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Abstract—During the last decade, the development of impulse
radio ultra-wideband (IR-UWB) radar sensors have led them
to be considered as a viable substitute of polysomnography
(PSG), the gold standard, in the acquisition of the primary
vital signs of the human body, during sleep. In this work,
we investigate whether radar sensor recordings of the chest
and heart displacement can accurately substitute the PSG chest
and heartbeat signal measurements. We develop an innovative
pipeline of handling the radar-based recordings, which includes:
motion detection, extraction of the respiration, heartbeat and
activity vital signs and estimation of the respiratory and heartbeat
rates (RR and HR, respectively). Next, we apply our proposed
methodology to data from 28 subjects gathered during their
sleep. Results show that the radar sensor’s measurements can
be comparative to those produced by the PSG. Specifically, the
RR and HR frequencies, of the radar and the PSG, have average
Pearson’s correlation, greater than 0.9 and 0.8, respectively.

Index Terms—IR-UWB radar sensor, PSG, respiratory rate,
heartbeat rate, activity signal

I. INTRODUCTION

Conducting a sleep study is the most important procedure
for the identification and assessment of various sleep disorders,
such as obstructive sleep apnea (OSA), a serious medical
condition, that can even result in cognitive dysfunctions,
cardiovascular and cerebrovascular diseases [1]. The most
frequently-used diagnostic tool is polysomnography (PSG),
which is widely considered the gold standard [2]. Nonetheless,
the multiple on-body sensors, required for it, increase the pa-
tients’ discomfort, while its long duration renders it expensive
and appropriate only for use in hospitals and research settings
[3].

To remedy the problems encountered during the use of
the PSG, impulse-radio ultra-wideband (IR-UWB) radars have
started to be extensively used during sleep studies. These
sensors allow for contactless monitoring and have the ability
to record the motion of the body, ranging from the micro-
motion of the chest to the macro-motion of objects, or people,
moving with high accuracy [4], [5].

Radar-based devices are convenient tools for sleep moni-
toring at home settings, as they are user-friendly and can ac-

curately identify chest and heart oscillations. Those generated
data can be subsequently used for extracting the respiratory
rate, the heartbeat and the activity signal (that is the activ-
ity of the human body during sleep) which provide crucial
information about sleep quality [6].

Radars are sensitive to environmental noise and the rich gen-
erated body motion information can be considered as “noise”
in the context of sleep monitoring. As a result, a pipeline
for noise/motion detection is used for the extraction of more
accurate respiration and heartbeat signals. Specifically, the
radar sensor’s recordings are analyzed through a spectrogram-
based approach. Spectrograms are capable of providing useful
information about the body motion, through the changes of
radar’s characteristics over time [7]. In essence, through the
spectrogram-based analysis light and intense motion can be
detected and removed. To that end, the activity signal is
also used, as it provides motion information that enables the
researchers to exclude parts of the recordings that contain
intense noise and extract, more reliably and accurately, the
respiratory and heartbeat rates (RR and HR, respectively). This
is an important point for consideration, given the impact that
those frequencies have for a sleep study.

In this work, we investigate whether the vital signs extracted
from a radar sensor are a reliable representation of those
acquired from a PSG. Specifically, the chest and electrocardio-
gram signals acquired from the PSG are compared with those
acquired from the radar by estimating the corresponding RR
and HR frequencies. Moreover, from the radar data the activity
signal is extracted that is used for motion detection.

The main contributions of this study are:
1) The creation of a system for the analysis of radar-based

recordings which can provide three signals, namely the
respiration, the heart displacement and the activity.

2) The noise treatment of the signals, that is introduced
due to either body motion or environmental factors, by
an innovative spectrogram-based analysis.

Simple, yet state-of-the-art, procedures are employed to pro-
vide the accurate extraction of biological signals (respiration
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TABLE I
ARIA SENSING LT102 RADAR SPECIFICATIONS.

General specifications Values

Radar’s operating frequency 6.5GHz to 8.5GHz

Temperature operating range −40 ◦C to 85 ◦C

Radar module’s dimensions 36mm×68mm

Maximum power consumption 220mW at 5V
Integrated antenna aperture ±60◦ by ±60◦

Typical detection range 12m

and heart displacement) and subsequently the RR and HR.
The evaluation of the pipeline was conducted mainly using
the Pearson’s correlation, between the PSG- and the radar-
extracted results. Note that the evaluation was conducted using
28 recordings of patients with OSA disorder.

The rest of the paper is organized as follows: Section II de-
scribes the mathematical background of the proposed method-
ology, Section III, presents the evaluation of the method, while
Section IV discusses the conclusions.

II. MATERIALS AND METHODS

In this section the main building blocks of the proposed
methodology are described.

A. IR-UWB Data Acquisition

In our experiments, an IR-UWB radar sensor was positioned
next to a patient, about 50cm from their chest, and captured the
motion of their lungs and heart. The sensor used was the Aria
Sensing LT102 and its specification are presented in Table I.
Generally, the procedure of capturing biological signals using
a radar, involves measuring the torso displacement caused by
the motion of the lungs and the heart. IR-UWB radars track the
amplitude of a human body point to extract biological signals
[8], by detecting and quantifying the periodic expansion of
the chest. Thus, an important parameter in the extraction of
those signals is the distance between the radar antenna and
the human chest, which changes over time. The distance can
be described by the following equation:

d(t) = d0 + ar sin(2πfrt) + ah sin(2πfht) (1)

where d0 is the nominal distance and ar, ah are the mean
values over the range of all possible displacements of the chest
cavity caused by the respiration and the heart displacement,
respectively. Moreover, with fr, fh we denote the respiratory
and heartbeat frequencies, respectively [9].

The IR-UWB radar sensor’s acquired data consist of a 2-
dimensional matrix, that is a function of the captured samples
K and the radar’s bins M (equal to 359 in our case). In more
detail, a bin is a unit of representing and organizing the radar’s
captured spatio-temporal information. The total number of bins
is related to the distance between the human body and the radar
sensor [9]. Specifically, the radar’s output can be expressed as
S ∈ RK×M, where K denotes the number of samples in the
sample space and M the radar’s bins in fast time (in nsec).

B. Preprocessing of the Radar Recordings

As mentioned earlier, the radar’s recordings belong to a 2-
dimensional space, with the bins being of major importance.
Between consecutive recordings, the corresponding bins have
stored almost the same human body information, with the
difference that each recording differs from the other usually
in the amplitude of the captured signals, i.e., the magnitude of
the acquired displacements. As a result, the bin with the most
prominent displacement should be identified. To that end, the
most well-established and simple method of finding the bin of
interest is by computing the variance of each bin between
all recordings and then take the bin with the maximum
variance [9]. In our experimental procedure, as some patients
changed position quite often, we split the matrix into N non-
overlapping segments, of 120 seconds duration, and for each
segment we repeated the aforementioned procedure. After that,
by combining the signal’s parts with the most intense human
chest and heart displacement, we constructed a new signal of
interest, denoted as s ∈ R1×K.

C. Extraction of the Activity Signal

The activity signal is among the most important signals in
the context of sleep disorders. The presented methodology of
detecting motion was based on the computation of the spec-
trogram of the extracted signal, denoted as s. Specifically, the
procedure depends on the algorithm described in Algorithm 1.
Inputs to the algorithm are the signal extracted from the radar-
based recordings, namely s, as well as the sampling frequency
of the radar, which in our case was equal to 40Hz.

Next, the spectrogram of each examination is estimated. A
spectrogram is presented in Fig. 2. The algorithm detects low
frequency time points, i.e., time points which present non-
uniform behavior indicating the presence of a “light-tailed”
distribution of motion within the signal (taking place during
the time when the person was awake, yet lying in a bed).
Note that the majority of time points do not include light
motion i.e., they were captured during sleep. Moreover, given
that the recordings took place during a sleep examination, in
which people were lying in a bed, intense motion would not be
present. To identify light (i.e., rare) motion (the signal samples
that are presented with dark blue color in the spectrogram
of Fig. 2), a threshold of 0.3 multiplied by the maximum
value of the spectrogram matrix (line 9 of Algorithm 1) was
applied. Having identified the areas within the signal where
light motion existed, the signal was converted into a binary
form by replacing the value of points where light motion
existed with a value of 1, otherwise with a value of zero. To
do so, a threshold denoted as thresh, equal to 8 or 10, was
applied. Regarding the threshold value, it was important to not
be excessive leading to the loss of valuable information, yet not
as small as to eliminate the signal’s fluctuations which could
be important in differentiating patients’ sleep apnea events, for
instance.

The proposed methodology proved to be robust, although
the noise was not intense. In Fig. 3, an example of an activity
signal is presented. The proposed methodology has captured,
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1: Inputs: s, Fs

2: Outputs: x
3: Spectrogram Computation: Sp = spectrogram(s,Fs)
4: Sp = 10 log10(Sp)
5: Estimation of maximum spectrogram’s value (in dB):

maxV = max
[
Sp(:)

]
6: Define: Nt : length

[
Sp(:, 1)

]
, Nf : length

[
Sp(1, :)

]
7: for t = 1:Nt do
8: for f = 1:Nf do
9: if Sp(t, f) ≤ 0.3 ·maxV then

10: Sb(t, f) = 1
11: end if
12: end for
13: end for
14: Define: L = length(s)
15: Define: step = L/Nf

16: Define: freqs = [1 : step : L− step]
17: Define: counter = 1
18: for f = 1:Nf do
19: part = Sb(:, f)
20: c =

∑
(part == 1)

21: if c ≥ thresh then
22: Sb(t, f) = 1
23: for i = freqs(counter) : freqs(counter + 1) do
24: x(i) = 1
25: end for
26: end if
27: counter = counter + 1
28: end for

Fig. 1. Activity signal extraction procedure.

not only the intense signal’s noise (probably from motion),
but also the lower amplitude noise (probably from the envi-
ronment). As a result, it is evident that through the appropriate
analysis of the spectrogram, the detection of human motions,
both during sleep and during daytime activities, is possible
[7].

D. Extraction of the Respiration Signal and the Respiratory
Rate

The respiration signal is of major importance for the study
of sleep and especially for the identification of sleep apneas.
Thus, its accurate extraction from the radar-based recordings
will result to a more accurate estimation of the RR. In our
procedure, we followed the “maximum variance” process,
which enables the detection of the signal’s fluctuations with
the maximum amplitudes. Our purpose was to estimate the
respiratory rates with a simple, fast and accurate manner.
The estimation of the RR was based on the computation of
the power spectral density. Specifically, the first step was to
split the previously extracted signal, s, into non-overlapping
windows of 60 or 120 seconds duration, in order to maintain
sufficient amounts of the signal’s information. For each seg-
ment, if the corresponding activity signal’s segment was full
of zeros, the Fast Fourier Transform (FFT) was applied and

Fig. 2. An example of a spectrogram computed from patient data after a
sleep monitoring procedure.

(a)

(b)

(c)

Fig. 3. The procedure for extracting an activity signal. (3a) Raw respiration
signal from the radar recordings; (3b) The same signal’a part with reduced
noise; (3c) the corresponding activity signal.

then the power spectral density (PSD) was estimated. In the
literature, the number of respirations during sleep range from
12 to 20 [10], which equals to a respiration frequency between
0.2 and 0.35 Hz. As a consequence, having estimated the PSD
we search for its maximum value into the aforementioned
frequency range. Then, we multiply the estimated frequency
with 60 in order to convert it into a respiration frequency (i.e.,
respirations per minute). On the other hand, in the case that the
activity signal had intense motion within a segment, a linear

68Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-105-3

HEALTHINFO 2023 : The Eighth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing



0 100 200 300 400 500 600 700
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

resp
heart

Fig. 4. Example of a radar’s extracted signal. Black color denotes the
respiration while red the heartbeat.

interpolation was applied that took into consideration the 2
immediate neighboring samples (both left and right).

E. Extraction of the Heartbeat Signal and the Heartbeat Rates

The heart signal is more laborious to be extracted from data
of the radar-based device, as it is superimposed on top of the
“stronger” respiration signal, as we can see in Fig. 4. Based
on [11], the first step to reach to an accurate heartbeat signal
extraction is to remove the fluctuations corresponding to the
respiration frequencies. Thus, the respiratory signal extracted
from the previous procedure was passed through a low-pass
filter, with a cut-off frequency equal to 0.9Hz, and then through
a high-pass filter of a cut-off frequency equal to 0.5Hz [10].
Finally, a median filter of order 20 was applied, for removing
small signal’s fluctuations, which are usually created by the
system’s noise (i.e., artifacts).

Having retained the most prominent fluctuations of the
raw radar signal, the majority of the heartbeats have been
retained as well. The final step is to estimate the corresponding
HR values. Similarly to the RR estimation, for each heart
displacement signal segment, if the corresponding segment of
the activity signal is full of zeros, we apply peak detection. The
HR is defined by counting the peaks per segment. On the other
hand, in the case of a non-zero activity signal segment, again,
the corresponding samples’ rates were replaced with a linear
interpolation that took into consideration the 2 immediate
neighboring rates (both left and right).

III. RESULTS

In this section we present the evaluation of our pipeline,
based on the Pearson’s correlation.

A. HealthSonar Protocol – PSG Dataset

Data were collected during the HealthSonar clinical study,
a one-arm observational clinical study carried out at the Sleep
Disorders Center of the Intensive Care Unit located within
Evangelismos Hospital at Athens, Greece. The purpose of this
study was to evaluate the accuracy and validity of identifying
sleep stages and apnea-related events, using data from an un-
obtrusive, contactless monitoring device based on an IR-UWB

radar sensor compared to the same metrics as produced by
data from PSG (considered the gold standard). The study was
approved by the ethical committee of Evangelismos Hospital
(Reference No. 198, 6/6/2022). In order to be enrolled to the
study, the participants needed to be above 18 years old and able
to consent to the aspects of the study before filling an informed
consent form. All participants completed a clinical evaluation
and underwent an attended polysomnography session. The
examinations followed the “Manual for the Scoring of Sleep
and Associated Events” (v2.6) of the American Academy of
Sleep Medicine. Each subject was monitored for an entire
night, while their sleep stages were annotated at 30-second
intervals. Demographic information of the participants are
presented in Table II.

TABLE II
DEMOGRAPHIC INFORMATION OF THE STUDY PARTICIPANTS.

No. of subjects 28
Age range 23-68 years

Weight range 55-155 kg

The PSG data used for our analysis included the following
sensors’ signals:

1) the “chest” signal, responsible for recording the patient’s
respiration. Its sampling frequency was equal to 32 Hz.

2) the “ECGLA” and the “ECGRA” signals responsible
for acquiring the heart beats. The sampling frequency
was equal to 256 Hz. The final electrocardiogram (ECG)
signal was computed by the formula:

ECG = ECGLA − ECGRA (2)

It is worth mentioning that the signals, from both PSG and
radar, were synchronized and the radar-based activity signal
was also used in the analysis of the PSG recordings, in order
to clean the signals from the patients’ motion while improving
the synchronization.

B. PSG-based RR and HR

In order to estimate the corresponding RR and HR fre-
quencies from the chest and ECG signals, we followed the
procedure described on Section II. Briefly, for the estimation
of the RR, the chest signal recorded from PSG was split
in 120-second windows and for each window the PSD was
estimated based on the FFT transform. The most prominent
frequency of the PSD was considered as the respiratory rate
for each window. Regarding the HR, again, the signal was split
in windows of similar duration and through a peak detection
process, the peaks of the ECG, having amplitude greater than a
specific threshold, were identified. This threshold was defined
in the range of [0.4−0.6] of the maximum signal’s amplitude.

For the estimation of both HR and RR, the regions of
activity (as described in Section II-C) were fitted with a
linear curve produced by linear interpolation, which took into
consideration the 2 immediate neighbors (left and right).
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Fig. 5. The RR values for 5 randomly selected patients during their monitoring procedure as produced by the radar-based device (top) and the PSG system
(bottom). The window duration is 120 seconds.

Fig. 6. The HR values for 5 randomly selected patients during their monitoring procedure as produced by the radar-based device (top) and the PSG system
(bottom).

C. Performance Evaluation

In our analysis, the results were evaluated through 2 main
metrics, i.e., the Pearson’s correlation and the intraclass corre-
lation coefficient (ICC) between the RR and HR measurements
derived from the IR-UWB radar sensor and the measurements
derived from the PSG system, as it was also used in [1].
The evaluation results can be seen in Table III. Note that the
analysis was performed using windows with a duration of 120
seconds. Regarding the ICC values, the average correlation
between the RR and the HR, as was extracted from the data
radar and those of the PSG, was equal to 0.98 and 0.89,
respectively.

In Fig. 5 and 6, we observe the RR and HR values for 5
selected patients during their monitoring procedure. Each spike
corresponds to a rate derived from the analysis of a window
of 120 seconds duration. As we can observe, especially for
the case of the RR, the values estimated from data of both
systems are very close, as it is verified by the high Pearson’s
correlation values and the ICCs. Notice that all raw frequencies
were converted to represent the number of respirations and
heart beats, respectively.

It is worth mentioning that after changing the window’s
duration to 60 seconds, the correlation values were lower and
almost reached 0.8. Although still a high correlation, this result
implies that our methodology has as a limitation the samples
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TABLE III
PEARSON’S CORRELATION OF RR AND HR RATES BETWEEN THE RADAR

SENSOR AND THE PSG SYSTEM.

Patient ID Respiratory Heartbeat

1 0.99 0.88
2 0.95 0.91
3 0.96 0.98
4 0.97 0.71
5 0.93 0.81
6 0.95 0.96
7 0.98 0.95
8 0.99 0.67
9 0.93 0.83

10 0.98 0.89
11 0.93 0.90
12 0.99 0.97
13 0.98 0.46
14 0.99 0.69
15 0.99 0.99
16 0.94 0.97
17 0.97 0.98
18 0.91 0.96
19 0.95 0.97
20 0.95 0.98
21 0.94 0.96
22 0.93 0.97
23 0.96 0.88
24 0.79 0.95
25 0.91 0.95
26 0.88 0.93
27 0.98 0.98
28 0.99 0.99

Average 0.95 0.90

we take into consideration. As a result, the 60-seconds duration
seems to not be able to provide sufficient information for the
procedure to estimate the rates with more accuracy.

IV. CONCLUSIONS

The goal of this study was to investigate whether the radar
sensor can accurately substitute PSG, especially in the case
of respiratory rate and heartbeat estimation. The analysis was
focused on constructing an innovative pipeline which takes
into consideration the radar-based recordings, represented by
a 2-dimensional matrix and results in the following clinical
information:

1) the respiration and heart displacement signals,
2) the respiratory and the heart rate, as well as
3) the activity signal (activity of the human body).

Results prove that the presented simple and fast procedure for
processing the radar-based data generates accurate respiration
and heart displacement signals, that are highly correlated with
the corresponding PSG signals, considered as the ground truth.
Moreover, the procedure for extracting the activity signal, was

shown to be effective, leading to an improved performance in
extracting the aforementioned signals, as well as estimating
the corresponding frequencies.

Our methodology was accurate for most of the patient cases
that was tested on, highlighting that it is robust to different
patients’ characteristics and also to different sleep patterns.
Overall, the methodology is simple and fast, and the data
analysis does not require a large number of external parameters
apart from the cut-off frequencies of the low-pass and high-
pass filters utilized for the heart displacement signal extraction,
as well as an appropriate threshold for the extraction of the
activity signal. However, our methodology has to be further
tested using complementary features which can provide more
information about the detection of the OSA.

V. ACKNOWLEDGEMENTS

* This research was funded by the European Regional
Development Fund of the European Union and Greek national
funds through the Operational Program Competitiveness, En-
trepreneurship, and Innovation, under the call RESEARCH-
CREATE–INNOVATE (project name: HealthSonar, project
code: T2EDK-04366) and from the European Union’s Horizon
2020 research and innovation program under grant agreement
No 101017331 (ODIN).

REFERENCES

[1] J. W. Choi, D. H. Kim, D. L. Koo, Y. Park, H. Nam, J. H. Lee,
H. J. Kim, S.-N. Hong, G. Jang, S. Lim et al., “Automated detection
of sleep apnea-hypopnea events based on 60 ghz frequency-modulated
continuous-wave radar using convolutional recurrent neural networks:
A preliminary report of a prospective cohort study,” Sensors, vol. 22,
no. 19, p. 7177, 2022.

[2] J. V. Rundo and R. Downey III, “Polysomnography,” Handbook of
clinical neurology, vol. 160, pp. 381–392, 2019.

[3] H. S. A. Heglum, H. Kallestad, D. Vethe, K. Langsrud, T. Sand, and
M. Engstrøm, “Distinguishing sleep from wake with a radar sensor: a
contact-free real-time sleep monitor,” Sleep, vol. 44, no. 8, p. zsab060,
2021.

[4] W. H. Lee, S. H. Kim, J. Y. Na, Y.-H. Lim, S. H. Cho, S. H. Cho,
and H.-K. Park, “Non-contact sleep/wake monitoring using impulse-
radio ultrawideband radar in neonates,” Frontiers in Pediatrics, vol. 9,
p. 782623, 2021.

[5] L. Ma, M. Liu, N. Wang, L. Wang, Y. Yang, and H. Wang, “Room-
level fall detection based on ultra-wideband (uwb) monostatic radar and
convolutional long short-term memory (lstm),” Sensors, vol. 20, no. 4,
p. 1105, 2020.

[6] X. Zhang, X. Yang, Y. Ding, Y. Wang, J. Zhou, and L. Zhang,
“Contactless simultaneous breathing and heart rate detections in physical
activity using ir-uwb radars,” Sensors, vol. 21, no. 16, p. 5503, 2021.

[7] S.-w. Kang, M.-h. Jang, and S. Lee, “Identification of human motion
using radar sensor in an indoor environment,” Sensors, vol. 21, no. 7,
p. 2305, 2021.

[8] D. Wang, S. Yoo, and S. H. Cho, “Experimental comparison of ir-uwb
radar and fmcw radar for vital signs,” Sensors, vol. 20, no. 22, p. 6695,
2020.

[9] A. Pentari, D. Manousos, T. Kassiotis, G. Rigas, and M. Tsiknakis,
“Respiration and heartbeat rates estimation using IR-UWB non-contact
radar sensor recordings: A pre-clinical study,” in Workshop Proceedings
of the EDBT/ICDT 2023 Joint Conference, Ioannina, Greece, Mar. 2023.

[10] R. Avram, G. H. Tison, K. Aschbacher, P. Kuhar, E. Vittinghoff,
M. Butzner, R. Runge, N. Wu, M. J. Pletcher, G. M. Marcus et al.,
“Real-world heart rate norms in the health eheart study,” NPJ digital
medicine, vol. 2, no. 1, p. 58, 2019.

[11] F. Khan and S. H. Cho, “A detailed algorithm for vital sign monitoring
of a stationary/non-stationary human through ir-uwb radar,” Sensors,
vol. 17, no. 2, p. 290, 2017.

71Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-105-3

HEALTHINFO 2023 : The Eighth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing


