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Abstract—Prolonged sitting in an unhealthy posture is a common
cause of back pain and other health problems in office workers.
People are often not aware that they are sitting in an unhealthy
way, the problems this can cause in the long term, and how
they should improve their posture. We present a system that is
able to provide this information by analyzing people’s postures
over several days. The system is fully automatic and requires
no worn devices. Instead, data from a depth sensor is used for
periodic 3D upper-body pose estimation. This pose estimation is
carried out by a convolutional neural network that was trained
on synthetic depth data to overcome the lack of available real-
world datasets. On this basis, each pose is assigned to one of
several common classes of healthy and unhealthy sitting poses.
This results in a large collection of body poses and classification
results, which are used to generate a personalized posture report
that includes suggestions for improving the sitting posture. We
show experimentally that the system is able to estimate 3D poses
and perform pose classification with high accuracy.

Keywords–Workplace health promotion; Sitting posture estima-
tion; Deep learning; Depth data analysis.

I. INTRODUCTION

Approximately 75% of all employees in industrial countries
have jobs that require working in a seated position [1]. In the
DACH-region (Germany, Austria, and Switzerland) alone, this
is the case for around 15 million people. Prolonged sitting is a
common cause of pain and health problems in office workers
[2][3]. People are often not aware that they are sitting in an
unhealthy way, which problems this can cause in the long term,
and how to improve their posture [4].

In this paper, we present ergoscan, a system we developed
to address this issue. Ergoscan periodically measures the head
and upper-body pose of people sitting in front of their com-
puter at the workplace. The system requires no worn sensors
or any form of user participation, which users might consider
intrusive, and does not utilize image or video data to protect
the privacy of monitored persons. Instead, ergoscan processes
depth data, enabling 3D pose estimation and classification
with high accuracy. This information is collected periodically
over several days and sent to a server in an encrypted and
anonymized form. All processing is carried out locally such
that no other data have to leave the system.

An ergoscan system consists of a 3D sensor and an ARM-
based single-board computer, which are integrated in a single
casing that is mounted at the top of the user’s computer
monitor as illustrated in Figure 1. The system does not require

accurate placement or alignment to facilitate installation; it
obtains this information automatically via calibration based on
visible planar surfaces such as walls. Installation takes less
than a minute and requires no tools or adhesives.

Figure 1. A ergoscan device mounted on top of a monitor.

Once installed, ergoscan periodically performs face de-
tection using an efficient cascade detector [5] to determine
whether a person is sitting in front of the screen. If a person
is detected, a Convolutional Neural Network (CNN) with a
novel architecture estimates their head and upper-body pose.
CNNs achieve state-of-the-art performance in related tasks,
such as pose estimation in color images, but require large
datasets for training, which are not available in our specific
problem domain [6][7]. As obtaining a suitable dataset would
be a significant effort in this domain, we utilize synthetic depth
data for training and show that this is an effective alternative.

The six keypoints located during pose estimation are nasion
(intersection of the frontal bone and the two nasal bones of
the human skull), chin center, front of the throat, manubrium,
as well as the left and right shoulders. These keypoints were
selected based on feedback by physiotherapists but the method
is generic and can be adapted to any number of keypoints.
Angles derived from the 3D coordinates of these keypoints
are input to a random forest classifier [8], which assigns one
of 15 classes of common healthy and unhealthy sitting postures
that were defined together with experts. Two of these poses are
visualized in Figure 2.

Systems remain at a particular workplace for up to one
week. During this time, thousands of pose measurements
and classifications are collected. Physiotherapists analyze this
information in an aggregated form to identify unhealthy sitting
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poses that are commonly assumed. On this basis, the monitored
person receives a personal posture report with descriptions
and visualizations of these poses, as well as suggestions and
links to video tutorials for improving their sitting posture in
order to prevent long-term health problems. Figure 2 shows
visualizations from an example report.

Figure 2. Example visualizations from a sitting posture report.

We assessed the performance of ergoscan on a dataset of
1500 samples, with each depicting one of 31 people assuming
the 15 prototype postures. On this dataset, ergoscan estimates
3D keypoint coordinates with an average error of 2 to 5
cm depending on the keypoint, and is able to perform pose
classification at an accuracy above 99%.

This paper is structured as follows. Section II summarizes
related work on body pose estimation and synthetic dataset
generation. Our pose estimation and classification methods
are described in Sections III and IV, respectively. Section
V describes the experiments and discusses the results, and
Section VI concludes the paper.

II. RELATED WORK

Human pose estimation in color images via CNNs is a
popular research topic. Two seminal works in this field are
[9] and [10]. Both use networks with fully-connected layers
for regressing keypoint coordinates. The former work is the
first to demonstrate that 3D poses can be recovered from
color images, although this is possible only up to scale. More
recent works such as [6][7][11] instead perform dense keypoint
prediction with fully convolutional networks, which improves
accuracy but is slower and requires more memory due to the
the additional upsampling path. As these resources are limited
on ergoscan devices, we opt for keypoint regression.

In contrast, there is lack of recent works that utilize
depth data. A reason for this is that these sensors are not as
widespread as cameras (and camera phones), and consequently
a lack of large datasets. Pose estimation in depth data was a
popular research topic following the release of the Kinect depth
sensor in 2010 [12][13][14]. In contrast to these methods,
which perform pose estimation via regression forests, we
utilize CNNs for this task due to their higher performance.
This was shown in [15], which presented a patch-based method
for 3D pose estimation in depth data using a combination
of a CNN and a recurrent neural network. Two more recent
methods are [16] and [17]. The former utilizes a CNN for
estimating the coefficients of a linear combination of prototype
poses that result in the pose depicted in the input depth map.

The latter both processes and predicts 3D volumes, arguing
that regressing 3D poses directly from 2D depth maps hinders
optimization during training. Our method processes 2D depth
maps, which is computationally more efficient, and avoids such
problems during training via two-stage keypoint regression.

Synthetic datasets are a promising means for enabling data-
driven solutions in problem domains for which no comprehen-
sive datasets are available. To our knowledge [12] was the first
work to demonstrate the potential of this approach for 3D pose
estimation in depth maps. We adopt this approach and train
the CNN on synthetic depth maps, however we create both
body poses and 3D models in software rather than employing
actors and motion capturing, which is less labor-intensive and
requires no special equipment. The most comprehensive public
dataset that includes depth maps of people is SURREAL [18].
However, this dataset does not reflect our problem domain in
terms of body poses and keypoints.

III. POSE ESTIMATION

Our pose estimation method takes a depth map and a face
bounding box as the input and outputs K = 6 3D keypoints.

A. Preprocessing
Preprocessing entails converting the input to be compatible

with the CNN. First, the face bounding box is extended by a
factor of four in order to capture the head and upper body
of the monitored person. The resulting depth map patch is
extracted and resampled to a fixed size of 96×96 pixels. This
follows normalization of the pixel values, which are given
in mm, based on the operating conditions of the ergoscan
system, namely assuming a maximum person distance of
dmax = 1500 mm as well as considering that the sensor is
unable to measure distances closer to dmin = 400 mm. To do
so, pixels greater than dmax are set to 0, which effectively
removes most background objects, and then all values are
scaled linearly from [dmin, dmax] to [0, 1] to facilitate transfer
learning. While the resulting normalized distances are no
longer metric, relative distances are preserved and the original
distances can be recovered via the inverse mapping.

B. Pose Estimation Network
Pose estimation is carried out by a CNN that first predicts

image coordinates of all keypoints and, on this basis, the
corresponding normalized distances. We found this approach
to be more stable during training, as suggested in [17].

The network architecture is illustrated in Figure 3 and con-
sists of three stages. The first stage performs feature extraction,
from which the second stage regresses image coordinates. This
follows a novel stage for distance prediction that integrates
information from the previous stages and the input image. The
outputs are the image coordinates predicted by the second stage
and the corresponding distances from the third stage.

The feature extraction stage is a ResNet-18 [19] that
was pre-trained for classification on ImageNet [20] and then
fine-tuned for pose estimation in depth data. We chose this
architecture due to its high performance and ability to run on
the target hardware at the required speed. After pre-training,
we replaced the classifier with a keypoint regressor that forms
the second stage of the network, and performed fine-tuning.

This second stage regresses keypoint image coordinates
using the features extracted in the previous stage. The layer
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Figure 3. Overview of the stages and data flow through the network.

architecture is detailed in Table I and starts with a global aver-
age pooling layer to convert the feature tensors to vectors. This
follows a linear layer with a ReLU activation and final linear
layer with 2K neurons (K keypoints with two coordinates).
Batch normalization and dropout layers are utilized to facilitate
network optimization and for regularization, respectively.

TABLE I. IMAGE COORDINATE REGRESSION ARCHITECTURE.

Layer type

Global average pooling
Batch normalization
Dropout (p = 0.25)
Linear (512 neurons)

ReLU
Batch normalization
Dropout (p = 0.25)
Linear (12 neurons)

The first and second stages were trained together as fol-
lows. First, we trained only the second stage while utilizing
the first (pre-trained) one as a static feature extractor. Once
the validation loss had saturated, we fine-tuned both stages to
allow the network to adapt to the depth data. This approach
prevented the first stage from adapting in a detrimental way
due to errors made initially by the untrained second stage. We
minimized the Huber loss [21] between predicted and ground-
truth image coordinates using stochastic gradient descent with
a cyclic learning rate and momentum [22].

The distance regression stage predicts normalized distances
for all keypoints. Our goal when designing this stage was
to make all relevant information available to it, namely the
keypoint coordinates predicted in the previous stage but also
the corresponding normalized distances in the input depth
map as well as the features extracted by the first stage. This
is realized using a distance lookup layer that converts the
predicted image coordinate vectors to integral coordinates and
uses this information to access the corresponding normalized
distances in the input depth map. If an image coordinate is out
of bounds or if there is no distance information available, the
layer assigns a normalized distance of −1 to signal the later
stages that there are missing data. The layer returns the original
keypoint coordinates as well as the corresponding distances,
i.e. a B × 3K tensor with B being the minibatch size.

Table II summarizes the layer composition of the stage.
Initially, there are two parallel branches. The branch that
processes features starts identically to the keypoint prediction
stage and outputs a B × F tensor. The other branch consists
of the distance lookup layer. Dropout is omitted in this branch

to preserve information. The outputs of both branches are then
concatenated to a single B × F + 3K tensor. The remaining
layers are consistent with the keypoint regression stage.

TABLE II. DISTANCE REGRESSION ARCHITECTURE.

Input-Features -Keypoints -Images

Global average pooling
Distance lookup

Dropout (p = 0.25)

Concatenation
Batch normalization
Linear (512 neurons)

ReLU
Batch normalization
Dropout (p = 0.25)
Linear (6 neurons)

We added and trained this stage after the previous stages,
which were not modified in this process. We again minimized
the Huber loss but did not penalize errors for keypoints whose
ground-truth image coordinates were outside the image.

C. Synthetic Training Set

The pose estimation network was trained solely on syn-
thetic data. The key considerations during dataset design were
realism and comprehensiveness in order to ensure that trained
models would be able to generalize to actual sensor data. To
this end, the goal was to capture a wide variety of realistic
body types, poses, and office environments.

Pose animations were carried out using the Blender 3D
modeling software with the ManuelBastioniLAB addon for
person models and animations. These tools enable realistic
and anatomically correct person animations in 3D. The amount
and types of modeled poses were chosen based on studies on
sitting postures in office environments as well as own analyses
of office recordings. This was to ensure that the resulting set
of poses would be both realistic and comprehensive. 5000
different poses were generated.

On this basis, 15000 different 3D person models were
created. This highlights the potential of synthetic data –
recruiting this many people for recording is infeasible for most
companies and research institutes. Care was taken to ensure
that the models capture a wide variety of realistic body shapes.
For this purpose, character properties such as gender, age,
height, weight, and body tone were varied, with each affecting
body and face shapes in a realistic way. Each 3D model has
hair and clothing for increased realism, and includes accurate
ground-truth pose information. Figure 4 shows two examples.

Figure 4. 3D person models for training purposes.
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Depth maps were rendered by a custom renderer that
randomly selects a person, a desk and chair for the person, and
a piece of background furniture from a pool of available 3D
models, arranges these objects in the scene in a realistic way,
places a virtual camera at a varying location and orientation,
and then renders a depth map. The renderer also exports
metadata such as camera parameters and image coordinates of
keypoints. All 3D models of furniture were manually selected
from the ShapeNet dataset [23]. The pool of background
furniture comprised 1663 models of shelves, cupboards, and
couches. The virtual camera had VGA resolution and a field
of view of 60 degrees, similar to current off-the-shelf depth
sensors. Figure 5 shows a rendered depth map.

Figure 5. Visualisation of a rendered depth map (further objects appear
darker). The desk is outside the field of view in this example.

For increased realism, sensor noise similar to that of the
Kinect was simulated. Our method for simulating unsuccessful
measurements (zero-pixels) was based on [24]. For each depth
map, we computed a smoothed normal map and set depth map
pixels whose normals were close to perpendicular to 0. We
then applied additive Gaussian random noise with a standard
deviation based on the measured distance, in approximation of
the random noise of the sensor [25].

D. Postprocessing
To obtain a 3D pose from the CNN output, predicted nor-

malized distances are first mapped to distances from the sensor.
The predicted image coordinates are then converted to camera
coordinates using the known sensor intrinsics and mapped
distances, which in turn are mapped to world coordinates using
the extrinsics estimated during system calibration.

IV. POSE CLASSIFICATION

Pose classification is based on angles rather than absolute
world coordinates. This angle representation has the advantage
of being invariant to the offset between monitored people and
the sensor, which generally varies over time. It also increases
robustness with respect to variations in person height as angle
representations are invariant to uniform scaling.

Our angle representation of a given 3D pose is a collection
of 20 informative 2D angles. We favor this 2D approach as
we consider such angles – and derived classification rules
– more intuitive than 3D angles. Each angle is calculated
by computing the 3D vector between two specific keypoint
coordinates, discarding a particular coordinate to obtain a 2D
vector, and computing the angle between this vector and (1, 0).

The rules for obtaining these angles, i.e. which 3D vectors
to compute and which coordinates to discard, were found via
feature selection on a training set consisting of 33000 3D poses

estimated by several ergoscan devices. Each of these poses
was assigned a ground-truth class label by experts. Feature
selection was carried out by computing all 90 possible 2D
angles for each of these poses, training a random forest on the
resulting dataset, and determining the 20 most important angles
according to the feature importances learned by the forest [8].

V. EXPERIMENTS

We assessed the pose estimation and classification perfor-
mance of ergoscan, and studied the performance impact of
training on synthetic data.

A. Dataset
As there were no public datasets available that reflect our

problem domain, we created such a dataset ourselves. For
this purpose, 31 people were recruited, which were assuming
the 15 prototype sitting poses under supervision. During this
time, an ergoscan system computed 1500 pose estimates and
classifications (100 per pose). Ground-truth keypoints and class
labels for these samples were obtained using a professional
motion capture system and manual labeling, respectively.

B. Pose Estimation Performance
We calculated the estimation error for a given pose estimate

and keypoint as the Euclidean distance between the 3D key-
point coordinate measured by ergoscan and the corresponding
ground-truth coordinate. We did so for each keypoint and
sample, and report averages and standard deviations.

Figure 6 summarizes the results. The estimation errors
are under 30 mm on average, with the exception of the
shoulder keypoints. For the shoulders, the CNN often predicted
keypoints that were too low. This was caused by missing data
for the upper parts of the shoulders due to sensor limitations.
The results are promising and confirm that it is feasible to train
a CNN for pose estimation in depth data on synthetic data.
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Figure 6. 3D keypoint estimation errors on the test dataset. NA: nasion, CH:
chin, TH: throat, MA: manubrium, LS: left shoulder, RS: right shoulder.

C. Generalization Performance
We studied the decrease in performance incurred by train-

ing on synthetic data, which despite our efforts do not (and
arguably cannot) perfectly match real sensor data. For this
purpose, we split the synthetic dataset into a training set (52000
samples) and a test set (8000 samples), and retrained the
network using the same hyperparameters. We then computed
the per-keypoint estimation errors on the test set like before.

The results are shown in Figure 7. As expected, the
estimation errors are significantly lower on synthetic data than
on real data (Figure 6). As care was taken to render the
synthetic data as realistic as possible, this indicates that a
decrease in performance must be accepted in general when
training on synthetic depth data.

52Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-759-7

HEALTHINFO 2019 : The Fourth International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing



NA CH TH MA LS RS
0

20

40

60

keypoint

er
ro

r
[m

m
]

Figure 7. 3D keypoint estimation errors on the synthetic test set. NA: nasion,
CH: chin, TH: throat, MA: manubrium, LS: left shoulder, RS: right shoulder.

D. Pose Classification Performance
Ergoscan misclassified only one of the 1500 samples in

the test dataset. This confirms that ergoscan is able to classify
poses with high accuracy and consequently that ergoscan can
detect unhealthy sitting poses reliably.

VI. CONCLUSION AND FUTURE WORK

We have presented ergoscan, a system for promoting a
healthy posture in office workers by raising awareness. Er-
goscan requires no user participation and monitors people’s
postures over several days to identify unhealthy postures that
are frequently assumed. Posture monitoring is realized using
a CNN for upper-body pose estimation with an architecture
optimized for depth data analysis. On this basis, ergoscan
automatically assigns each pose estimate to one of 15 common
sitting poses. The results confirm that training CNNs on syn-
thetic data can be a suitable approach if no comprehensive real
datasets are available, and that ergoscan is able to perform pose
estimation and classification reliably. We plan to investigate
performance penalties due to synthetic training data in a more
detailed and general way, and on this basis to develop improved
sensor noise simulation methods. Another task planned for the
future is providing realtime feedback to users via a website or
smartphone app in addition to the reports.
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