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Abstract—This manuscript evaluates the performance of state-
of-the-art time series analysis algorithms for depression detection
on the Generalization of LOngitudinal BEhavior Modeling
(GLOBEM) dataset. We assess Time-Series Mixer (TSMixer), Cross-
former, Gated Recurrent Unit (GRU), Convolutional Neural Network
with Long Short-Term Memory (CNN_LSTM) and introduce a
novel self-developed algorithm with the goal of increasing accuracy
over the original Reorder. While these models demonstrate
robust out-of-domain generalization, they fail to surpass the
accuracy of the baseline Reorder algorithm, which was specifically
developed for in-domain analysis by the GLOBEM team. Our
findings reveal consistently low performance across all models,
suggesting limitations inherent in the dataset rather than the
algorithms themselves. We hypothesize that the dataset’s absence
of critical variables and insufficient granularity likely limits model
convergence. This hypothesis is supported by similar studies that
achieved higher accuracy using more frequent data points with
similar architecture approaches. Based on these insights, we
suggest that future studies might benefit from incorporating more
granular sensor measurements and more sophisticated data types,
such as, but not limited to, Heart Rate Variability (HRV).

Keywords-Depression Detection; Time-Series Analysis; Deep
Learning; Domain Generalization; Mental Health.

I. INTRODUCTION

It is estimated that 3.8% of the global population suffers
from clinical depression condition. This mood disorder affects
over 280 million people, ranking it among the leading causes
of disability [1]. Despite its prevalence, this condition remains
challenging to diagnose and treat effectively, often due to
delayed detection. Traditional diagnostic methods, relying on
subjective assessments, can miss early warning signs. This
underscores the need for objective, data-driven approaches to
enable earlier and more accurate diagnosis [2] by building
applications that will allow for self-monitoring and alerting
when professional assistance is required.

In particular, recent advancements in wearable hardware have
enabled continuous monitoring of human physiological data,
including heart rate, oxygen levels, and movement patterns.
This wave of technology sparked interest in the deep learning
community to leverage this temporal information to develop
automated methods for depression detection [3][4][5]. Despite
these innovations, the efficacy of such approaches remains
limited, with results often being minimally informative and
thus remaining a subject of ongoing research and debate [3].

To the best of our knowledge, this study represents the first
evaluation of state-of-the-art time series analysis algorithms
for depression detection tasks using the GLOBEM dataset [3].
We examine various advanced models, including TSMixer [6],

Crossformer[7], GRU [8], CNN_LSTM [9]. Additionally, we
introduce a novel algorithm that enhances the baseline Reorder
[3] with LSTM capabilities. The aim for the new model is
to improve the current Reorder algorithm. By adapting all
these models, we aim to give a snapshot of the current state
of depression detection algorithms and emphasize a critical
finding: the key to improvement may lie in better data rather
than more complex algorithms.

The remainder of the paper is organized as follows: In
Section II, we present a review of related work in the field
of automated depression detection. Section III details the
methodology of our study, including the dataset used and
the algorithms evaluated. Section IV presents our results. In
Section V, we discuss the implications of our results and
the limitations of current approaches. Section VI offers the
conclusion and directions for future research.

II. RELATED WORK

Our research focuses on the application of Artificial Intel-
ligence (AI) to address critical health issues like depression,
leveraging multi-year longitudinal data. The GLOBEM dataset
[3] stands out as a pioneering dataset culled from a compre-
hensive multi-year data collection study, capturing a broad
spectrum of data from 497 unique participants, totaling 705
person-years.

In the field of Time-Series Forecasting (TSF), transformers
have revolutionized sequence modeling with their unparalleled
performance across domains [10]. However, their application
in TSF, especially for long-term forecasting, has yielded
mixed results. Some studies have highlighted limitations [11],
while others suggest that transformers may still hold untapped
potential in this area [12]. The all-Multi-Layer Perceptron
(MLP) architecture, initially conceived for Computer Vision
[13], has been repurposed for TSF through the TSMixer work
[14], enabling the handling of multivariate data and highlighting
the adaptability to large datasets and complex real-world
scenarios Recurrent Neural Networks (RNNs) [15] and their
variants [8] have long been the standard approach for time series
forecasting. Their ability to handle sequential data has made
them particularly useful for multivariate time series prediction
over many years.

Domain generalization in time-series prediction encompasses
various related works aimed at developing models capable
of performing well across different domains without the
need for domain-specific training data [16][17][18]. These
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methodologies address the challenge of domain shift, enabling
models to generalize effectively across diverse domains.

III. METHODS

This section provides a comprehensive overview of our
methodology, covering four key areas: Dataset description,
algorithms, experimental setup, and implementation details.

A. Dataset Description

The GLOBEM dataset spans four years and includes data
from 705 person-years [19][20]. It consists of two primary
data types: survey data and passive mobile sensing data.

Survey data, collected periodically throughout the study,
includes metrics from the Beck Depression Inventory-II (BDI-
II) and the Patient Health Questionnaire-4 (PHQ-4), which
serve as ground truth for depression and anxiety. This data is
critical for the binary classification of mental health states (if
the pathology is present or not), providing insights into the
severity of symptoms across a diverse population.

Passive mobile sensing data gathered via a dedicated app on
iOS and Android devices and Fitbit wearable tracks location,
phone usage, physical activity, and other behaviors in real-
time. This extensive data set, with more than 1000 distinct
features from phone usage alone (extracted and standardized
by the Reproducible Analysis Pipeline for Data Streams Open
Source platform [21]), is crucial to analyzing daily routines
and behaviors, offering a comprehensive view of the impacts
of lifestyles on mental health. Given the high dimensionality of
the raw data, a rigorous feature selection and data preparation
process was implemented. This process aimed to distill the most
impactful insights while managing computational complexity.
The final prediction model utilizes a subset of 54 key features
selected for their relevance and predictive power. Data is
structured in batches, each representing a 4-week (28-day)
period. This temporal structure allows for analyzing both
short-term fluctuations and longer-term behavioral patterns,
enhancing the dataset’s utility for depression detection tasks.

B. Algorithms

1) Reorder - the baseline algorithm: The Reorder algorithm
is a multi-task learning model that uses the continuity of
behavior trajectories to enhance domain generalization in
behavioral models; the details are shown in Figure 1. Its
primary goal is maintaining time continuity while addressing
a principal classification task. It optimizes two distinct losses
simultaneously: the binary cross-entropy loss, based on the
ground truth, and a second loss from a self-supervised task.
This task involves predicting the position of segments randomly
shuffled in a subset of all possible permutations. This self-
supervised task act as a regularizer, encouraging the network to
understand the temporal dimension and improve generalization
to the main task.

2) TSMixer - All-MLP Architecture: The TSMixer architec-
ture, part of the ALL-MLP family, is chosen for its ability to
efficiently handle multivariate time-series data through MLPs.
This model simplifies complex pattern recognition across time

Figure 1. The Reorder architecture, image from the original paper [3].

and feature dimensions, making it suitable for the computational
demands of depression diagnosis prediction [6].

3) Crossformer - Transformer Based Model: We utilize
the Crossformer architecture due to its advanced capacity for
handling long-term dependencies and high-dimensional data.
Its hierarchical integration of features allows for a nuanced
understanding of time-series patterns, crucial for accurate
predictions in time-series data [7].

4) Utilization of Models from the RNN Family: RNNs,
including GRU and LSTM variants, are employed for their
unique ability to maintain a memory of past meaningful
information, enabling effective modeling of time-dependent
data. This characteristic is particularly beneficial for tracking
the progression of depressive symptoms over time [8].

5) Reorder + CNN_LSTM: Our top-performing model, as
shown in Table I, is a novel algorithm that we have named
Reorder + CNN_LSTM. This algorithm combines the strengths
of the original Reorder model [3] with the capabilities of
a CNN_LSTM architecture. The LSTM module was added
particularly to capture long-term dependencies in the sequence,
enhancing the model’s ability to recognize patterns over
extended periods.

This hybrid approach used three times as many parameters
as the original Reorder but allowed us to leverage the benefits
of each individual component:

• Reorder: Effective temporal data handling
• CNN: Spatial feature extraction
• LSTM: Long-term dependency learning and improved

generalization
The 32,138 parameters result from merging the different

models: Reorder and CNN_LSTM. Some parameters are shared
among various modules, such as the initial and final layers,
therefore the total number of parameters doesn’t exactly add
up to the individual number of parameters of each model.

We report parameter count as a key indicator of model
complexity, especially relevant in resource-constrained envi-
ronments.

C. Experimental Setup

In this research, we adhered to the experimental framework
presented in the GLOBEM paper [3] to ensure the comparability
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TABLE I
ALL RESULTS ARE IN DESCENDING ORDER, OUR METHODS IN DIFFERENT COLORS, RESULTS ARE IN BALANCED ACCURACY. THE STANDARD DEVIATION IS
CALCULATED ON THE NUMBER OF RUNS BETWEEN THE DATASETS. ∗The number of parameters takes into account only trainable parameters - The comma is

used to separate thousands, while the point is used for decimals.

Model Number of Parameters∗ Results
Single Dataset Leave one out Pre/Post Covid

Reorder + CNN-LSTM 32,138 0.629± 0.045 0.542± 0.009 0.530± 0.001
Reorder 10,162 0.626±0.063 0.548±0.030 0.513±0.009
CNN-LSTM 24,378 0.601±0.026 0.513±0.009 0.507±0.004
GRU 62,226 0.591±0.034 0.516±0.011 0.502±0.001
Crossformer 131,527 0.590±0.001 0.503±0.003 0.516±0.002
ERM-Transformer 12,354 0.584±0.013 0.509±0.008 0.512±0.016
IRM 2,698 0.573±0.016 0.506±0.006 0.499±0.000
ERM-1dCNN 2,698 0.568±0.006 0.510±0.008 0.514±0.006
ERM-Mixup 2,698 0.568±0.006 0.501±0.008 0.507±0.004
ERM-LSTM 22,186 0.565±0.019 0.512±0.006 0.512±0.003
TSMixer 43,429 0.543±0.035 0.521±0.006 0.499±0.000
CSD-D 2,839 0.562±0.022 0.521±0.002 0.512±0.006
Siamese Network 2,664 0.545±0.025 0.509±0.010 0.515±0.002
CSD-P 2,875 0.542±0.010 0.511±0.006 0.516±0.000
ERM-2dCNN 12,994 0.533±0.013 0.510±0.006 0.504±0.006
DANN-D 3,281 0.526±0.016 0.514±0.004 0.514±0.000
MLDG-D 2,698 0.522±0.013 0.511±0.006 0.495±0.004
MLDG-P 2,698 0.508±0.011 0.510±0.003 0.500±0.003
MASF-D 2,970 0.505±0.006 0.505±0.001 0.504±0.007
DANN-P 3,578 0.502±0.002 0.500±0.000 0.500±0.000
MASF-P 2,970 0.495±0.007 0.505±0.004 0.509±0.011

of our results. Our experiments were designed to evaluate the
performance of algorithms in three distinct scenarios:

1) Single Dataset This method divides the data for each
participant within a dataset, using the first 80% for training
and the remaining 20% for testing. This setup assesses the
model’s predictive capability using past data to forecast
future outcomes.

2) Leave-One-Dataset-Out: In this cross-dataset approach,
the model is trained on three datasets and tested on
the fourth. This configuration evaluates the model’s
generalizability across different datasets.

3) Pre/Post-COVID Analysis: This setup aims to discern the
impact of the COVID-19 pandemic on model performance.
It involves training on datasets INS-1 (Data Set year 1)
and INS-2 (pre-COVID) and testing on INS-3 and INS-4
(post-COVID), with a subsequent reversal of training and
testing datasets to examine the effects comprehensively.
The different particularities of the dataset are explained
in the following "Dataset Description" section.

D. Implementation details

All computational experiments were conducted on a high-
performance workstation equipped with a GPU 4090 and
44GB of RAM, using TensorFlow and Keras for model
implementation. We adopted the Adam optimizer with an initial
learning rate of 0.001, adjusted by cosine annealing with a
decay rate of 0.95 and a step size of 20. The models were
trained for up to 200 epochs with early stopping based on the
best validation loss, allowing a minor degree of data leakage,
as noted in the original paper. Consistent with established
protocols to ensure a fair comparison with previous studies,

we used balanced accuracy as our main evaluation metric
[3]. This metric, calculated as 1

2 (Sensitivity + Specificity),
where Sensitivity = TruePositive

TruePositive+FalseNegative and
Specificity = TrueNegative

TrueNegative+FalsePositive , is particularly
effective in contexts with class imbalances. Using balanced
accuracy allows us to accurately assess and compare the
performance of our proposed approach against existing methods,
providing a robust measure of effectiveness across diverse
models and datasets.

IV. RESULTS

Table I reports the balanced accuracy for all methods, ordered
by performance on the single dataset. Our experiments are
highlighted in different colors, while results from the original
paper are in black.

Three of the four State-Of-The-Art (SOTA) models imple-
mented in this study outperform nearly all the models discussed
in the original paper, except for their top model, Reorder. The
gap between Reorder and the best-adapted model is only 2%,
with more recent models lagging behind despite having at least
twice as many parameters. This decreased return in performance
is observed across all three tasks, with Crossformers being one
exception noted below.

Our novel model, Reorder + CNN_LSTM, achieved the
highest performance in Table I. It showed a slight increase in
accuracy (0.3%) on the single dataset; conversely, it improved
accuracy on the Pre/Post Covid dataset by a non-trivial 2%. It
also showed negligible lowered performance in the leave-one-
out dataset. These improvements come with a cost of three
times more parameters, as mentioned before.
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The Pre/Post COVID dataset proved to be the most challeng-
ing task, likely due to lifestyle disruptions in individuals. Higher
accuracy on this dataset indicates better model robustness to
strong shifts in the test domain. Notably, the Crossformer
model surpassed the baseline in this task by nearly 1%, but at
the cost of having almost 10 times as many parameters.

The fourth SOTA model analyzed, TSMixer, significantly
underperformed in all tasks, lagging behind both other SOTA
models and older deep learning approaches despite requiring a
substantial increase in the number of parameters.

V. DISCUSSION

Our comprehensive evaluation of SOTA algorithms and
original deep learning methods for depression detection using
wearable data has revealed several important insights. Across
all methods, we observed consistently low accuracies, a finding
that aligns with Xu et al. [3], who noted that “Current cross-
dataset generalizability algorithms are still far from satisfactory
for real-life deployment.” This persistent challenge suggests that
despite the variety of algorithms employed, the data itself might
lack sufficiently informative values for reliable depression
detection.

The limitations of the dataset, as acknowledged by its original
authors, are particularly noteworthy. The absence of certain
sensor signals, such as Heart Rate Variability and Saturation of
peripheral Oxygen (SpO2) measures, may be critical missing
variables needed to increase accuracy and more reliably detect
depression [3][22]. This observation is further supported by
research on more granular data, such as minute-per-minute
Heart Rate Variability, which has achieved higher accuracy
rates of around 71% in similar settings [22].

Our results also indicate that increased model complexity
does not necessarily translate to improved performance. The
novel Reorder + CNN_LSTM algorithm demonstrated only
considerable improvements over the original Reorder in one
out of three tasks, raising questions about the cost-benefit ratio
of increased model complexity. Similarly, the poor performance
of the TSMixer model, despite its increased parameter count,
suggests that its linear nature may not adequately capture the
intricacies of this particular time series multivariate distribution.

VI. CONCLUSION AND FUTURE WORK

In conclusion, our research adapted new state-of-the-art
time series analysis algorithms, specifically TSMixer, Cross-
former, GRU, and CNN_LSTM for depression detection on the
GLOBEM dataset. While these algorithms exhibited robust
out-of-domain generalizability with balanced accuracy on par
with specialized architectures, they did not surpass the baseline
Reorder. We also introduced a novel variant of the Reorder
algorithm, which improved performance, especially on the
Covid cross-dataset. Nevertheless, the baseline Reorder still
maintains superior computational Pareto efficiency, offering
the best accuracy-to-parameter ratio.

Our findings indicate that larger, more complex models
perform no better than their simpler counterparts in this specific

task, similar to results in other studies where simpler tradi-
tional methods like tree-based models outperformed complex
deep models on tabular data [23]. Furthermore, the results
remain close to a non-informative baseline, and we suggest
that the current dataset may have insufficient variables for
reliable depression detection. Future studies might benefit from
incorporating both more granular measurements as well as
additional data types such as HRV and SpO2. Furthermore,
new sensors, such as the electrocardiogram (ECG) from the
Apple Watch, will become available as new devices are released
on the market enabling new research.
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