
Interactive Exploration and Querying of RDF Data

Martin Kryl12, Petr Vcelak12 and Jana Kleckova12

1NTIS - New Technologies for the Information Society, University of West Bohemia, Czech Republic
2Department of Computer Science and Engineering, University of West Bohemia, Czech Republic

email: {kryl, vcelak, kleckova}@kiv.zcu.cz

Abstract—Many contemporary healthcare information systems
incorporate and utilize Resource Description Framework (RDF)
datasets, which are characteristic by their flexibility and ability
to form complex data networks. Users might find themselves
overwhelmed when trying to understand the data layout since
there are no apparent rigid structures such as tables in relational
databases. In this paper, we present a prototype data exploration
tool, that enables users to grasp the data structure by exploring a
simplified RDF model. The solution does not rely on ontological
description. The visualization has four modes of interaction
defined that allow exploration in different levels of detail. One of
the modes can be used to interactively create a SPARQL SELECT
query. The proposed solution combines graph visualization and
data extraction techniques into a single tool and allows users
without expert SPARQL knowledge to extract data from RDF
graph.

Keywords–RDF; visualization; data exploration; interactive
SPARQL builder.

I. INTRODUCTION

The current trend in data storage is to use various nonre-
lational databases (NoSQL) and data models beside classical
relational databases. Big Data are common in health domain
and relational databases are not considered suitable for dealing
with them since they lack horizontal scalability, and need hard
consistency [1]. One of the currently popular NoSQL data
models is RDF, which has found its use as the preferred model
for Open Data [2] and it is also used in Medical Information
Systems for its ability to integrate heterogeneous data. Medical
RDF applications can range from custom prospective study
databases [3] to systems for inter-hospital data exchange [4].
RDF model is directed multigraph, and can be queried by
special query languages, e.g., SPARQL.

There are some disadvantages of keeping data in RDF
model. The main issue seems to be the lack of RDF support in
common analytical and Business Intelligence software. Users
usually need to transform the data into tabular format before
being able to do the analytics, which requires additional
knowledge of RDF query language. Another issue arises when
data analysts want to understand the content of a dataset by
performing data exploration. The structure of raw data is com-
plex and there is only limited support in some graph database
systems for navigating through the graph [5]. Various semantic
browsers for traversing RDF graphs exist, such as Tabulator
[6], but it can be difficult to use them for large graphs. The
user can only see immediate surrounding nodes and may get
lost during graph traversal. One can try to visualize the dataset
but with the growing number of resource nodes, the legibility
of visualization quickly decreases. Providing a method for
interactive RDF analytics, that would not require the user

to manually write queries, is currently considered to be an
important area of research [5].

We have been working on a prototype solution allowing
users to explore a general RDF data model and interactively
define a data projection above the dataset without the need
of extensive knowledge of RDF and query languages. The
solution is composed of three components. The first one is
an RDF model crawler, which analyses the model structure,
determines property cardinalities and prevalence of RDF types.
The second one is a web visualization which utilizes findings
of the crawler to provide an aggregate graph view with a
possibility of interactive model exploration. The third is a
query builder that provides auto-generated SPARQL queries
based on the user interactions with the visualization. The user
can select objects of interests in the visualization and get the
transformed underlying data.

There are multiple related projects that either help users
to build SPARQL queries [7][8] or provide an aggregated
visualization of data model [9]. However, to the best of our
knowledge, there are no solutions that would assist in data
exploration and extraction by combining the two techniques.

Both of the query builders work with a fixed set of
SPARQL endpoints and have no visual tool that would help
the user understand the relations in dataset. SPARQL Builder
[7] constructs the query in two steps. First, the user selects
two RDF classes from the dataset. The application prints all
the possible paths between the resources of selected classes
and the user has to choose one of them forming the query
pattern. SPARQLGraph [8] offers an intuitive drag & drop
query builder allowing the modeling of more complex query
patterns than SPARQL Builder. The visualization [9] uses
aggregated model based on the RDF classes of resources and
provides good overview of relations in the dataset. However, it
is not possible to use the visualization to interactively generate
a query.

In the following Section II, the structure and functionality
of the proposed system is described. The prototype implemen-
tation details are provided in Section III. The achieved results
are discussed in context of other related solutions in Section IV
before the conclusion and future outlook in Section V.

II. PROPOSED SYSTEM
The system is composed of data preprocessor, graph vi-

sualization and query builder. Every RDF dataset needs to be
transformed into corresponding aggregated model first. The ag-
gregated model describes general structure and relations found
in the dataset and serves similar purpose as widely accepted
Entity-Relational model in relational databases. Visualization
draws the model and allows user to interact with it. Query
builder allows selection and projection of source data.

65Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

A. Data preprocessing
RDF data utilize property rdf:type to indicate that the

resource is an instance of the specified class. Knowing the
classes of resources, aggregated model is formed by finding
all distinct combination of (Sc, P, Oc), where Sc is the class
of a subject resource, P is the property and Oc is the class
of an object resource. Resources having no class defined are
ignored at this time. Literal values of datatype properties are
considered to be belonging to a pseudo-class with the same
id as the property, i.e., (Sc, P, P). In theory, it would be
possible to generalize this aggregation by choosing arbitrary
property instead of rdf:type, but in practice, there seems to be
no property with such a prevalence.

Additionally, cardinalities of all properties in respect to
subject and object classes are calculated, i.e., number of
different values of type Oc are counted for each instance of Sc
in (Sc, P, Oc). Visualization uses information about minimum
and maximum cardinalities, as well as histogram of cardinality
values. Lastly, total number of instances of each class are
calculated.

B. Visualization
Metadata collected in previous step are incorporated into

interactive directed graph visualization. Nodes represent re-
source classes or literal pseudo-classes, while edges represent
RDF properties. Color of the node is used to distinguish
between regular and pseudo-classes. Existence of an edge
labeled P directed from A to B means that there is at least
one RDF triple in the original data, where an instance of A is
related to an instance of B by property P. Edges are visualized
as arcs with clockwise orientation instead of lines. This way
inverse properties do not overlap and it is also possible to
visualize multiple edges in the same direction by assigning
different radius for each arc. By using this technique, it is
possible to draw loop edges the same way as other edges.
Styling of the edge indicates the minimum and maximum
cardinality of the property in context of classes A and B:
• Solid arc represents the minimum cardinality of 1, i.e.,

each instance of A has at least one value of class B
assigned by the property.

• Dashed arc indicates minimum cardinality of 0, i.e.,
there are instances of A that have no instance of B
assigned by the property.

• Empty arrow marker means that the maximum cardi-
nality of the property is 1, i.e., there is always at most
one value of B.

• Filled arrow marker means that the maximum cardi-
nality is greater than 1, i.e., the property may have
multiple values.

Following the Visual Information Seeking Mantra:
‘overview first, zoom and filter, then details-on-demand’ [10],
the visualization offers four modes of interaction.

Overview: By default, the visualization shows only nodes
representing RDF classes and object properties between them.
This is the minimal possible configuration showing the rela-
tions in the entire dataset. Only the local names of a resources,
the last part of object URIs (Uniform Resource Identifier), are
displayed, unless there is an ambiguity. The user can scroll
through the visualization canvas and move individual nodes. If
there are multiple properties with the same orientation between
any two resources, they can be merged into a single arc with
numerical label indicating the number of merged properties

Figure 1. Visualization of an aggregated model of medical imaging data
consisting of 8 RDF types and showcasing all possible cardinality types.

Literal nodes and datatype properties are hidden.

as can be seen in Figure 1 between nodes labeled CT Image
and Series, or they can be drawn as separate arcs as shown in
Figure 1 between Patient and Study nodes.

Zoom: This mode allows an expansion of detail in an area
of interest. By clicking on the node, the user can choose to
display datatype property edges leading from the specified
class to respective pseudo-class nodes. Merged properties can
be expanded or merged back by clicking on the arc.

Filter: The user can filter displayed graph elements by
selecting classes of interest via a set of checkboxes provided
next to the visualization canvas. All pseudo-classes are tied to
a single checkbox. Only the nodes of selected classes and the
edges between them are displayed. Additionally, one can set
all adjacent nodes of a given node to be visible by clicking on
the node and thus updating the filter.

Details-on-demand: An infobox containing information
about the selected property prevalence and histogram of its
cardinalities is displayed next to the graph visualization as
shown in Figure 2a. It is also possible to interactively query
the original dataset in this mode. The user can highlight nodes
and edges that will serve as a subgraph pattern in the SPARQL
query. The underlying query string is displayed and dynam-
ically updated as the user interacts with the visualization.
Details on SPARQL creation are provided in a further section.
Some segments of the generated SPARQL query might be
highlighted in some cases as seen in Figure 2b. The user can
click on the text and tweak the query by selecting alternative
auto-generated segment. Results are displayed in tabular form
under the visualization and can be exported to a CSV (comma-
separated values) file.

C. SPARQL query builder
Query builder works with an active selection in the visual-

ization. Variables in the SPARQL query use the same name as
the nodes they represent, thus the same variable name is always
used for one node. Highlighted subgraph edges and nodes are
collected and the first node to be traversed is chosen. The
subgraph is traversed by depth-first approach with edges of
datatype properties having priority. For each traversed edge,
a new triple is added to the WHERE clause declaring the
relation between the two variables via URI of the edge. A
triple definition of variable type is added if the rdf:type of
the variable has not been defined before and the variable is
not literal. This default behavior works well when using only
properties with cardinality of 1.

66Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

(a) (b)

Figure 2. Interactive query generation. Selection detail box in lower left part of (a) provides information about a single graph edge. Numbers in brackets
indicate the prevalence in the dataset. The histogram shows cardinality spectrum of the property. The query in (b) is generated based on the highlighted

subgraph from (a). There are three highlighted opportunities to tweak the query via popover box.

When dealing with properties having minimum cardinality
of 0, the part of SPARQL query is highlighted, thus visually
prompting the user to make a decision on a way this property
should be handled. Without further changes, the property is
considered mandatory and any resource that does not have
the property assigned will not match the pattern and will not
be present in the result. An alternative to this is to wrap the
triple with OPTIONAL clause. This is sufficient for datatype
properties, but for object properties it might lead to cartesian
product evaluation in case the potentially unbound variable is
used further in the query. To prevent this behavior, entire query
pattern generated by traversing the target node and its children
is wrapped with the optional clause.

All the variables declared in pattern statements are inserted
into SELECT clause of the query. Clicking on the variable
name will insert a simple filter at the end of the where block,
which could be further edited by the user. This allows for
additional conditioned selection in the query, thus limiting the
result space.

Query builder displays a warning text in two specific situ-
ations. First, if the current selection does not form a pattern of
connected graph. Proceeding with the query execution would
result in a cartesian product of the disjoint components, which
is undesirable in most cases. There is no clear-cut solution
to this problem and the user needs to change the subgraph
selection manually. The second case is when multiple edges
between two nodes are selected. Only instances, that has all the
properties leading to the same instance will be in the resulting
selection. This is usually not the behavior the user wants, but
it might be desirable in some cases.

III. IMPLEMENTATION
The prototype is implemented using client-server architec-

ture. Server part is written in Java using Spring Framework
[11] for web communication and Apache Jena [12] for RDF
manipulation. The server accepts either an RDF file in se-
rialization format supported by Jena or an URL address of

SPARQL endpoint that implements the SPARQL 1.1 Graph
Store Protocol [13]. Currently, the server application analyses
the contents of the dataset programatically via Jena API. This
provides parallel processing support of the input model if
needed in the future. The chosen approach is in contrast to
other contemporary solutions, which gains the graph metadata
purely by analytically querying of public SPARQL endpoints
built upon the datasets. Our metadata collection workflow
could be transformed to a batch of analytical queries as Jena
framework enables to query loaded RDF models, as well as
remote SPARQL endpoints. The resulting dataset description
metadata are returned as a JavaScript Object Notation (JSON)
file. The server also provides an interface for SPARQL SE-
LECT query execution above the dataset.

The client is written in HTML5 and utilizes D3 JavaScript
library [14] to create a force-directed graph based interactive
visualization. The visualization uses metadata JSON file pro-
vided by the server. The client is platform independent and
only requires modern web browser with enabled JavaScript
support.

IV. DISCUSSION
The main focus of this project was on creating a tool

that would assist the user in filtering and transforming the
RDF dataset into tabular data structure for further use in
other analytical software. The visualization interactions were
inspired by the visual interface of Microsoft Access Query
Designer, which users can successfully operate with only
a basic understanding of relational database theory. Entity-
Relationship model is the fundamental diagram in relational
databases to understand the structure of dataset and Query
Designer uses it to define joins between tables. In RDF case,
we have used rdf:type values of resources as the entity labels
and constructed an aggregate graph explaining the relations
present in the dataset between such entities. By highlighting
segments of the graph, the user intuitively defines a query
projection.

67Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

There are minimum and maximum cardinalities calculated
in preprocessing phase, which are used during query genera-
tion to determinate the need for optional clause and aggrega-
tion definitions. These values could in theory be gained from
ontological definitions of properties, however we would have
to accept the assumptions that the ontologies are available,
the ontological restrictions are defined and data respect the
ontologies. To allow the user to work with datasets lacking the
ontological description, we have decided to use the ontologies
only as a supplementary source of annotations. Similarly, the
entire aggregate graph could in theory be created based on the
ontological definitions of classes, properties and their domain
and range spaces, but again we have chosen to rather describe
the exact state of data as presented in an input file.

The prototype solution uses a generic approach that is
applicable for any RDF file or SPARQL endpoint allowing
access via Graph Store Protocol. Users are thus able to
explore and extract data from various sources and are not
limited to predefined databases, which is a common issue in
other SPARQL builder solutions [7][8]. To support on-demand
viewing of data and export of projected table, the server needs
to store the input datasets. Currently, the entire datasets are
read into Jena in-memory model which is a major scalability
concern for future development because Java Virtual Machine
memory capacity is limited.

Preprocessing of the dataset is computationally expensive
operation and it scales linearly with the triple count. Depending
on the input dataset size, there might be a noticeable delay
before the user can interact with the visualization and it might
be worth searching for possibilities on how to show results of
partially processed dataset to the user. The visualization [9]
avoids the problem by running the process in regular interval
and having a cached results available on-demand. This is not
applicable in our case, since user can input arbitrary datasets.

The quality and clarity of visualization depends mainly
on two factors, the number of different RDF types and their
hierarchy. With increasing node count, the visualization spans
larger area and it becomes harder for users to grasp the overall
shape or even find property paths between the nodes of interest.
In such cases, it might be useful to incorporate a filter method
that would only display the two selected nodes and the property
path between them similarly as SPARQL Builder [7] does.
User could then expand the neighboring nodes and the two
nodes would serve as starting point for further exploration.
The problem with hierarchy could be partially alleviated by
using the drill down and drill up operations on the hierarchy
of RDF types as was done in [9]. However, this would conceal
some of the types and a user not knowing about the subtypes
and supertypes of searched term might be confused.

V. CONCLUSION AND FUTURE WORK
We have introduced the prototype software solution for

interactive RDF data exploration and transformation to tabular
format in this paper. The proposed interactions are in accor-
dance with the overview first, zoom and filter, then details-on-
demand principle. SPARQL generator is a part of the solution
and is used for building basic SELECT queries with support of
optional blocks, filter clause and group by clause. The user is
prompted to choose from several offered query snippets rather
than freely edit the query string, and is not expected to know
the query language in detail.

The solution currently works well for datasets containing
low number of RDF classes, but it needs to be improved before

deploying and integrating in other systems. The solution might
assist doctors in extracting and transforming relevant data for
their clinical research or it might help in initial orientation in
data structure of information system. It might find its use in
applications for manipulating RDF data, e.g., an RDF editor.

Future work consists of extending the system architecture
to include a proper database layer to store the input datasets
and metadata generated during preprocessing. We will also
look into the ways to optimize the preprocessing phase and to
gather the model metadata by a batch of analytical SPARQL
queries, thus allowing the visualization to be run against
SPARQL endpoints built upon the datasets. Later on, we would
like to perform usability testing.

ACKNOWLEDGMENT
The work was supported from European Regional

Development Fund-Project “Application of Modern
Technologies in Medicine and Industry” (No.
CZ.02.1.01/0.0/0.0/17 048/0007280) and by Ministry of
Education, Youth and Sports of the Czech Republic, project
PUNTIS (LO1506) under the program NPU I and project
SGS-2016-018.

REFERENCES
[1] I. Merelli, H. Pérez-Sánchez, S. Gesing, and D. DAgostino, “Managing,

Analysing, and Integrating Big Data in Medical Bioinformatics: Open
Problems and Future Perspectives,” BioMed research international, vol.
2014, 2014.

[2] T. Berners-Lee, “Linked Data - Design Issues,” 2010, URL:
https://www.w3.org/DesignIssues/LinkedData.html [retrieved: August,
2018].

[3] J. Schwarz et al., “Inflammatory bowel disease incidence in Czech
children: A regional prospective study, 2000-2015,” World journal of
gastroenterology, vol. 23, no. 22, 2017, p. 4090.

[4] P. Rajbhandari, R. Gosai, R. C. Shah, and K. Pramod, “Semantic Web
in Medical Information Systems,” International Journal of Advances in
Engineering & Technology, vol. 5, no. 1, 2012, p. 536.

[5] M. Junghanns, A. Petermann, M. Neumann, and E. Rahm, “Manage-
ment and Analysis of Big Graph Data: Current Systems and Open
Challenges,” in Handbook of Big Data Technologies. Springer, 2017,
pp. 457–505.

[6] Berners-Lee et al., “Tabulator: Exploring and Analyzing Linked Data
on the Semantic Web,” in Proceedings of the 3rd International Semantic
Web User Interaction Workshop, vol. 2006. Citeseer, 2006, p. 159.

[7] A. Yamaguchi et al., “SPARQL Builder: Constructing SPARQL Query
by Traversing Class-Class Relationships for Life Science Databases,”
in JIST (Workshops & Posters), 2016, pp. 58–61.

[8] D. Schweiger, Z. Trajanoski, and S. Pabinger, “SPARQLGraph: a
web-based platform for graphically querying biological Semantic Web
databases,” BMC bioinformatics, vol. 15, no. 1, 2014, p. 279.

[9] F. Florenzano, D. Parra, J. Reutter, and F. Venegas, “An Interactive
Visualisation for RDF Data,” in International Semantic Web Conference,
2016.

[10] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxonomy
for Information visualizations,” in The Craft of Information Visualiza-
tion. Elsevier, 2003, pp. 364–371.

[11] R. Johnson et al., “The Spring Framework–Reference Documentation,”
Interface, vol. 21, 2004, p. 27.

[12] J. J. Carroll et al., “Jena: Implementing the Semantic Web Recom-
mendations,” in Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters. ACM, 2004, pp. 74–
83.

[13] C. Ogbuji, “SPARQL 1.1 Graph Store HTTP Protocol,” W3C REC,
vol. 21, 2013.

[14] M. Bostock, V. Ogievetsky, and J. Heer, “D3 Data-Driven Documents,”
IEEE transactions on visualization and computer graphics, vol. 17,
no. 12, 2011, pp. 2301–2309.

68Copyright (c) IARIA, 2018. ISBN: 978-1-61208-675-0

HEALTHINFO 2018 : The Third International Conference on Informatics and Assistive Technologies for Health-Care, Medical Support and Wellbeing

