for reasoning about and understanding the underlying domain
model that drives the system and for grasping the structure of
resources comprising the WASPSS project itself.

Note that in the development of an information system, the
domain model represents the core of the software since it
encapsulates the fundamental knowledge, rules, and processes
of the business. Together with requirement specifications, this

51Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

HEALTHINFO 2025 : The Tenth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

https://orcid.org/0000-0003-1250-2318
https://orcid.org/0000-0002-5233-3769
https://orcid.org/0000-0003-1776-1992

model forms the foundation upon which the system is built
and evolves. In approaches like Domain Driven Design [6], it
is recognized that the true complexity of software lies not in
the technology but in the domain itself, reflecting the design
of the system. Thus, the domain model is not just another
system component, but rather the central structure guiding its
design. This work proposes a methodology for discovering and
exploring a large data model in sparsely documented large scale
information systems. The methodology is supported by a tool
that allows loading the model information to reason about it
incrementally and progressively, discovering the domain entities
structuring the application and enabling development teams to
work with customized views that allow them to segment the
part of the model they want to work on. Since the exploration
methodology relies on a visualization tool that progressively
reveals the model, it is important that the information displayed
matches the graphical context at each stage. This implies
the need to visually propagate inherited information between
entities in an object oriented paradigm–based model. The
information propagated through inheritance will be displayed
in some entities or others, depending on which entities are
currently visualized (and the inheritance involved). Specifically,
it means that our system parses each JPA entity, including its
attributes, inheritance hierarchy, and relationships, to produce
a normalized representation. Each entity is then rendered as a
node in the interactive graph, while attributes and relationships
are displayed as labeled fields and directed edges, respectively.
Inheritance is represented visually by propagating the properties
of parent classes to their child nodes when the parent is not
explicitly shown. This mapping ensures that developers can
incrementally reveal and reason about the full domain model
without overwhelming diagrams. The current version of the
tool offers only a basic level of customization for visualization.
For instance, users cannot yet selectively choose which specific
relationships to display or hide, nor can they freely reposition
individual relationship edges within the diagram.

To guide our work, we formulate the following research
questions: (i) how can the exploration and comprehension
of a large, sparsely documented data model in a healthcare
information system be improved?; (ii) what functionalities
are required in a model exploration tool to support effective
maintenance and onboarding of developers?; and (iii) to what
extent is the proposed tool perceived as useful and easy to use
by software professionals?. Research questions are aligned
to the main contributions of this work: the proposal of a
methodology for exploring large-scale, poorly documented
data models; the development of a supporting tool; and the
validation of this tool by end users.

In Section II, we enumerate the main tools that address
similar problems. Section III presents the outcomes obtained
from the proposed approach. Next, in Section IV, we evaluate
how useful the tool is perceived. Finally, in Section V, we
summarize the key findings and outline potential directions for
further research.

II. RELATED WORK

Previous research has also explored interactive visualization
techniques to manage the complexity of large healthcare infor-
mation systems. [7] proposed Owlready, an ontology-oriented
programming framework for biomedical ontologies that enables
incremental exploration and automatic classification of complex
domain models, addressing similar challenges of scalability
and maintainability. [8] introduced Health Timeline, a timeline-
based visualization that allows clinicians to progressively
explore patient records, demonstrating that focused, interactive
views improve comprehension of large clinical datasets. Like-
wise, [9] presented a richly interactive exploratory visualization
tool for electronic health records, highlighting the value of
dynamic filtering and navigation for handling extensive medical
data. These works support the need for incremental, user-
centered visualization approaches, which our proposed JPA
model visualizer extends to the maintenance of large-scale
healthcare data models.

In Java environments, complex data models with JPA entities,
relationships, and inheritance are difficult to grasp directly
from code as their size increases. To address this, several
tools and plugins provide graphical visualization of domain
models from JPA entities or database tables. Next, a brief
review of notable tools is enumerated: (i) JPA Diagram
Editor (Eclipse Dali) [10]: Free Eclipse plugin for visual JPA
editing, but limited to IDE use and lacks dynamic, interactive
diagrams; (ii) Hibernate Tools / Mapping Diagram [11]:
Shows entity mappings and relationships in read-only form;
offers basic hiding/collapsing of connections; (iii) Jeddict
(JPA Modeler) [12]: NetBeans plugin for creating and editing
entities with code–diagram sync and reverse engineering from
databases; (iv) IntelliJ IDEA Ultimate [13]: Provides a
persistence view for JPA entities with simple navigation and
layout, but limited editing options; (v) JPA Buddy [14]: IntelliJ
plugin focused on code generation with minimal visualization
features; (vi) Generic modeling tools (DBeaver, SchemaSpy,
etc. [15], [16]): Can draw database/UML diagrams but do not
handle JPA annotations or source-level models.

The conclusion after analyzing various tools is that, although
each one offers certain features that may be of interest, none
of them allow for incremental and interactive exploration
starting from an initial entity or for automatic management of
inherited attribute propagation features we consider essential
for understanding a large scale model. Moreover, most of them
do not allow saving persistent partial views of the model, nor
do they offer a smooth integration between visual editing and
an interactive, dynamic diagram.

III. RESULTS

The solution proposed in this work is based on offering,
through a support tool, the ability for developers to progres-
sively and interactively explore the application data model.
Additionally, the information displayed in the visualization
tool must be dynamic and adapted to the entities shown on
screen, according to the data propagation behavior inherent
to inheritance relationships in an object oriented data model.

52Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

HEALTHINFO 2025 : The Tenth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

Inheritance is a mechanism that allows a class (called a subclass
or child class) to inherit the properties (attributes) and methods
(behaviors) of another class (called a superclass or parent class).
In this context, when entities (classes) are related through
properties (for example, a property referencing another class),
those relationships are also propagated to the subclasses. That
is, if a superclass has a property managing a relationship with
another entity (e.g., a list of related objects), the subclass will
also inherit that relationship, allowing for the management
of relationships between objects through inherited properties.
Therefore, we propose the design and implementation of a
graphical visualization tool that enables any member of the
development team to explore and navigate the JPA model
interactively, displaying both the own class and inherited
information depending on the selected visualization elements.
A diagram based on UML class diagrams [17] will be used,
with slight visual modifications to the standard UML notation.
Since we are only interested in the structural information of the
data model, the current version of the tool omits information
about methods (functions) of each entity in favor of a clearer
visualization. Figure 1 shows an example of entities with
attributes and relationships.

Figure 1: Example of entities with attributes and one inheritance relationship.

A. Main functionalities

The basic functionalities of the application must be as
follows:
• Ability to progressively and interactively explore the model

to discover relationships and inheritance from the entities
themselves.

• Ability to dynamically add and remove entities from the
visualized diagram. Each time the diagram is modified, our
visualizer will show inherited information consistent with
the current state of the diagram.

• Ability to save and retrieve partial views of the model. This
allows designing visualizations focused on specific parts of
the model, facilitating understanding and reasoning.

• Ability to categorize entities using tags. This allows filtering
the model based on the tags applied to entities, enabling the
display of all entities with a specific set of tags selected by
the developer with a single click.
Although the visualizer developed in this work was designed

with the primary goal of integration into the WASPSS project
ecosystem, it is important to highlight that its implementation

is not tightly coupled to that system. The modular architecture
of the visualizer allows it to be reused in other contexts, as
long as the data model can be adapted to be consumed by the
visualizer. The only requirement is that the model be object
oriented, i.e., composed of entities with attributes, relationships,
and hierarchical structures similar to those of an object oriented
system. This domain independence opens the door for the
visualizer to be applied in other medical information systems
beyond WASPSS, reinforcing its value as a generic tool for
exploring complex data models.

B. Architecture of the Visualization Tool

The architecture consists of two functional units (see
Figure 2):
• A parser responsible for analyzing and extracting information

from the data model based on project resources (source code).
• An interactive visualizer that displays the information ex-

tracted from the data model.

Figure 2: Architecture of the Visualization Tool.

C. Extraction and Normalization of the JPA Model

The solution arises from the need to visually represent
a complex data model. To this end, a parser has been
developed that automatically analyzes the project’s source
code and extracts structured information about JPA entities
and their relationships. This process identifies each entity, its

Figure 3: User Interface of the Visualization Tool.

53Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

HEALTHINFO 2025 : The Tenth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

inheritance hierarchy, and the different types of relationships.
The output is a set of structured representations (one per
entity) stored in a avaScript Object Notation (JSON) file,
which can be processed by subsequent components of the
solution. Thanks to the use of JSON as an intermediate
format, the visualizer is not directly coupled to the WASPSS
project and can be reused in any other information system for
which source code is available. This means that, as long as
a properly structured JSON file is available, the tool can be
reused without modifications. This promotes reusability of the
visualizer in other contexts and ensures greater flexibility and
scalability. The JSON metamodel defines the basic properties
for an entity identified by the parser. These are: className,
parentClassName (the class from which it inherits, if
any), packageName (the full class path), and a collection of
fields, which are defined by fieldName, fieldType,
isRelationship (indicating whether the attribute is a sim-
ple attribute or whether it represents a relationship with another
entity), relationshipType (indicating the cardinality of
the relationship) and targetEntity (indicating the entity
with which it is related).

D. Storing Information

The parser analyzes the project source code (i.e. the JPA
classes) to extract the model representation in JSON format.
This JSON file is then loaded via a script into a MongoDB
database (running in a Docker container). The choice of
database is due to its ease of working directly with JSON
documents. The visualizer uses the database to read the data
model and persist interactive visualization information from
developers, managing views and tags.

Once the model is extracted, the data is inserted into a
database via a script. This database, in addition to containing
the complete list of model entities and their relationships,
provides the visualizer with the capability to store user created
views and entity assigned tags. Therefore, this component acts
as the system persistence core and ensures data consistency
throughout user interaction with the visualizer.

E. Interactive Model Visualization

The core functionality of the solution is a graphical interface
that allows users to interactively explore the entity model.
Through this interface, the user can:
• Visualize JPA entities as nodes in a dynamic diagram.
• Explore relationships between entities, visually represented

as directed edges.
• Save partial views of the model for later retrieval.
• Tag entities to aid organization and filtering.
During usage, the visualizer automatically manages the visual
graph’s consistency, including the incorporation of inherited
relationships when ancestor entities are not present in the
current view.

F. Interface Elements

The entity visualizer interface includes various interactive
elements designed to facilitate data model exploration and

customization. At the top of the interface are three key
components (see Figure 3):
• View Selector: allows the user to switch between

different views previously created. A view is a set of saved
entities that can later be restored.

• Tag List: provides tag based filtering to reduce the
number of visible entities, showing only those associated
with selected categories. This is useful for locating all entities
belonging to a specific concept without searching one by
one.

• Entity Search: offers a text field to search for a specific
entity by name or navigate through the full list.
In the central workspace, entities are represented as nodes.

Each node appears as a rectangle with three buttons, each pro-
viding specific functionality (explained below). Relationships
between entities are shown as directed edges, labeled with the
name of the relation (e.g., patient) and its cardinality. At the
top right, three additional buttons provide global functionality:
• Save View: stores the current diagram layout as a new

view, including entities, relationships, and their positions.
• Clear Diagram: removes all visible nodes and any

selected views or tags from the current diagram.
• Show/Hide Properties: toggles the visibility of all

entity fields globally.
A minimap is displayed in the bottom-right corner, of-

fering a quick overview of the canvas and enabling faster
navigation. Finally, in the bottom-left, there are navigation
controls enabling: Zoom in / Zoom out, Center view
and Lock diagram (temporarily disables interaction to
prevent accidental changes).

Figure 4: Node example.

Each node consists visually of a header with the entity name
and three buttons. As seen in Figure 4, from left to right:
• Tag Button: opens a dropdown for assigning or removing

tags. Users can search, activate, deactivate, or create new
tags. Any change triggers an call to sync the backend.

• Show/Hide Fields Button: toggles the visibility of
the entity’s attribute list via an internal boolean. It also
respects the global "show all fields" toggle.

• Connection Button: arguably the most important one.
It displays a dropdown of related entities not yet shown
in the diagram. These relationships include explicit ones,
inherited children, and non-visible ancestors. When a user
selects an entity, handleSelectedEntity is called to add the
node and update edges automatically, enabling interactive
discovery of the data model.

G. User Experience Enhancements

Several technical improvements were added to enhance user
experience:

54Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

HEALTHINFO 2025 : The Tenth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

Figure 5: Simple relationship. Figure 6: Multiple relationship. Figure 7: Reflexive relationship.

• When opening the tag creation modal, the focus is automati-
cally placed in the input field.

• Scrolling inside the relationship dropdown does not affect
canvas zoom.

• Clicking outside dropdowns closes them automatically (e.g.,
when navigating or using top filters).

H. Relationships

Figures 5, 6, and 7 illustrate simple, multiple, and reflexive
relationships, respectively. Custom algorithms calculate the
exact label and cardinality positions, accounting for node
geometry and displacement. These implementations ensure
uniform, clear rendering of semantic model elements. Three
key elements are rendered per relationship:
• Relation Label: shown near the center of the edge;

represents the field name of the association.
• Source Cardinality: marked with * for “ManyTo. . . ”

cases, shown near the source node.
• Target Cardinality: marked with * for “. . . ToMany”

cases, shown near the target node.
All labels are interactive: clicking on any of them highlights

the corresponding edge and its metadata (e.g., increasing size
or changing color).

I. Saving and Managing Views

One key feature is the ability to save partial views of the
data model. This allows users to focus on a subset of entities
relevant to a specific task, hiding unrelated elements. Internally,
each view stores exact canvas positions so when reloaded,
the layout is reconstructed identically, maintaining the user’s
custom organization.

An interactive dropdown enables quick access to saved views:
• Typing in the search field dynamically filters available views.
• Selecting a view automatically loads its entities and their

positions.
• Each view includes a delete button for direct removal.

J. Filtering by Tags

The main goal of tag based filtering is to allow users to
instantly retrieve all entities marked with a certain tag. These
tags can be user defined at any point. The tag dropdown appears
when clicking the label icon in the nodes. It allows assigning
existing or creating new tags. The tag creation modal includes
validations to prevent empty or duplicate names.

IV. EVALUATION

A validation of the tool was carried out by different users
following the Technology Acceptance Model (TAM) [18],
which allows us to understand how useful the tool is perceived
to be, according to its purpose and the methodology defined
in this work. We will describe the methodology used to
evaluate the visualizer, as well as the results obtained and
the conclusions drawn from them.

A. Technology Acceptance Model

TAM is one of the most established frameworks for analyzing
how users adopt new technologies. This framework identifies
two main determinants: perceived usefulness (the degree to
which using the tool improves task performance) and perceived
ease of use (the degree to which using the tool requires minimal
effort) [18]. Therefore, this evaluation determines whether the
tool meets two key hypotheses derived from TAM:

• H1. The application is simple and intuitive to use.
• H2. The application is perceived as useful.

Additionally, the model considers the user attitude toward
the technology and their future intention to use it [18].

B. Evaluation Instrumentation

To conduct the evaluation of our visualizer, we designed an
exercise [19] to be carried out using the application. Once the
exercise was completed, the participants were asked to fill out
a questionnaire divided into two sections:

• Demographics and experience: Age, gender, level of experi-
ence using computers, and experience with web applications.

• TAM Dimensions: Questions [20] grouped by perceived ease
of use (items B1 to B9), perceived usefulness (items B10 to
B16), attitude toward use (items B17 and B18) and intention
to use (items B19 and B20) the visualizer.

C. Participant Demographics

The questionnaire was administered to 13 faculty members
and staff from the Faculty of Computer Science at the
University of Murcia. 61.5% of the participants were male
and 38.5% female. The average age was 39.23 years. Most
participants reported a high level of experience with both
computer use and web applications.

55Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

HEALTHINFO 2025 : The Tenth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

D. Validation Results
Based on the responses collected, the mean values and

standard deviation were calculated for each item using a 5-point
Likert scale (1 = Strongly disagree, 5 = Strongly agree). The
results obtained reflect an overall positive assessment of our
visualizer by the participants. We can observe this in Table I.

TABLE I: MEANS AND STANDARD DEVIATIONS

Questions Mean Stand. Dev. Questions Mean Stand. Dev.

B1 4.69 0.48 B11 4.92 0.28
B2 4.46 0.52 B12 4.46 0.88
B3 4.92 0.28 B13 4.85 0.55
B4 4.85 0.38 B14 4.23 1.09
B5 4.62 0.51 B15 4.46 0.66
B6 4.69 0.63 B16 4.92 0.28
B7 4.85 0.38 B17 4.85 0.38
B8 4.92 0.28 B18 4.69 0.63
B9 4.77 0.60 B19 4.69 0.48

B10 4.77 0.44 B20 4.77 0.44

For Perceived Ease of Use (items B1 to B9), a mean score
of 4.75 was obtained, indicating that users found the visualizer
easy and intuitive to use. The questions related to Perceived
Usefulness (items B10 to B16) achieved a mean score of 4.66,
highlighting that participants view the visualizer as a functional
and valuable solution. The questions related to Attitude Toward
Use (items B17 and B18) had a mean score of 4.77, indicating
that participants believe using the visualizer is a good idea.
Finally, the Intention to Use (items B19 and B20) received a
mean score of 4.73, suggesting a strong willingness to use the
visualizer in a real world context. The four values are close
to 5, which corresponds to the rating Strongly Agree. These
results allow us to conclude that our visualizer shows high
levels of user acceptance.

V. CONCLUSION AND FUTURE WORK

This work presents a methodology and tool to support the
exploration and maintenance of large scale, poorly documented
data models in healthcare information systems. Applied to the
WASPSS platform, the tool enables incremental, inheritance
visualization of complex JPA based domain models, signif-
icantly improving comprehension and maintainability. Our
solution allows developers to interactively explore entities,
manage customized views, and filter components using tags.
The modular architecture ensures reusability beyond WASPSS,
offering potential benefits for other object oriented medical
systems. The positive results from the user evaluation, based
on the TAM demonstrate that the tool is both intuitive and
effective, confirming its value in real world development.

Future work will focus on extending the tool with col-
laborative features, model editing capabilities (such as the
ability to show/hide relationships or reposition edge labels),
and integration with automated documentation pipelines. In
addition, we plan to extend the evaluation by increasing the
number of participants and including professionals outside the
academic environment, such as developers and IT staff from
companies, in order to obtain a broader and more representative
assessment of the tool.

ACKNOWLEDGMENT

This work was partially funded by the CON-
FAINCE project (Ref: PID2021-122194OB-I00) by
MCIN/AEI/10.13039/501100011033 and by “ERDF A
way of making Europe”, by the “European Union”.

REFERENCES

[1] A. Iqbal et al., “Nosocomial vs healthcare associated vs
community acquired spontaneous bacterial peritonitis: Network
meta-analysis”, The American Journal of the Medical Sciences,
vol. 366, no. 4, pp. 305–313, 2023.

[2] R. B. McFee and G. G. Abdelsayed, “Clostridium diffi-
cile”, Disease-a-Month, vol. 55, no. 7, pp. 439–470, 2009,
Clostridium difficile: Emerging Public Health Threat and Other
Nosocomial or Hospital Acquired Infections.

[3] WHO Regional Office for Europe and European Centre for
Disease Prevention and Control, Antimicrobial resistance
surveillance in europe 2022 – 2020 data, Copenhagen, 2022.

[4] R. E. Nelson et al., “National estimates of healthcare costs
associated with multidrug-resistant bacterial infections among
hospitalized patients in the united states”, Clinical Infectious
Diseases, vol. 72, no. Supplement1, S17–S26, Jan. 2021.

[5] B. Cánovas Segura, A. Morales, J. M. Juarez, M. Campos,
and F. Palacios, “Waspss: A clinical decision support system
for antimicrobial stewardship”, in Recent Advances in Digital
System Diagnosis and Management of Healthcare, K. Sartipi
and T. Edoh, Eds., IntechOpen, 2020.

[6] E. Evans, Domain-driven design: tackling complexity in the
heart of software. Addison-Wesley Professional, 2004.

[7] J.-B. Lamy, “Owlready: Ontology-oriented programming in
python with automatic classification and high level constructs
for biomedical ontologies”, Artificial Intelligence in Medicine,
vol. 80, pp. 11–28, 2017, ISSN: 0933-3657.

[8] A. Ledesma et al., “Health timeline: An insight-based study
of a timeline visualization of clinical data”, BMC Medical
Informatics and Decision Making, vol. 19, Aug. 2019.

[9] C.-W. Huang et al., “A richly interactive exploratory data anal-
ysis and visualization tool using electronic medical records”,
BMC medical informatics and decision making, vol. 15, p. 92,
Nov. 2015.

[10] Eclipse-Foundation, Dali java persistence tools, https://projects.
eclipse.org/projects/webtools.dali, Last accessed: July 13, 2025.

[11] Red-Hat, Hibernate tools, https : / / tools . jboss .org / features /
hibernate.html, Last accessed: July 13, 2025.

[12] Jeddict-Project, Jeddict - jpa modeler and more, https://jeddict.
github.io, Last accessed: July 13, 2025.

[13] JetBrains, Jpa in intellij idea, https://www.jetbrains.com/help/
idea/jpa-buddy.html, Last accessed: July 13, 2025.

[14] J. B. Team, Jpa buddy — productivity tool for jpa/hibernate
developers, https://www.jpa-buddy.com, Last accessed: July
13, 2025.

[15] D. Corp., Dbeaver — universal database tool, https://dbeaver.io,
Last accessed: July 13, 2025.

[16] S. Team, Schemaspy — database documentation tool, https:
//schemaspy.org, Last accessed: July 13, 2025.

[17] I. Jacobson, G. Booch, and J. Rumbaugh, UML: The Unified
Development Process. Addison-Wesley, 2000.

[18] F. D. Davis, “Perceived usefulness, perceived ease of use, and
user acceptance of information technology”, MIS Quarterly,
vol. 13, no. 3, pp. 319–340, 1989.

[19] https : / / github . com / fjavier - umu / healthinfo25 / blob / main /
exercise, Last accessed: July 13, 2025.

[20] https : / / github . com / fjavier - umu / healthinfo25 / blob / main /
questionnaire, Last accessed: July 13, 2025.

56Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

HEALTHINFO 2025 : The Tenth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

https://projects.eclipse.org/projects/webtools.dali
https://projects.eclipse.org/projects/webtools.dali
https://tools.jboss.org/features/hibernate.html
https://tools.jboss.org/features/hibernate.html
https://jeddict.github.io
https://jeddict.github.io
https://www.jetbrains.com/help/idea/jpa-buddy.html
https://www.jetbrains.com/help/idea/jpa-buddy.html
https://www.jpa-buddy.com
https://dbeaver.io
https://schemaspy.org
https://schemaspy.org
https://github.com/fjavier-umu/healthinfo25/blob/main/exercise
https://github.com/fjavier-umu/healthinfo25/blob/main/exercise
https://github.com/fjavier-umu/healthinfo25/blob/main/questionnaire
https://github.com/fjavier-umu/healthinfo25/blob/main/questionnaire

	Introduction
	Related work
	Results
	Main functionalities
	Architecture of the Visualization Tool
	Extraction and Normalization of the JPA Model
	Storing Information
	Interactive Model Visualization
	Interface Elements
	User Experience Enhancements
	Relationships
	Saving and Managing Views
	Filtering by Tags

	Evaluation
	Technology Acceptance Model
	Evaluation Instrumentation
	Participant Demographics
	Validation Results

	Conclusion and Future Work

