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Abstract—Walking is an easy way to exercise that can maintain 

and improve health. Quantifying the benefits of walking 

exercise would make health promotion more effective. The 

purpose of this study is to estimate lower limb joint moments 

during daily walking in order to support active healthcare by 

oneself. Using acceleration data acquired from a large number 

of wearable sensors, it is not possible to estimate joint moments 

based on kinetic theory alone. Therefore, this study proposes a 

method for estimating joint moments using deep learning from 

measured single-axis acceleration data only, considering the 

ease of measurement. The accuracy of estimation on the three 

lower limb joint moments in the stance phase is shown and the 

benefits of the proposed method are discussed.  

Keywords- Self-healthcare; Gait analysis; Wearable sensing; 

LSTM. 

I.  INTRODUCTION 

One of the quantitative parameters to validate the load of 
exercise is the lower limb joint moment (joint torque). This 
is because muscle activity can be estimated from joint 
moments [1]. Therefore, joint moment is also a parameter 
used for diagnosis in orthopedic and rehabilitation clinics. In 
this study, we propose a method to easily obtain joint 
moments in daily life. If this method can be systematized, we 
believe that it will contribute to enhancing the effectiveness 
of exercise by quantitatively and visually confirming the 
effects of daily health care exercises by oneself. In other 
words, support for active self-healthcare can be realized. In 
this study, first, we will estimate the lower limb joint 
moments during the stance phase of walking exercise in a 
simplified manner. 

The conventional method for obtaining joint moments 
during gait with high accuracy is generally to calculate them 
by inverse dynamic theory using statistical values (e.g., mass, 
center of gravity position, and moment of inertia, of body 
part) from ground reaction force data and coordinates, 
acceleration, and angular velocity of body part. The accuracy 
is high when multiple large installed force plates and an 
optical motion capture system are used as measurement 
devices. However, these devices are limited in installation 
locations and are expensive, so they are limited to use in 
specialized institutions such as hospitals and rehabilitation 
facilities, and are not applicable to measurements in daily life. 
An alternative to these devices is the use of wearable inertial 
sensors. Kawamura et al. [2] measured body part 

acceleration with wearable inertial sensors and calculated 
lower limb joint moments during running from inverse 
dynamics theory using statistical values. In our previous 
report [3][4], we also investigated the use of wearable 
inertial sensors during walking and obtained some results. 
However, the method to calculate lower limb joint moments 
from acceleration as in the previous report can only be 
applied to the single support phase, because the double 
support phase, which is not present in running but is present 
in walking, is a statically indeterminate structure. In addition, 
to ensure high accuracy, the number of sensors must be 15 in 
order to include the entire body. Furthermore, the accuracy 
of joint moment estimation falls as the error in the dynamic 
acceleration measured accumulates as the number of body 
parts to be considered increases.  

Therefore, this study attempts to estimate joint moments 
using deep learning from the measurement information of 
wearable inertial sensors. A previous study [5] used machine 
learning to predict joint moments and even joint angles. This 
study used multiple parameters simulated from measured 
data using optical motion capture systems and multiple 
inertial sensors as input data, and further expanded the data 
set by data augmentation. In these cases, it is not easy to 
prepare a large number of sensor systems and intelligent 
signal processing. Therefore, this proposal uses only one 
wearable inertial sensor for measurement when the user 
estimates, even if errors are introduced, and only actual 
measured data. The creation of a pre-prepared trained deep 
learning model requires a high degree of accuracy, so force 
plates and optical motion capture system must be used, but 
again, only calculated values from actual measured data are 
used. In addition, only one wearable inertial sensor is used 
for estimation. In the future, estimation using only users 
smartphone is a feasible method. This will help the case of 
effective active self-health care. In this paper, we describe 
the proposed method and verify the estimation accuracy. 
Then, we would like to consider whether it is possible to 
incorporate easy observation of joint moments into daily life.  

The rest of this paper is organized as follows. In Section 
II, we present the proposed estimation method, then explain 
the walking experiment to acquire deep learning data and its 
data processing method, and then describe the method for 
building deep learning models. Section III shows and 
discusses the estimated results. Finally, Section IV 
summarizes this paper and describes future work.  
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II. METHODS 

An outline of the proposed method is shown in Figure 1. 
In the proposed method, three deep learning models are 
constructed for each joint by learning the relationship 
between the time series data of single-axis acceleration 
acquired from wearable sensor and the correct values of 
three lower limb joint moments in the sagittal plane, 
respectively. Untrained single-axis acceleration data not used 
for learning are input to these learned deep learning models, 
and the estimated values of the joint moments are the output.  
For simplicity, the acceleration data is the same single-axis 
time series data for all three joints.  
 

＜Training and Validation data＞
• Single-axis acceleration data

• Hip joint moment data

• Single-axis acceleration data

• Knee joint moment data

• Single-axis acceleration data

• Ankle joint moment data

Ankle
joint
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Figure 1.  Outline of the proposed method. 

 

Figure 2.  Wearing position of inertial sensors. 

The experiment for data acquisition is described next. 
Two healthy male subjects (age 22±0 years, height 

1.66±0.07 [m], weight 74.0±12.7 [kg]) participated in the 
experiment. This experiment was conducted after obtaining 
approval from the University's Ethics Review Committee 
(No. 176) and after explaining the experiment to the subjects 
and obtaining their consent. 

Three force plates (TF-6090, TF-4060: Tech Giken) and 
an optical motion capture system (MAC 3D System: Motion 
Analysis) are used to derive the lower limb joint moments to 
be used as correct values. In addition, wireless wearable 
inertial sensors (MTw2: Movella) consisting of 3-axis 
accelerometer, 3-axis gyro sensor, and 3-axis magnetometer 
are used to acquire acceleration data to be used as training 
and validation data and test data. Ultimately, only one 
inertial sensor common to all three joints is used during 
estimation, and only that one axis is used. Therefore, in order 
to determine the suitable inertial sensor mounting position, 
the inertial sensors are mounted at four locations (Figure 2): 

pelvis, thigh, lower leg, and dorsal foot during the data 
acquisition experiment. 

The experimental subject walks on the walking path; 50 
trials of 10 steps per trial are performed. Three force plates 
are placed on the 5th to 7th step (steady walking) of the 
walking path, and the subject is required to take only one 
step on each of these force plates. The sampling frequency of 
each device is uniform at 100 Hz. 

After the walking experiment, lower limb joint moments 
are derived using inverse dynamics analysis software 
(KinTools RT: Motion Analysis) based on a total of 29 
three-dimensional coordinate positions on the whole body 
obtained from the optical motion capture system and three-
dimensional ground reaction forces from the force plates. 
The obtained lower limb joint moments are values in the 
world coordinate system. On the other hand, the acceleration 
output from the wearable inertial sensor is data in a local 
coordinate system that has been corrected for the motion 
caused by wearing the sensor. Therefore, using the angular 
velocity data obtained from the inertial sensor, the 
acceleration was also prepared as data converted from the 
local coordinate system to the world coordinate system. 
When using acceleration in the world coordinate system, 
high estimation accuracy can be expected because the 
coordinate system is unified with the joint moments. On the 
other hand, when using acceleration in the local coordinate 
system, estimation can be realized with acceleration sensors 
alone, without using inertial sensors, because angular 
velocity data used only for coordinate conversion is 
unnecessary. In general, acceleration sensors are less 
expensive and easier to obtain than inertial sensors. We 
believe that this is an advantage. 

All data obtained were smoothed by low-pass processing 
with a cutoff frequency of 9 Hz. 

In the present study, only the stance phase, which causes 
ground reaction forces and places a high burden on the joints, 
is considered in the range of estimation. The left leg is the 
target. Vertical ground reaction force data obtained from the 
force plate were used to determine the ground and release 
times during the stance phase of the left leg. Based on these 
times, joint moments and acceleration data for the stance 
phase of the left leg only were extracted and combined, 
respectively. Since the number of data differs from trial to 
trial, the acceleration data and the respective lower limb joint 
moments for approximately 40 of the 50 trials are used as 
training data, and those from the 41st trial are used as 
validation data. For the remaining nine trials, the acceleration 
data is used as test data and the lower limb joint moments are 
used as correct values for accuracy verification. As an 
example, Figure 3 shows the acceleration in the walking 
direction in the world coordinate system at the dorsal foot of 
subject A and the hip joint moment of the left leg. The green 
dashed box is the training data. 

The learning algorithm for deep learning is Long Short-
Term Memory (LSTM), which is suitable for time series 
waveform estimation. This decision is the result of 
comparing LSTM, Recurrent Neural Network (RNN), and 
Gated Recurrent Unit (GRU) in prior experiments. The 
hyperparameters determined by trial and error are shown in 
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Table I. The number of input data was set for each subject 
based on the estimated correlation coefficients for nine trials. 
The appropriate values for subjects A and B were 65 and 62, 
respectively. 

 

Figure 3.  50 trials of single-axis acceleration measurement data and joint 

moment calculation data. 

TABLE I.  LEARNING CONDITIONS. 

Number of hidden layers 50 

Number of epochs 50 

Batch size 32 

Learning rate 0.001 

III. RESULTS 

To determine the mounting position of the inertial sensor 
that obtains single-axis acceleration data, we performed 
individual learning for subject A with all 3-axis acceleration 
data in the world coordinate system obtained from 4 inertial 
sensors for each of the three joints. Then, we estimated with 
unknown test data for subject A. As results, the dorsal foot 
acceleration in the walking direction was selected from the 
twelve data points. This is because a balanced and high 
estimation accuracy was obtained for all three lower limb 
joint moments in subject A. In this section, the results are 
presented.  

The trained deep learning models for each subject were 
created using training and validation data, which were 
acceleration in the walking direction obtained from the 
wearable inertial sensor attached to the dorsal foot. 
Subsequently, the joint moments of the left leg were 
estimated three times for nine trials using each test data for 
each subject. Table II shows the correlation coefficients and 
mean absolute errors with the joint moments calculated  

TABLE II.  ESTIMATION RESULTS. 

Subject CSa Joint 

moment 

Correlation 

coefficient 

MAEb [Nm] 

A World Hip 0.948±0.0066 4.47±0.375 

Knee 0.972±0.0020 3.53±0.253 

Ankle 0.985±0.0055 3.82±0.665 

Local Hip 0.946±0.0035 4.53±0.313 

Knee 0.969±0.0038 3.97±0.541 

Ankle 0.987±0.0044 3.85±0.505 

B World Hip 0.943±0.0006 6.88±0.205 

Knee 0.948±0.0032 4.76±0.296 

Ankle 0.975±0.0064 7.48±0.821 

Local Hip 0.938±0.0090 7.70±0.798 

Knee 0.939±0.0084 5.23±0.538 

Ankle 0.975±0.0050 9.44±1.225 

a. Coordinate System      b. Mean Absolute Error 
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Figure 4.  Estimated and measured ankle joint moments                           

for subject A in nine trials. 
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Figure 5.  Estimated and measured ankle joint moments                            

for subject A in one trial. 
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Figure 6.  Estimated and measured hip joint moments                              

for subject B in nine trials. 
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Figure 7.  Estimated and measured hip joint moments                              

for subject B in one trial. 
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based on actual measurements as the correct values. Figure 4 
shows the results of nine trials of ankle joint moments for 
subject A, and Figure 5 shows only the ninth trial of Figure 4. 
From Table II, this was generally the highest correlation 
coefficient among all the estimations. Figure 6 shows the 
results of nine trials of hip moments for subject B, and 
Figure 7 shows only the ninth trial of Figure 6. From Table II, 
this was generally the lowest correlation coefficient among 
all the estimations. In these figures, the blue line shows the 
estimated values using acceleration in the world coordinate 
system, the gray line shows the estimated values using 
acceleration in the local coordinate system, and the orange 
line shows the correct values. The stance phase begins with 
the double support phase, passes through the single support 
phase in which the other leg (the right leg in this case) is in 
the free leg phase, and ends with the double support phase in 
which the other leg is grounded again. In Figures 5 and 7, the 
yellow dashed box indicates the single support phase, and 
the others indicate the double support phase.  

In Table II, the correlation coefficients between the 
correct and estimated values are all above 0.9, indicating the 
presence of a relatively strong positive correlation. 
Furthermore, the strength of the correlation can be observed 
in Figures 4 and 6. The mean value of MAE presented in 
Table II is 7.4% of the mean body mass, which is small, and 
the standard deviation is 0.74%, which is also small. In other 
words, Table II and Figures 4 and 6 demonstrate that the 
results for nine trials were highly accurate. Figures 5 and 7, 
which show one trial, indicate the result for the single 
support phase is generally consistent, but there are steady-
state errors and errors that do not follow minor changes in 
the double support phase. As the double support phase in one 
gait cycle is short and the ankle joint moments, as shown in 
Figure 5, vary gently, so errors in the double support phase 
are not a problem. However, for the hip joint moments, as 
shown in Figure 7, the failure to capture the peak values in 
the initial double support phase may have implications. This 
is because, as previously stated, joint moments can be used 
to represent muscle activity, with the peak value representing 
the maximum load on the joint. Therefore, two sources of 
error and suggestions for improvement are listed below. The 
first is that most of the stance phase is during the single 
support phase, and there are no large moment fluctuations 
during this phase at any joint, so the number of input data 
determined from the overall correlation coefficient was 
biased toward the larger values. Second, because only the 
stance phase was extracted and combined, there were 
discontinuities at the trial junctions. We believe that by 
setting the estimation range to one gait cycle that includes 
not only the stance phase but also the swing phase, in which 
the moment is zero, continuity will be maintained and errors 
will be reduced.  

Besides, from Table II, both the correlation coefficient 
and MAE are slightly less accurate for subject B than for 
subject A. As mentioned earlier, this is due to the fact that 
the hyperparameters were set and the sensor mounting 
positions were determined using data from subject A. In 
addition, early stopping was not used in the present study. 
Therefore, there is a possibility of overfitting in the learning 

of both subjects, especially in subject B. Optimization of 
hyperparameters and sensor position, in addition to 
incorporation of early stopping into individual learning for 
subject B would have yielded better results. However, the 
results for subject B also showed good values, which means 
that even if the parameters were optimized for other subjects 
to save time and effort, good results could be obtained with a 
healthy gait.  

In addition, comparing the results in the world coordinate 
system with those in the local coordinate system, there is no 
significant difference. Therefore, this study adopts estimation 
using a local coordinate system, which requires only one 
sensor for measurement and no coordinate transformation 
during estimation.  

IV. CONCLUSION 

This study examines a convenient method for estimating 
quantitative parameters useful for self-healthcare. Therefore, 
in this paper, the three lower limb joint moments were 
considered as effective parameters, and a convenient method 
was proposed to estimate them using a trained LSTM model 
by measuring only the actual single-axis acceleration data. 
As its acceleration data, we decided to use the dorsal foot 
acceleration in the walking direction, which provided high 
estimation results for all three joint moments simultaneously.  
From the estimation results of individual learning for each of 
the two subjects, although some errors remained during the 
double support phase, the overall estimation in each of the 
two subjects was highly accurate, regardless of whether a 
world or local coordinate system was used for the 
acceleration data. Thus, it is expected to be possible to verify 
the effect of exercise by simply installing a small and 
lightweight acceleration sensor during daily walking exercise, 
without restrictions on time and place.  

In the future, the generalization performance will be 
evaluated with an increased number of subjects in order to 
improve the practical relevance of this study. Furthermore, 
we will apply the proposed method to other gaits.  
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