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Janice Gonçalves Temoteo Marques
Dept. of Human Development and Rehabilitation

Faculty of Medical Sciences, University of Campinas
Campinas, SP, Brazil
janicetm@unicamp.br

Ivani Rodrigues Silva
Dept. of Human Development and Rehabilitation

Faculty of Medical Sciences, University of Campinas
Campinas, SP, Brazil
ivanirs@unicamp.br

Abstract—In this article, we present an automatic image
recognition approach for assisting the communication between
deaf patients, speakers of the Brazilian Sign Language (Libras),
and hearing physicians. The aim of the approach is to help
the interaction and exchange of information during medical
interviews. Its scope is the automatic recognition of the con-
tinuous signing of Libras through the analysis of traditional
video and depth data (RGB-D data). Recognition is performed
by a cascade of two neural networks. The first, a convolutional
neural network, encodes the visual input and extracts relevant
features. The second, a recurrent neural network, learns the
mapping of the extracted features into Brazilian Portuguese
words. To train the recurrent network with videos of different
lengths and word sequences, we use the Connectionist Temporal
Classification approach. Experiments using a dataset of 280
videos encompassing 56 sentences composed of 67 different signs
results in an accuracy of round 91%.

Index Terms—Libras, Sign language recognition, Continuous
signing, long short term memory, connectionist temporal classi-
fication

I. INTRODUCTION

Anamnesis and clinical examination are the standard proce-
dures of physicians to diagnose diseases and health problems
of their patients. Anamnesis is a process of interviewing the
patient to collect information about his/her current health
complaints and medical history. The precise disclosure, correct
understanding, and assessment of this information are precon-
ditions for an effective diagnosis and the identification of the
appropriate therapy. However, the effectiveness of the medical
interview is jeopardized if the physician and the patient do
not have a common language for communication. That is
usually the case when we consider a deaf patient who has
sign language as his/her first language and does not master
the written language of the physician who, by his/her side,
does not understand sign language. A common solution to
overcome this problem is to have a sign language interpreter
assisting the deaf patient during the interview. Besides the
operational difficulties of organizing an interpreter, another

important drawback is the uncomfortable situation created by
the introduction of a third party in the medical interview.
During a medical interview, the patient should feel comfortable
enough to share very personal and sensitive information,
providing any and all relevant information to help the doctor
to make a correct diagnosis. A solution to overcome this
potential breach of patient-doctor confidentiality is to provide a
robust computer-based solution to support the communication
between physicians and deaf patients. Although the interaction
between doctor and patient is a two-way process, in this
article, we focus only on the issue of automatic recognition
of continuous signing based on computer-based recognition of
video imagery. Our study deals specifically with the Brazilian
Sign Language. However, the findings can be extended and
applied to other sign languages.

Sign languages convey information by the movement of the
hands, body, and face. They are perceived by vision. There
is not a single, universal sign language used worldwide by
deaf people. Each country has its own sign language [1].
The sign language of a country is independent of its oral
language. For example, Deaf Americans speak the American
Sign Language (ASL), the Deaf in the UK use the British Sign
Language (BSL), and Deaf Australians speak the Australian
Sign Language (Auslan). Deaf Brazilians use the Brazilian
Sign Language (Libras).

There is an increasing research interest in automatic sign
language recognition in recent years. Automatic sign language
recognition applies computer vision combined with machine
learning techniques to analyze and translate, into a written
form, videos with sign language content.

The development of robust automatic sign language recog-
nition systems is challenging. Several techniques have been
proposed for automatic sign language recognition for a variety
of sign languages, including the Brazilian Sign Language
(Libras). Most efforts, however, have been limited to the study
of isolated sign recognition, postures representative of cardinal
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numbers (0 to 10), and the manual alphabet or fingerspelling.
Research on continuous signing recognition is still rare.

In this article, we present a method for automatic continuous
sign language recognition of Libras during medical interviews.
Applying the method, we implement an approach based on
Deep Learning that is capable of finding and using extracted
data from signing from full-frame sequences. Therefore, it
aligns sequences of video frames displaying Libras content to
sequence glosses. A gloss is a word, in our case a Portuguese
word, that is consistently used to label a sign within the corpus,
regardless of the meaning of that sign in a particular context or
whether it has been systematically modified in some way [2].
As pointed out in [3], glosses are a convenient way to write
down the meaning of a sign, as they use another language to
represent the signs.

The main contributions of this article are:
• The construction of a robust and representative dataset,

composed of RGB information and depth of signage in
Libras in order to contribute to the advancement of the
research in this area.

• Execution of a Depth-Wise Separable Convolutional Net-
work (DWSCN) based architecture, as feature extractor
preprocessor. Insofar as we know, we are the first to em-
ploy this type of architecture in continuous sign language
recognition systems.

• The development of a new architecture of sequential
learning, based on recurrent neural networks and Con-
nectionist Temporal Classification (CTC), which learn to
find and store relevant data in its memory cells from the
full-frame sequences, without importing in its subsystems
structures that process image patches.

The remainder of the paper is organized as follows: Section
II contains a review of relevant related work. Section III
presents our approach. Section IV describes the experiments
performed, and Section V presents the conclusions.

II. RELATED WORK

The recognition of continuous signing is a far more complex
task than the recognition of isolated signs, requiring more
sophisticated methods to deal with the dynamics of production
and the transition between signs. On the other hand, continu-
ous signing recognition systems are more appropriate for real-
world scenarios of interpersonal communication. However,
it is observed that there is still little research that seeks to
solve this problem. In the following paragraphs, we present
approaches aimed at recognizing continuous signing based on
computer vision.

Research using deep learning models has increased consid-
erably in recent years. The work of [4] proposes an approach
that breaks down the problem of recognizing signs into a series
of expert systems called subunits. Each subunit consists of
three layers of neural networks; Convolutional Neural Network
(CNN) for extraction of spatial features, Bidirectional Long
Short-Term Memory (BLSTM) [5], an extension of LSTM [6]
that temporarily models the features and a loss layer based on
the CTC. A recent work, [7], also uses CNN and LSTM but

encapsulated it in an Hidden Markov Model (HMM) model
following the hybrid approach used in his previous work, this
time exploring sequential parallelism to learn sign language,
mouth shapes, and hand shape classifiers.

The works [8]–[12] use CNNs as feature extractors, a
3D CNN model, or a 3D residual convolutional network
(3D-ResNet). For modeling and sequential learning, they use
dilated convolutional networks or RNNs such as LSTM, Gated
Recurrent Unit (GRU) [13] and their variants in combination
with the CTC algorithm. Among these approaches, [14] is
the one that achieved the best performance in the RWTH-
PHOENIX-Weather dataset and also in a set of images cap-
tured by the Kinect called CSL-25K, which covers 100 daily
life sentences expressed in Chinese Sign Language (CSL).

In our proposal, we also use recurrent neural networks with
CTC, but differently from the other approaches, we apply
depth-wise separable convolutional network that contains far
fewer parameters and is computationally cheaper than the
state-of-the-art convolutional neural networks, as for example
VGG16 [15], ResNet50 [16] and InceptionV3 [17].

III. METHOD

In this section, we present the protocol used to build a sign
language dataset in the context of a medical interview and our
approach for recognizing continuous signing in Libras.

A. Dataset construction

The existence of a dataset composed of Libras sentences
related to medical interviews is fundamental to develop and
test our approach. No publicly available image databases of
continuous signing in Libras have been found.

Through the study of existing datasets of other sign lan-
guages [18] and with the intent of meeting our objectives, we
developed specifications to be followed for the construction of
our dataset. The proposal is to develop a robust dataset that
simulates the internal environment of a clinic with artificial
lighting, in which the deaf volunteer or interpreter performs
the sign naturally.

Fig. 1 shows the execution flow. Thereafter, each module
will be described in details.

Fig. 1. Execution flow for the construction of the dataset

Sentences elaboration. It comprises the elaboration of
sentences in the Portuguese language related to the answers
of a patient in the context of a medical consultation (general
practitioner). The sentences are established through the study
of signs and manifested individual symptoms accordingly to
the anamnesis medical procedure described in [19] and [20].
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Transcription of the sentences in Portuguese to glosses.
It is created through the assistance of a fluent sign language
specialist. The right columns on Tables I and II present the
transcriptions of the sentences from the previous stage.

TABLE I
EXAMPLES OF SENTENCES DEVISED IN PORTUGUESE LANGUAGE AND ITS

TRANSCRIPTIONS TO GLOSSES.

# Target Prediction
1 Eu tenho febre EU FEBRE
2 Eu estou fraco EU FRACO
3 Eu estou com diarréia EU TER DIARRÉIA
4 Meu braço esquerdo dói MEU BRAÇO-ESQUERDO DOR
5 Minha urina está marrom MEU XIXI COR MARROM

TABLE II
EXAMPLES OF SENTENCES DEVISED IN PORTUGUESE LANGUAGE AND ITS

TRANSCRIPTIONS TO GLOSSES - VERSION IN ENGLISH

# Target Prediction
1 I have fever ME FEVER
2 I am weak ME WEAK
3 I have diarrhea ME HAVE DIARRHEA
4 My left arm hurts MY LEFT-ARM PAIN
5 My urine is brown MY PEE BROWN COLOR

Capture device and development of the capture software.
The data recording is made through the Kinect device v2 for
Windows. The capture application is developed using Kinect’s
own software development kit (SDK). This application cap-
tures and stores RGB images, depth images, and mapped
images (RGB images mapped on the depth images), in which
all pixels not belonging to the signer are converted to black.

Installation of the capture system. The Libras signing
recordings executed by the volunteer are made in a labo-
ratory, with artificial illuminations and homogeneous scene
background.

Capture and data storage. A Libras interpreter teacher,
member of the research team helps with the video acquisition.
During the signing the images are captured and stored on the
computer.

B. Our approach

The approach that recognizes continuous Libras signing
includes a CNN-based model for features extraction and an
RNN architecture for learning the spatial-temporal depen-
dencies that exist between the sentence signs. To solve the
alignment problem between the probability sequences in the
RNN outputs with the sequences of glosses, we used CTC.

Fig. 2 presents a general view of our approach composed
of three main models. The first comprises spatial modeling,
while the others encompass sequential learning and a CTC
loss layer to decode categorical probabilities in sequences of
glosses.

Features extraction. DWSCN is used for representations
of spatial features of the frame sequences. The pre-trained
MobileNetV1 [21] operational model is among the models

Fig. 2. Overview of our continuous sign language recognition approach

based on the DWSCN. The use of pre-trained models enables
developing efficient models in situations of limited data avail-
ability, in addition to reducing processing time [22].

MobileNetV1 was pre-trained on ImageNet [23] and has
characteristics of having reduced size (17MB) and reduced
number of parameters (4,2 million) when compared to other
state-of-the-art models.

To use MobileNet as a feature extractor preprocessor, the
softmax classification layer (SM) and the completely con-
nected layer (FC) have been removed, keeping all the depth-
wise separable convolution blocks and the Average Pooling
layer.

All dataset images are processed by the resulting model. As
the last layer has 1024 nodes, each image will be represented
as a 1024 value vector. Each video sample results in a three-
dimensional array of dimensions equal to 1 x number of
frames x 1024 features. Since the number of frames are
different between the videos, the padding in each array has
been performed to allow the concatenating of all feature arrays.
The data is used as the entry to train our model based on
recurrent neural networks.

The glosses are coded in categorical variables and together
with the feature arrays are used as input to train our model
based on recurring neural networks. This is a weakly su-
pervised learning problem, that is, the gloss sequences are
available but not its time limits.

Sequential learning. Our approach uses BLSTM to model
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the correspondences between the input sequences and output
glosses. This architecture is capable of storing data for long
periods of time and try to avoid the explosion of the gradient,
a common problem of the Vanilla neural networks.

To implement a BLSTM network, it takes two parallels
layers of LSTM cells, backward LSTM and forward LSTM,
each of them being responsible for processing the information
in the direction of time. The final hidden layer is given by the
concatenation of the two networks.

The memory neurons of an LSTM are called cells. Fig. 3
presents the structure of a BLSTM network and highlights one
single memory cell. The cells are capable of storing data in
the course of a sequence through units called gates. According
to [24], these units calculate the weights that connect them
to avoid the gradient degradation through parameterized or
manually chosen values.

Fig. 3. BLSTM network structure, highlight to a single memory cell

A softmax activation function on a fully connected layer is
used in the network output and is applied to each time frame.

Connectionist Temporal Classification. In the BLSTM
training phase, CTC is used to calculate the cost value. During
prediction, it decodes the probability matrices of the softmax
function in gloss sequences.

To allow the CTC algorithm to decode the target sequence,
one more unit is introduced to the total number of labels in
the softmax output layer. This unit refers to a token named
blank, that models the transitions between different labels.

Let us consider the mapping of the input frames sequence
X = [x1, x2, ..., xT ], for the sequences of output words Y =
[y1, y2, ..., yT ]. The CTC cost function for a pair (X, Y) has
the conditional probability p(Y/X) equal to the sum of all the
valid paths A ∈ AXY , calculating the probability pt(at|X) to
a single step-by-step alignment following (1).

p(Y/X) =
∑

A∈AXY

b∏
a

pt(at|X) (1)

For a training set M, the model parameters are tuned to
minimize the negative log-likelihood. That way, the CTC
objective function is given by (2).

LossCTC =
∑

(X,Y )∈M

− log p(Y/X) (2)

To calculate the CTC loss efficiently, the Forward-Backward
algorithm given in [25] is used.

IV. EXPERIMENTS

This section reports on the experiments performed and the
performance of our architecture in continuous Libras signing
recognition.

A. Dataset

In order to develop and test our approach, 280 sentences
signed by a professional interpreter were captured, correspond-
ing to 5 repetitions of 56 sentences. 42663 frames are obtained
at a rate of 30 fps. The number of glosses is equal to 67. The
number of glosses per sentence varies from 2 to 6 and the
number of frames per sentence varies from 124 to 277.

B. Evaluation Metrics

The Word Error Rate (WER) is the metric widely [8], [9],
[26], [27], [12], [10], [11], [14], [4], [28], [29], [30] used in
continuous sign language recognition work and, therefore, will
be the metric used in this paper. The WER is given by (3).

WER =
I +D + S

N
(3)

Where I is the number of errors entered, D is the number
of deletion errors, S is the number of substitution errors, and
N is the total number of glosses in the reference sentence.

The accuracy is given by (4).

acc = 1−WER (4)

C. Training and Evaluation

We performed experiments on an Nvidia RTX 2080Ti, and
the model is implemented in the Keras framework [31], using
tensorflow [32] as a backend. In our experiments, we used 80
percent of the data (224 sentences) for the training set and 20
percent for the test set (56 sentences).

The simulations performed processed the images mapped.
Initially, these images were resized to 224 X 224 pixels,
dimensions expected by the MobileNetV1 network.

After spatial modeling with our structure based on DWSCN,
the resulting feature matrix has a dimension equal to the
number of samples x time steps x features.

According [33], training small datasets has some challenges,
as the network effectively memorizes the training dataset.
The author recommends that adding noise is an approach to
improve the generalization error and to enhance the structure
of the mapping problem during learning. Thus, we applied
Gaussian noise, at the entrance of the BLSTM network, with
a standard deviation of 0.5 during the training phase.

The training of our BLSTM architecture is performed by
implementing the backpropagation algorithm through time,
[34]. The initialization for the recurrent weights matrix is the
orthogonal [35], for non-recurring weights the glorot uniform
[36] and the vector bias is initialized with zeros. The optimizer
used is the Root Mean Square Propagation (RMSprop) [37]
with a learning rate of 0.01, a discounting factor of 0.9, a

44Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-916-4

HEALTHINFO 2021 : The Sixth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing



momentum of zero, (default values in the framework), and
a batch size of 82. Then, we use the CTC beam decoder
described in the work of [38] to decode sentences with beam
width 10.

For the aforementioned configurations, dozens of experi-
ments were carried out using different network topologies,
with a maximum of 4 layers (1 to 3 recurring layers and a
completely connected layer) and the number of neurons equal
to powers of 2 in the range of 2 to 512. The last layer is fixed
with 68 neurons (one for each vocabulary label plus the blank
label). Given the stochastic nature of the algorithms used,
repetitions of the tests are performed in order to determine
the most promising models.

In order to detect overfitting and determine the most promis-
ing models, a validation set is adopted, based on the training
set, consisting of 60 sentences. During the training, at the
end of each epoch, the value of the loss CTC is calculated
in the validation set, and the best model in each training is
determined according to the lowest value of the loss in that
set.

Also, to identify and soften the effect of overfitting, we used
the method of regularization called dropout, presented in [39].
Dropout values equal to 0.5 were applied for both recurrent
and non-recurrent connections.

Among the best models that fit the data, the simplest model,
that is, with the least hyperparameters, is considered the most
plausible to be used in the test set.

D. Results

Our best result is achieved by configuring two recurrent
layers with 32 and 64 neurons, respectively. At the end
of 30000 epochs, it was determined that the best model
corresponds to epoch 21422. The values of the initial weights
and the settings referring to that model are saved and stored
for reproducibility, as well as for use in the unseen data set
during the training.

Of the 56 sentences in the test set, 11 obtained some kind of
error in the model prediction. The average WER was 8.92%
and therefore, an accuracy of 91.07%. In Table III we can
observe some errors found, comparing the results of the model
with the ground-truth sentences. Bold words are associated
with errors in prediction. Table IV presents the equivalent
results in English.

Therefore, the errors found were: 13 substitutions, 2 inser-
tions, and no deletions. Low values in relation to the total
amount of glosses existing in the dataset demonstrating the
effectiveness of our architecture.

V. CONCLUSIONS

In this article, we presented an approach for recognition
of continuous signing of Libras. This approach receives se-
quences of images of a person communicating in Libras and
translates signs to the Portuguese language. The efficacy of
our proposed methods was proven by state-of-the-art results.

In general, when compared to other approaches in the
literature, our approach demonstrates a series of advantages:

TABLE III
SENTENCES WITH PREDICTION ERRORS

# Target Prediction

1 COMEÇAR
ANTEONTEM COMEÇAR ONTEM

2 COMEÇAR QUINTA-FEIRA
PASSADA

COMEÇAR TERÇA-FEIRA
PASSADA

3 COMEÇAR SEGUNDA-FEIRA
PASSADA

COMEÇAR QUARTA-FEIRA
PASSADA

4 COMEÇAR TERÇA-FEIRA
PASSADA

COMEÇAR QUINTA-FEIRA
PASSADA

5 MAU-HÁLITO
FEDOR TER

MAU-HÁLITO FEDOR
VERMELHO TER

6 MEU DENTE DOR MEU COSTAS TER

7 MEU NARIZ DOR MEU OLHO-ESQUERDO
INCHADO

8 OLHO-DIREITO
APONTAR VERMELHO TER

OLHO-DIREITO
APONTAR VERMELHO
SABOR NÃO-TER

9 MEU OLHO-DIREITO DOR MEU OLHO-DIREITO
INCHADO

TABLE IV
SENTENCES WITH PREDICTION ERRORS - VERSION IN ENGLISH

# Target Prediction
1 START BEFORE-YESTERDAY START YESTERDAY

2 START THURSDAY PAST START TUESDAY
PAST

3 START MONDAY PAST START WEDNESDAY
PAST

4 START TUESDAY PAST START THURSDAY PAST

5 BAD-BREATH
BAD-SMELL HAVE

BAD-BREATH
BAD-SMELL RED HAVE

6 MY TOOTH PAIN MY BACK HAVE

7 MY NOSE PAIN MY
LEFT-EYE SWOLLEN

8 RIGHT-EYE POINT RED HAVE RIGHT-EYE POINT RED
FLAVOR DO-NOT-HAVE

9 MY RIGHT-EYE PAIN MY RIGHT-EYE
SWOLLEN

i) It does not depend on the extraction of manual features,
specifically designed for a domain and laboriously calculated
from the geometry of the hands and arms.

ii) It takes into account characteristics related to non-manual
expressions, such as movements of the face, eyes, head, and
torso, instead of using only continuous sequences of the hands.

iii) Contrary to other studies’ continuous signing recogni-
tion, which performs the feature extraction process in video
segments related to isolated signs, our spatial representation
module is processed on the entire video. Our choice is due to
the fact that video representation based on fixed-length signs
can compromise the continuous recognition of signing in real
situations since the same sign varies in length in a video, even
when performed by the same person in different situations

iv) Our spatial modeling, which is based on depthwise
separable convolutions, reduces the latency and favors the
development of real-time sign recognition because of the
accuracy and the number of parameters and demanded cal-
culations. This is a great advantage when compared to other
convolutional neural networks.
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v) Our architecture based in BLSTM with CTC learns
to find and store information relevant memory cells from
the data channels included in full-frame sequences. This is
done without injecting subsystems in its structure that process
image patches. Consequently, our approach presents a greater
capacity for temporal learning compared to studies that import
extra data in its system to ease the learning.

Our approach demonstrates the potential to be applied in
signing recognition on heterogeneous backgrounds due to
the use of Kinect, which performs the segmentation of the
individual while capturing the depth and color of images. In
our upcoming work, we intend to include more signage and
diversify the recording scenarios of our dataset images, as well
as increase the vocabulary in order to maximize the robustness
of our recognition approach.
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