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Abstract— Real-world data on the treatment histories of
patients in everyday care contain a large amount of latent
knowledge which, to date, is almost only made available via
publication with a considerable time lag and only in relation to
specific issues. Artificial Intelligence (AI) models can capture
the knowledge contained in this kind of data and transfer it to
new scenarios. We aim to develop an AI-based tool that enables
dynamic data exploration and analysis of real-world datasets on
medical treatments. The purpose of the tool is to support
oncologists in their decision-making process through a system
that is trained with prospectively documented real-world data
on historical treatment decisions for a large population of
patients. It will facilitate research on treatment routines for
specific patient populations by providing information on likely
therapy choices. Leveraging Explainable AI (XAI) techniques,
the reasoning of the analytics system is made transparent to the
user. In this paper, we describe and test a system that follows
this concept. Specifically, we address the two use cases (a)
“therapy selection” and (b) “identification of similar patients”.
We test respective AI and XAI mechanisms with real-world
data. Our analysis provides insights into the potential of the
approach of using AI/XAI as supporting analytics system for
oncologists as well as on the data requirements.

Keywords-Explainable AI; Oncology; Medical Information
Systems.

I. INTRODUCTION

In this paper, we investigate the potential of using
Artificial Intelligence (AI) and Explainable AI (XAI)
technologies to support oncologists with a tool for exploring
medical registry data. The paper is an updated version of our
earlier technical report [1]. In our work, we envision an
analytics system that uses AI for providing oncologists with
case-specific information and leverages XAI techniques,
specifically Shapley (SHAP) values [2], to make its reasoning
transparent. The core idea is to learn from historical records
of applied treatments and transfer the learned patterns into

new settings. These historical records constitute “Real-World
Data” (RWD); that is, patients are drawn from a large sample
of individuals who received treatment for advanced Colorectal
Cancer (CRC) during routine clinical care. Our aim is to
leverage AI to make the latent knowledge that rests within
RWD accessible to oncologists. Specifically, we address the
two use cases of (a) “therapy selection” and (b) “identification
of similar patients”.

The use case of “therapy selection” is about informing
oncologists about likely therapy choices which would have
been made by other oncologists for a given (possibly fictious)
patient. Here, the AI estimates the probability that an
oncologist would prescribe a given therapy to a patient given
their characteristics. Using XAI techniques, the underlying
reasoning of the algorithm is made transparent. Precisely, the
algorithm explains which particular patient features spoke in
favor of or against a given therapy choice in a given case. In
the use case of “identification of similar patients”, the AI
model is employed to define a meaningful similarity metric
between patients. This metric is based on clinical
characteristics available to the treating oncologist.

Within this paper, we present and evaluate solutions for
the implementation of both use cases. The evaluation includes
quantitative tests as well as qualitative analyses by oncology
domain experts. Our main contributions are:

 We present a concept for using AI as supporting
analytics system for oncologists

 We analyze the applicability of an AI-based analytics
system for estimating probability distributions of
therapies, testing various algorithms

 We analyze the dependence of the analytics system’s
performance on the amount of available training data

 We analyze how XAI can render the reasoning of an
AI-based data analytics system transparent to the
treating physician
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 We present and evaluate an AI-based similarity
metric for patient records

The remainder of the paper is structured as follows. We
discuss related work in Section II. The rationale and
motivation from a medical perspective is given in Section III,
along with details of the application scenarios and specifics of
the analyzed data sets. In Section IV, we present our AI-based
approaches to support decision making for oncologists. This
is followed by a description of our experimental setup and
experimental results in Section V, and the conclusion of the
paper in Section VI.

II. RELATED WORK

Clinical Decision Support Systems (CDSS) constitute an
active area of research with applications including
diagnostics, prediction of adverse events, and drug control [3],
[4]. Existing approaches are often categorized as either
knowledge-based or non-knowledge-based. Knowledge-
based CDSS build on expert knowledge fed into the system in
the form of if-then rules. For example, such systems have been
shown to successfully decrease the risk of medication errors
in a hospital setting [5]. Non-knowledge-based (or data-
driven) approaches, in contrast, leverage real-world data by
techniques from statistics and machine learning (ML). For
example, in [6], a system based on collaborative filtering for
treatment recommendations to psoriasis patients was
presented. However, the application of non-knowledge based
CDSS remains relatively scarce until today [7]. Challenges
faced include lack of available data or low data quality and the
black-box behavior of many ML algorithms, limiting trust
placed into them by humans.

In the field of cancer therapy, the CDSS Watson for
Oncology (WFO) aimed at providing treatment
recommendations to oncologists regarding surgical
procedures, radiotherapy, and medication. A description of
the underlying technology is given in the supplement of [8].
While a meta-analysis found an overall solid agreement of
WFO’s recommendations with those by human experts [9],
this concordance has been shown to vary by country and
tumor entity [10]. For these reasons, the WFO service was
discontinued in 2022. While we see analytics as the purpose
of our tool rather than recommendation, the underlying
methodology could also be employed in the framework of a
CDSS. Therefore, our work adds to the body of knowledge
about data-driven decision support by providing tests on real-
world data about CRC treatments and analyzing a specific
XAI approach.

ML, XAI and SHAP values have been used in medicine
and specifically oncology in previous works. For example,
Nohara et al. use a SHAP-based approach to analyze models
for predicting the risk of colon cancer [11]. Moncada-Torres
et al. address breast cancer survival with machine learning for
survival analysis and use SHAP to analyze model predictions
[12]. Alabi et al. predict the survival of nasopharyngeal cancer
with machine learning and analyze the resulting models with
the XAI methods SHAP and LIME [13]. Unlike these works,
we do not aim at predicting an outcome, but the therapy.
Hence, our XAI analysis reflects factors that impact the
therapy selection. Our experiments examine the utility of the

approach for this use case. To the best of our knowledge this
is the first work presenting such an analysis on real-world
cancer data (specifically advanced/metastatic CRC).

Using SHAP for the comparison of data points has been
proposed in the context of what has been coined as
“supervised clustering” by Lundberg et al. [14]. In the medical
domain, Cooper et al. use a clustering method based on that
idea to identify subgroups in COVID-19 symptoms [15].
Likewise, our similarity metric is based on this idea of
supervised clustering. In this paper, we adapt and test the
concept for the use case of finding patient records that are
similar in a meaningful way.

III. MEDICAL BACKGROUND

New treatment options for cancer patients have emerged
over the last decades, providing oncologists and patients with
an increased number of treatment possibilities. However, with
the growing number of options, treatment decision making
becomes increasingly complex, thereby challenging medical
expertise [16]. What is the best treatment for a patient?
Currently, treatment recommendations and guidelines are
mainly based on evidence from randomized clinical trials
(RCTs) comparing new drugs to standard treatments or
placebo. Although RCTs are the best way to compare drugs or
treatment strategies, due to their strict in- and exclusion
criteria, patients recruited into them are often not
representative for those who are intended to receive these
treatments in routine clinical care. Consequently, such RCTs
can have a high degree of internal validity, but only a low level
of external validity [17]. To close this evidence gap, insights
drawn from data collected during routine clinical care should
also be considered when making treatment decisions.
However, it is important that such Real-World Data (RWD)
are of high quality to exclude biased inference (e.g., selection
or reporting bias). To investigate the potentials of ML in
supporting treatment decision making, we set up this project
using a high-quality cohort of patients being enrolled in the
prospective and multicenter Tumor Registry Colorectal
Cancer (TKK) [18].

A. Aims and Scope

Treatment decision making relies on many factors, such as
patient characteristics (e.g., age and co-morbidities), tumor
characteristics, available evidence, patient preferences, and
the physician’s expertise. The TKK database provides
information on the first two aspects: patient characteristics and
tumor characteristics. Both are very important factors when it
comes to treatment decision making, given that the available
evidence is the same and that physician’s expertise is usually
similar among trained oncologists. Based on this, we have
three aims:

 To investigate whether AI can predict — based on
given patient and tumor characteristics — what
treatment a clinician would have given to a patient.

 To investigate whether XAI methods can render the
reasoning of the AI model interpretable.

 To investigate whether AI techniques can be used to
define a meaningful similarity metric for patients.
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B. Patient Sample

For all experiments outlined below, we used a dataset of
patients with advanced/metastatic CRC from the TKK. This is
a prospective, multicenter, longitudinal, nation-wide cohort
study in Germany which started in 2006. Since then, 269
medical oncologists have recruited more than 4,000 patients
with advanced/metastatic disease. This study was reviewed by
an ethics committee and is registered at ClinicalTrial.gov
(NCT00910819). Eligible patients are 18 or older with
histologically confirmed CRC. Patients also received at least
one systemic chemo- or targeted therapy (e.g., antibodies) for
advanced/metastatic disease. Written informed consent was
obtained from all patients. All patients are treated according
to physician’s choice and are followed for a minimum of 3
years (or until death, loss to follow-up or withdrawal of
consent). At the time of enrolment, data on patient and tumor
characteristics are documented. From 2008 to 2013, the
KRAS-mutation status was collected without further
information on the tested/mutated exon(s). Since 2014, data
on the extended RAS-testing routine were documented
(KRAS-exons 2, 3 and 4 and NRAS-exons 2, 3 and 4), further
referred to as (K)RAS and (N)RAS mutation testing,
respectively.

For all experiments described herein, we used a sample of
3,563 prospectively enrolled patients with start of the first
systemic treatment for their advanced/metastatic CRC.
Further details of the TKK have been reported previously [18].

IV. TECHNICAL APPROACH AND CONCEPTS

In this section, we provide an overview of our concept for
using ML and XAI to support decision making in therapy
selection. Figure 1 shows key components and the workflow
for their use. We discuss each component and the specific
instantiation of our test implementation blow. Further details
can be found in [1].

Figure 1. Architecture and key components of the system concept

Component 1 includes patient characteristics such as
demographics, medical history, comorbidities, and tumor
characteristics. In our study, we used patient data from the
TKK registry, alongside with the chosen therapy (see Section
III B). In our study, chosen therapies are specified by the
therapy backbone (e.g., FOLFOX/CAP+IRI) and the used
antibody (e.g., anti-EGFR, anti-VEGF), if applicable. This
results in up to � = 15 distinct therapy schemes, � = 12
when reducing the principle (monotherapy, doublet
chemotherapy, or triplet chemotherapy), and � = 8 when

only indicating if an antibody was given and discarding the
antibody details. Our main analysis is carried out with 8
distinct therapies, but we also report results of the other two
variants when evaluating the algorithm’s performance.

Component 2 refers to an ML algorithm that learns to
predict which therapy is chosen for a patient based on
information about patient and disease characteristics at the
beginning of treatment. It thereby aims at mimicking the
decision made by oncologists. In principle, any supervised
learning mechanism could be used for this task. In our main
implementation we used XGBoost [19], which generally
shows good performance on tabular data [20]. We compare its
classification performance to other well-established methods
and a baseline in our experiments.

Component 3 refers to data of a specific patient for whom
the system should support therapy selection. This information
contains the subset of features that are available in the history
of treatments (component 1), that is relevant for the specific
prediction model.

Component 4 is the prediction model resulting from
training an ML algorithm on historical treatment decisions.
The model is used to estimate, for new instances, the
probability distribution of therapies given a set of patient
characteristics.

Component 5 provides local explanations for the
prediction of the ML model for a given patient. Such
mechanisms give insights on how important a given feature
was for the decision for a given instance (e.g., how a certain
mutation impacted therapy prediction for that patient). This
contrasts with global feature importance that assesses the
general importance of a feature (e.g., average importance
across many cases). In our implementation, we use the SHAP
library to compute Shapley values [2], reflecting the fair
contribution of each feature to the outcome prediction [21].
Here we take two inputs: (a) the prediction model and (b) the
patient data for which we explain the prediction. The output is
the Shapley value (case-specific importance) of each feature
in the given patient record. Oncologists can use this
information to reason about the model’s decision for and
against different therapies.

Component 6 identifies patients that are similar to a
reference patient (see aim #3). This enables oncologists to
inform themselves about past treatment routines applied to
similar patients. The key challenge is to find a suitable
definition of similarity. Here, we build upon the idea of
“supervised clustering” as presented in [14]. The concept is to
define similarity via local feature importance instead of raw
feature values. In our case, the importance stems from what
the prediction model has learned about case-specific therapy
selection. With this concept, similarity focuses on features that
the model finds relevant in a given case. This is in contrast to
a similarity metric that factors in the features for all patients
in the same way, regardless of the specifics of their case. For
our implementation, we concatenate vectors of Shapley values
for each feature and each target class. The intuition is that
similar cases have similar importance for the same features in
therapy prediction. Precisely, we represent each patient by a
vector � = (� � , � � , … , � � ) with � = � ⋅ � . Here, � is the
number of patient features and � is the number of target
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classes (therapies). The entry � (� � � )� � � is the Shapley value
of feature � in the prediction of therapy class � , where 1 ≤
� ≤ � . Similarity between two patients is then defined in
terms of the Manhattan distance of their vector
representations. In our main analysis, we have � = 8 and � =
116.

V. EXPERIMENTS

Our experiments are designed to test feasibility of using
AI to aid therapy selection for patients with
advanced/metastatic CRC. Specifically, we address four
questions: (1) What is the quality of AI-based therapy
selection, (2) do local explanations with Shapley values render
the AI algorithms’ selection interpretable, (3) is the AI-based
similarity metric meaningful and (4) how does data
availability impact the performance of the AI-based therapy
selection? We describe the corresponding experiments below.
We use accuracy and � � -score as metrics for the predictive
performance of the algorithm. All analyses were done in
python using the libraries xgboost (v1.5.0) [19], scikit-learn
(v1.0.2), scikit-optimize (v0.9.0) and shap (v0.40.0).

A. Experiment 1: Quality of Predictions

Assessing the quality of the predictions made by the AI
algorithm yields a conceptual challenge since, in general, the
best therapy for a given patient is unknown. We therefore here
resort to comparing the AI’s predictions with the therapy
decisions made by humans. However, even human experts
may disagree regarding the optimal therapy for a specific case.
This limits the quality that we can expect to observe but
provides us with an indication about the quality of AI-based
predictions.

1) Experimental Setup
In the experiments, we used records of 3,586 individual

CRC patients. After removing implausible records, we were
left with 3,563 patients. We extracted 67 variables containing
information about patient’s health status at the beginning of
their first palliative therapy. We used one-hot encoding for
non-binary categorical variables if they had less than 10
possible values and label encoding otherwise. Ordinal
variables were encoded numerically. This gave us � = 116
features as predictors for our ML model. As label for model
training, we used the chosen therapies, as described in Section
IV, component 1. This resulted in 8 different first-line
therapies within the data set. From this data set we selected a
stratified random sample of 60% of the records as training set
and held out the rest for testing. We fitted a classifier using
XGBoost with balanced class weighting. Predictive
performance was measured in terms of macro-averaged � � -
score (the harmonic mean of precision and recall). We
optimized hyperparameters of the classifier with respect to
this metric by Bayesian hyperparameter search using the class
BayesSearchCV from scikit-optimize. As a benchmark, we
trained several alternative ML algorithms, where we
optimized hyperparameters using the same method. The tested
algorithms were a Random Forest (RF), decision tree, logistic
regression with � � regularization, linear Support Vector

Classifier (SVC) and a dummy classifier always predicting the
most frequent class. For logistic regression and SVC, we
binned continuous variables by using the bin edges [0, 50, 60,
70, 80, 100] for age, [0, 10, 50, 100, 200, 500, 2000] for the
number of weeks since primary diagnosis, [0, 18.5, 25, 30,
100] for Body Mass Index (BMI) and [0, 5, 30] for the
Charlson Comorbidity Index. The bins were chosen to allow
sufficient numbers of examples in each category or to reflect
a common categorization (in the case of BMI) [22]. We used
one-hot encoding for all categorical variables thereafter,
combining missing or unknown values into separate
categories. This led us to � = 158 variables.

2) Evaluation
Figures 2 and 3 show the confusion matrix and ROC

curves for the classifier’s predictive performance on the test
set, respectively. Macro-averaged � � -scores for the three
different levels of granularity of the therapy classes are
reported in Table I. There, we also report performances of the
benchmark methods.

According to Figure 2, predictive performance increases
with the number of examples for a given class. For the most
frequent class (doublet therapy with antibody), we observe
fair agreement between the model’s prediction and the actual
given treatment and thus therapy choice of the treating
physician. Rare therapies, on the other hand, are rarely
predicted, therefore yielding poor evaluation results. This is
expected, since therapy selection is influenced by personal
opinions and preferences of the corresponding physician and
patient. This means that different physicians would often
select different therapy strategies for the same individual.
Moreover, the training set includes a low — and possibly
insufficient — number of examples for rare therapies.
However, it is encouraging that, according to Figure 3, AUC
values of the ROC curves are high for some of the less
frequent therapy classes. RF performs similar to XGBoost,
and these two methods clearly outperform the other
algorithms. This suggests the presence of relevant interactions
between variables which cannot be captured by linear models.
One can expect improved results with bigger training sets. We
investigate this effect in our fourth experiment.

B. Experiment 2: Insights with global and local feature
importance measures

Here, we aim at testing the benefits of using local feature
importance to support the therapy decision of oncologists.
This is qualitative by nature and aims at providing insights
into the use of XAI in the targeted use case. We computed and
visualized Shapley values for therapy predictions. This
comprises global Shapley values (i.e., local Shapley values
averaged over the entire test set) and local Shapley values for
individual predictions. The visualizations are then analyzed
by domain experts regarding validity from a medical
perspective. We provide a sample result and the
corresponding medical analysis below. To protect privacy of
patients in the displayed figures, Gaussian noise was added to
the features Age at start of 1st-line, Date of inclusion, Weeks
since primary diagnosis, and BMI. Note that the noise was
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added to the entire data set after training the model, but before
computing the Shapley values.

Figure 2. Confusion matrix for 8 distinct therapy classes. The cell in row j
and column k is colored according to the fraction of patients who were

predicted to receive therapy k among those patients who actually received
therapy j.

Figure 3. ROC curves for the classifier’s predictive performance (case of 8
distinct therapy classes).

Figure 4. The 15 most important features for therapy prediction, with
importance measured in terms of their global Shapley value. Color coding

shows the contribution of the different therapy classes.

Figure 4 shows the 15 most important features used for
therapy prediction. Here, we obtain a global measure of
feature importance by averaging the magnitude of the Shapley
value of each feature and therapy over all patients in the test

set. The importance of a feature is defined as the class
specific global Shapley value, summed over all therapy
classes. The length of the horizontal bars represents the
importance of the given feature.
In Figure 5, we show representative Shapley values for two
patients where the algorithm correctly predicted therapy 5-
FU monotherapy (that is, intravenous 5-FU without an
antibody) out of 8 possible choices. For privacy reasons, data
shown have been overlaid with noise. These examples
represent interesting cases where a less common therapy was
chosen. Such cases are well suited to check if the special
reasons for using such a therapy are well reflected in the
Shapley values. Both patients in Figure 5 are over 80 years
when starting therapy. Age is known to be a very important
factor in clinical decision-making because it strongly
correlates with frailty and increased risk of treatment-related
side effects. For patient 1, BMI, which was within the normal
range, was a factor rather speaking against choice of 5-FU
monotherapy, although the effect was not very strong. BMI
is also a surrogate for morbidity; in the context of CRC, low
BMI can be associated with frailty and is a sign of
malnutrition and disease activity. Thus the “normal” BMI
may have been considered by the model as a factor allowing
more intense treatment than 5-FU monotherapy.

Figures 6 and 7 show Shapley values for two different
representative patients for which the algorithm predicted 5-FU
monotherapy when actually doublet chemotherapy was
applied. Such cases provide insights into potential causes for

Figure 5. Shapley values for and against 5-FU monotherapy for two
representative patients where the algorithm correctly predicted 5-FU

monotherapy.
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TABLE I. PREDICTIVE PERFORMANCE OF THE COMPARED

CLASSIFIERS, AS MEASURED BY THE MACRO-AVERAGED � � -SCORES FOR THE

THREE DIFFERENT LEVELS OF AGGREGATION OF THERAPY CLASSES.

Number
of distinct therapies

8 12 15

XGBoost 0.21 0.19 0.15

Random Forest 0.23 0.20 0.17

Logistic Regression 0.17 0.16 0.13

Linear Support Vector Classifier 0.17 0.16 0.15

Decision Tree 0.19 0.14 0.14

Dummy Classifier 0.09 0.05 0.02

divergence between the AI-based prediction and the treatment
decision. The figures show the most important Shapley values
for the prediction of 5-FU monotherapy and doublet
chemotherapy, respectively. For patient 1, similar to the true
positives in Figure 5, increased age (85 years) was speaking
for 5-FU monotherapy. We can see in Figure 7 that this factor
is reversed, speaking against the treatment with doublet
chemotherapy. In patient 2, missing grading status and time
since primary diagnosis were factors favoring doublet
chemotherapy. In addition, presence of anemia — which is
also considered a surrogate for morbidity — was speaking
against doublet chemotherapy. As outlined above, age is an
important factor for treatment-decision making, but
chronological age does not necessarily mirror the frailty status
of a patient (fit elderly patients). Although we have
information on clinical performance status for most patients
in our dataset, other important factors also driving treatment
decisions are not captured (e.g., patient preference). For

instance, some patients may opt for a more intense treatment
despite higher risk for side effects. Such factors outside our
database might have driven the treatment decision.
Interestingly, one would have assumed co-morbidities and
clinical performance status to have more weight in the
decision, but their effect are rather modest in either direction.

C. Experiment 3: Benefits of AI-based similarity metric

Here, we analyze the benefits of using the proposed AI-
based similarity metric. The goal is to show that this metric
helps to identify patients that are similar in a meaningful way.
A direct way to evaluate this would be to ask domain experts
to assess the results. Here we take an indirect approach. That
is, we use our similarity metric as input for a K-Nearest-
Neighbor (KNN) classifier for therapy prediction and
compare classification results against a baseline metric. We
argue that the KNN classifier yields better prediction results if
the underlying metric is more meaningful from a medical
perspective.

Figure 7. Shapley values for and against doublet chemotherapy for two
representative patients where the algorithm predicted 5-FU monotherapy

when actually doublet chemotherapy was applied.

1) Experimental Setup
For the distance between two patients, we use the metric

based on Shapley values as described above. We use the same
partitioning of the data into training and test set as in
experiment 1 and fit a KNN-classifier with number of
neighbors � = 5 and inverse distance weighting to the
training data. Implementation is done with the
KNeighborsClassifier from scikit-learn. For our baseline
metric, we represent each patient by the vector w =
� � � , � � , … , � � � of their features, with the same preprocessing
as for logistic regression and SVC in Experiment 1. As for the
Shapley value-based metric, similarity of two patients is then
defined in terms of the Manhattan distance of their vector
representations and a KNN-classifier with the same
parameters is fitted to the training data. We compare
performance of the two classifiers using the same metrics as
in Experiment 1.

Figure 6. Shapley values for and against 5-FU monotherapy for two
different representative patients for which the algorithm predicted 5-FU

monotherapy when actually doublet chemotherapy was applied.
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2) Evaluation
The experiments show improvements of the prediction

quality when using KNN with the Shapley value-based
distance metric, compared to a naïve baseline-distance metric
(Table II). Although improvements are small, results indicate
that the Shapley-based distance metric may provide a
meaningful similarity measure. Note that this experiment
evaluates the desired effect only indirectly and classification
is not the aim of the addressed use case. For many instances,
a less elaborate metric may find less similar patients but lead
to the same therapy prediction. In such cases, we would
observe no benefits. However, our approach aims at
identifying patients that are similar in a meaningful way, so
that they can serve as reference cases. Here, better similarity
is beneficial even if the recorded therapies are the same. Since
the tests with a KNN classifier can only reveal benefits for
certain cases, we find the observed improvement encouraging.
An analysis with human experts who directly assess the
usefulness of the similarity metric may further clarify the
benefits of the approach.

TABLE II. COMPARISON OF THE PERFORMANCE OF KNN CLASSIFIERS

BASED ON THE SHAP-BASED METRIC AND THE BASELINE METRIC

Score type Classifier

Number of distinct
therapies

8 12 15

� � (macro average)
KNN (Shapley) 0.18 0.16 0.15

KNN (Baseline) 0.16 0.13 0.12

� � (weighted average)
KNN (Shapley) 0.49 0.43 0.23

KNN (Baseline) 0.49 0.38 0.22

Accuracy
KNN (Shapley) 0.54 0.46 0.25

KNN (Baseline) 0.55 0.42 0.24

D. Experiment 4: Impact of data availability

The amount of training data impacts the performance of
ML models, but strength of this impact varies from case to
case. Here, we analyze this effect for the case of CRC therapy
prediction.

1) Experimental Setup
For our experiments we have in total 3,563 patient records

available (see Experiment 1 – Experimental setup). To
investigate the effect of training size, we trained multiple
models on differently sized subsets of the data. Specifically,
we set aside a 40% stratified sample for testing and used the
rest as source for training data. From the training data, we
iteratively took 90% stratified subsets to train models (thereby
iteratively reducing training set size). We then computed
performance measures ( � � -score for one-versus-all) on the
initially held out test sets for each model and therapy class.
The process was repeated 10 times with different random
seeds.

2) Evaluation
Figure 8 shows the results of the experiment about the impact
of the training data size. From visual inspection of these plots,
it appears that the learning curves for the prediction of two

Figure 8. Impact of the number of training samples of a given therapy
class on the model’s performance, measured in terms of � � -score for one-vs-

all. Dark blue is the mean value and light blue is the standard deviation.

therapies reach a saturation point at about 500 training
instances. For all other therapies, we have less than 500
instances in the training set and do not observe saturation.
Note that for several therapies, the number of training
examples is rather small, resulting in poor prediction
performance of the model for those therapies. However, the
shape of the curve suggests that improvements with larger
training sets may be possible. We draw two main conclusions
from this analysis. One is that performance results for therapy
prediction (observed in Experiment 1) would likely improve
with additional training data. The other conclusion is that
about 500 training instances per therapy may be sufficient for
the chosen ML setup.
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VI. CONCLUSION

In this paper, we analyzed the potential of using AI to build
an information tool that enables dynamic data exploration
and analysis of RWD. Specifically, we analyzed the two use
cases “therapy selection” and “identification of similar
patients.” Both objectives aim to provide a second view built
on the large amount of RWD and thus make this broad
knowledge accessible to individual oncologists. For these use
cases, we proposed a system setup using supervised learning
and XAI techniques.

We have shown applicability of the concept and obtained
insights on the required amount of training data, but additional
work should be done to assess viability of our approach. While
we have demonstrated superiority of the AI-based approach
against baseline methods, our experiments show a certain
degree of disagreement between predicted and chosen
therapies. However, disagreement is expected if different
human experts are asked to give a second opinion.
Quantifying the level of human disagreement and comparing
this to the AI-based results is subject to future work.

Our approach has limitations which should be addressed
in future work. One challenge is posed by the fact that the AI
algorithm learns therapy selection from prospectively
recorded past records. However, the therapy landscape in
oncology develops quickly, causing concept drift; that is,
historic decisions learned by the algorithm may have better
alternatives by now. Also, best practice about therapy decision
may change over time and change the probability of selecting
a therapy for a given patient. This concept drift makes the
algorithm prone to the cold-start problem of AI-based
recommender systems. Solutions to this problem could
involve non-uniform weighting of observations based on
treatment date or incorporation of expert knowledge.

It is important to stress that therapy outcomes of patients
such as overall survival, progression-free survival, and quality
of life, which are also documented in the TKK database, were
not considered. This means that the information tool may
reproduce and even reinforce suboptimal, yet common
practice in treatment routine.

Furthermore, feature selection remains subject to future
work. Due to the high number of features and therapy classes,
the Shapley value-based similarity measure may be subject to
the curse of dimensionality. Incorporation of feature reduction
techniques may therefore lead to better results. We also note
that, while Shapley values are a measure for the impact of a
given feature on a model’s prediction for a given subject, they
do not imply causation.

We believe that the investigated concepts have great
potential to support information processes in cancer care using
dynamic data exploration and analysis of real-world datasets.
Our findings show promising results that call for further
analysis and development of the outlined ideas. Beyond
expanding on these ideas and addressing the discussed
limitations, we plan expansion to further use cases in the
future.
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