
Brains Without Brawn: Evaluating CPU Performance for Code Generation with Large
Language Models

Miren Illarramendi1, Joseba Andoni Agirre1, Aitor Picatoste2, Juan Ignacio Igartua2

1Software and Systems Engineering Research Group
Engineering Faculty of Mondragon University

Arrasate-Mondragon, Spain
e-mails: millarramendi@mondragon.edu, jaagirre@mondragon.edu,

2Circular economy and industrial sustainability
Engineering Faculty of Mondragon University

Arrasate-Mondragon, Spain
e-mails: apicatoste@mondragon.edu, jigartua@mondragon.edu

Abstract—This research presents a comparative analysis of
the performance of various Large Language Models (LLMs)
for code generation tasks executed on Central Processing Units
(CPUs) without the use of dedicated Graphics Processing Units
(GPUs). The study evaluates key metrics including inference
time, code generation accuracy, CPU and memory usage, and
energy consumption. By conducting repeated experiments, we
assess the impact of model size and optimization on efficiency
in environments lacking GPU resources. Energy consumption
is measured using tools like CodeCarbon, focusing on the
environmental impact of running these models on CPU-based
systems. The findings offer insights into the trade-offs between
model precision, resource usage, and energy efficiency, providing
valuable guidance for developers and researchers aiming to
balance performance and sustainability in low-resource computing
environments.

Keywords-LLMs; GenIA; GreenComputing; Code Generation;
Energy Consumption; Sustainability.

I. INTRODUCTION

The rapid advancement of LLMs has revolutionized various
fields, including Natural Language Processing (NLP), code
generation, and even machine translation. Models like GPT-
3, DeepSeek, and Llama have shown remarkable capabilities
in tasks ranging from text generation to understanding and
generating code. However, these models are computationally
expensive and require significant resources, particularly during
the training and inference stages [1] [2].

While GPUs are typically the hardware of choice for running
large-scale machine learning models due to their high parallel
processing capabilities, not all environments have access to
dedicated GPUs. Many users, particularly those in resource-
constrained settings or utilizing cloud computing, must rely
on CPUs for model inference. CPUs, though less powerful
than GPUs in terms of parallel processing, are widely available
and more energy-efficient in certain use cases, especially for
smaller models or lightweight tasks [3].

Despite the growing use of LLMs in production environ-
ments, there is a lack of comprehensive analysis comparing the
performance and sustainability of these models when executed
on CPUs versus GPUs. The existing literature focuses mainly
on GPU-based performance, leaving a gap in understanding

how LLMs perform in real-world scenarios where only CPU
resources are available. Some research has pointed out that the
energy consumption of LLMs is often underestimated in most
studies, with the environmental impact becoming a significant
concern when deploying models at scale.

This study aims to address this gap by conducting a com-
parative analysis of the performance of various LLMs for code
generation tasks when executed in GPU-based environments
remotely. Specifically, we will focus on several key metrics,
including inference time, code generation accuracy, energy
consumption, and computational cost. The initial phase will
involve measuring the cost of running inference from our local
CPU to understand the energy and computational efficiency of
remote execution. The next step will be to extend this analysis
by deploying the LLMs directly on our CPU for inference,
allowing us to compare performance and resource usage when
running these models in resource-constrained environments.
Models to be evaluated include "gpt-4o", "gpt-4-turbo", "gpt-
3.5-turbo", "gpt-4o-mini", "mistralai/Mistral-7B-Instruct-v0.3",
"meta-llama/Meta-Llama-3-8B-Instruct", "alpindale/WizardLM-
2-8x22B", and "Qwen/Qwen3-235B-A22B-Instruct-25072".
These models have been selected due to their variety in size
and diverse platforms (OpenAI, HuggingFace), providing a
comprehensive comparison of different model architectures
and inference performance across various levels of complexity
and computational demands.

The contribution of this research is to remotely measure
and monitor code generation tasks in inference across different
LLMs, in terms of accuracy and CO2 footprint. By analyzing
the efficiency of these models in resource-constrained environ-
ments, we provide insights into optimizing the use of LLMs
and balancing cost with environmental impact.

In the following sections, we will explore the methodology
used to measure these performance metrics and present the
results of the experiments to offer a comprehensive comparison
of model efficiency across different hardware configurations. By
doing so, we aim to provide practical guidance for researchers,
developers, and organizations seeking to optimize the use of
LLMs in resource-constrained environments while considering
cost-effective and sustainable deployment strategies.

8Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2025 : The Tenth International Conference on Green Communications, Computing and Technologies

It is important to note that this study is limited to inference-
time evaluation, does not include model training or fine-tuning,
and relies partially on remote execution data, which may be
affected by variables such as network latency, backend opti-
mizations, and limited visibility into the energy consumption
of proprietary systems.

The remainder of the paper is organized as follows: Section
II and Section III cover the background and related work,
respectively, providing the foundational context for this study.
In Section IV, we describe the experimental setup and method-
ologies employed. Section V presents the experimental results,
focusing on performance, throughput, code generation accuracy,
and energy efficiency. Section VI offers an in-depth discussion
of the evaluation, interpreting the results and their implications.
Finally, Section VII concludes the paper and proposes directions
for future work.

II. BACKGROUND

The field of LLMs has seen significant advancements in
recent years, driven by the rapid development of deep learning
techniques and the availability of large-scale datasets. These
models, such as GPT-3 [4] and BERT [5], have achieved
impressive results across a wide range of NLP tasks, including
text generation, translation, and question answering. More
recently, specialized models, such as Codex [6] have been
developed for tasks related to code generation and software
development.

While LLMs have demonstrated remarkable capabilities, they
come with substantial computational requirements. Training
these models involves large-scale distributed computing on spe-
cialized hardware, often utilizing GPUs to speed up the process.
However, inference—the process of using pre-trained models
to generate outputs—can also be computationally demanding,
particularly when deployed in real-time applications. Typically,
GPUs are used for inference due to their ability to handle
parallel processing, but not all environments have access to
GPUs, especially in resource-constrained settings such as edge
devices, mobile platforms, or smaller cloud infrastructures.

The challenge of resource efficiency has become increasingly
important as the size of LLMs continues to grow. Models
like GPT-3, with over 175 billion parameters [4], consume
significant amounts of energy during inference. Studies have
highlighted the environmental impact of training and running
large-scale models, particularly with respect to their carbon
footprint and energy consumption [1]. Energy-efficient models
and the optimization of inference processes on CPUs have
therefore become crucial areas of research, especially when
considering the global push toward sustainable AI [2].

In parallel, the demand for code generation has increased,
driven by the need to automate repetitive programming tasks,
assist with code completion, and enhance software development
processes. Models, such as Codex [6] have shown that LLMs
can generate syntactically correct and semantically meaningful
code from natural language descriptions. These models have
the potential to reduce development time and improve software

quality by generating boilerplate code, automating refactoring,
and even suggesting optimizations.

However, the deployment of LLMs for code generation
in environments with limited hardware resources, such as
those relying on CPUs instead of GPUs, raises concerns
about the trade-offs between performance and energy efficiency.
There is limited research comparing the inference performance
and energy consumption of different LLMs in CPU-based
environments, which is critical for determining their practical
use in everyday software development tasks. Moreover, little
to no studies address the cost of inference when utilizing
remote models, such as ChatGPT provided by OpenAI, which
runs on cloud-based infrastructures. Understanding the energy
consumption and computational costs when querying remote
models from local CPU environments is crucial for optimizing
resources, especially when these models are not deployed
locally. This gap in the literature underscores the need for
comprehensive analyses that consider both local and remote
execution scenarios for LLMs.

III. RELATED WORK

The growing reliance on LLMs for tasks, such as code
generation, text generation, and question answering has signif-
icantly advanced the field of artificial intelligence. However,
these models, especially large-scale ones like GPT-3 [4],
Codex [6], and BERT [5], have raised concerns regarding
their environmental impact due to their substantial energy
consumption and carbon footprint. As these models become
larger, the need for energy-efficient deployment methods
becomes critical, particularly when leveraging resources such as
CPUs instead of GPUs, which are commonly used in research
environments.

A. Energy Consumption and Sustainability in AI

The environmental impact of LLMs has been a topic
of growing concern in recent research. Strubell et al. [1]
highlighted the significant energy consumption required to
train and run models like GPT-3, estimating that the carbon
emissions of training such models can rival those of several
cars over their lifetimes. This study emphasizes the need
for developing models that are not only accurate but also
energy-efficient, promoting the idea of Green AI. However,
this research focuses primarily on the training phase and the
larger-scale infrastructures typically used for training these
models, rather than on their inference phase or CPU-based
execution.

Schwartz et al. [2] further expanded on the concept of
sustainable AI, advocating for a shift toward models that
prioritize resource efficiency. They call for reducing the carbon
footprint of deep learning models and propose that energy-
efficient algorithms should be a focus in model design. However,
their work lacks a focus on real-world inference scenarios,
particularly in environments where GPUs are unavailable or
impractical for deployment.

Xu et al. [7] provided a comprehensive survey on strategies to
improve energy efficiency in deep learning models, addressing

9Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2025 : The Tenth International Conference on Green Communications, Computing and Technologies

the growing need to reduce the environmental impact of AI
systems. They reviewed a variety of techniques, including
model compression, pruning, quantization, and efficient data
usage, all aimed at optimizing the energy consumption of
machine learning models. These methods can significantly
reduce the computational load during inference, particularly
for large-scale models. While this work offers valuable insights
into improving the energy efficiency of deep learning systems,
it does not specifically focus on the trade-offs involved in
running LLMs, such as GPT-3 or Codex, on CPUs for code
generation tasks—an area central to our research.

B. Inference Performance and Resource Allocation

Recent studies have explored optimizing inference efficiency
by balancing the load between CPU and GPU. Patterson et
al. [8] analyzed the energy consumption and carbon footprint
of large-scale deep learning models and discussed strategies
for improving energy efficiency during model training and
inference. They highlighted the cost and energy-efficiency
trade-offs between using GPUs and CPUs, with a focus on
reducing the environmental impact of large models like GPT-
3. However, their work primarily focuses on general model
training and does not specifically address LLMs or code
generation tasks. Furthermore, it does not consider the role of
automated tools like MLFlow and CodeCarbon, which adjust
resources dynamically based on real-time performance and
energy consumption metrics.

Furthermore, a more recent study by Patterson et al. [3] pro-
vided insight into carbon-efficient machine learning practices,
offering actionable strategies to reduce energy consumption
in inference tasks, especially when models are run on CPUs
in resource-constrained environments. This study is highly
relevant to our research, as it provides an essential framework
for making inference more sustainable, though it still lacks
specific analysis on LLMs for code generation and their
optimization on CPUs.

Incorporating energy monitoring into DevOps pipelines has
recently been explored by some researchers. For example,
CodeCarbon [9] provides a simple framework to measure the
carbon footprint of machine learning models during training
and inference. By integrating CodeCarbon into the DevOps
workflow, practitioners can track the energy consumption
and CO2 emissions of models in real time, making it easier
to evaluate the environmental impact of model deployment.
This approach has been integrated into workflows for smaller,
less resource-intensive models but is rarely used for large-
scale models like GPT-3 or Codex, especially in CPU-based
environments.

A recent study by Rangineeni et al. [10] explored the
integration of MLFlow within DevOps pipelines for continuous
monitoring and optimization of machine learning models in
production environments. Their work highlighted how MLFlow
can be utilized to track performance metrics, log experiments,
and manage model versions, enabling efficient deployment and
resource allocation during inference. They also emphasized the
importance of adaptive resource management, which can ensure

cost efficiency and sustainability in cloud-based environments.
While their research provides valuable insights into optimizing
resource allocation using MLFlow, it does not specifically
address the application of these practices to LLMs, such as
GPT-3 or Codex, for tasks like code generation, nor does
it consider the role of energy consumption metrics in the
optimization process.

C. Code Generation with LLMs

The application of LLMs for code generation has gained
significant attention, particularly with models such as Codex
[6], which are specifically designed to generate programming
code from natural language prompts. Codex has shown great
potential in automating code completion, bug fixing, and
refactoring tasks, but there is a lack of research on how these
models perform when executed on CPU-based systems as
opposed to GPUs.

A recent study by Arora et al. [11] introduced SetupBench,
a benchmark designed to evaluate the ability of LLM agents
to bootstrap development environments autonomously. The
benchmark comprises 93 tasks spanning various programming
languages, database engines, and multi-service orchestration
scenarios. The evaluation of OpenHands, a state-of-the-art
coding agent, revealed low success rates across task categories,
particularly in repository setup and local database configura-
tion. The study identified substantial inefficiencies in agent
exploration strategies, with a significant percentage of actions
being unnecessary compared to optimal human behavior. These
findings highlight gaps in current agents’ practical environment-
bootstrap capabilities.

However, the research does not investigate the inference effi-
ciency of these models when deployed in resource-constrained
environments or on CPUs, which is a critical gap in the
current body of literature. Furthermore, their focus was mainly
on cloud-based models and did not consider the potential
environmental impact of running these models in cloud
infrastructures, where energy consumption and carbon footprint
can vary significantly depending on the hardware used.

D. Gap in Literature

While the literature provides a strong foundation for un-
derstanding the energy consumption and performance of deep
learning models, particularly in large-scale environments using
GPUs, there is limited research specifically addressing the
trade-offs and performance of LLMs for code generation when
executed in CPU-only environments. Most of the existing
studies focus on training and GPU-based inference, overlooking
the operational efficiency and sustainability of running LLMs
in low-resource environments where only CPUs are available.

Energy-efficient deployment strategies using tools like
MLFlow and CodeCarbon remain underexplored for LLMs,
particularly in real-time inference tasks like code generation.
This paper addresses this gap by comparing the CPU-based
performance and energy efficiency of various LLMs, focusing
on code generation and incorporating energy monitoring

10Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2025 : The Tenth International Conference on Green Communications, Computing and Technologies

through MLFlow and CodeCarbon to evaluate inference per-
formance and environmental impact in resource-constrained
environments.

IV. EXPERIMENTAL SETUP

This section describes the setup for evaluating the perfor-
mance, energy efficiency, and cost of various LLMs for code
generation tasks. The models selected for the experiments are
from OpenAI and Hugging Face repositories, with performance
monitoring conducted using MLFlow and energy consumption
tracking via CodeCarbon.

A. LLMs Selected for the Experiments

The models shown in Table I will be evaluated for code gen-
eration in C programming tasks from OpenAI and HuggingFace
(via Novita as inference provider):

TABLE I: SELECTED LLMs FOR THE EXPERIMENTS.

From OpenAI From Hugging Face
gpt-4o mistralai/Mistral-7B-Instruct-v0.3

gpt-4-turbo meta-llama/Meta-Llama-3-8B-Instruct
gpt-3.5-turbo alpindale/WizardLM-2-8x22B
gpt-4o-mini Qwen/Qwen3-235B-A22B-Instruct-2507

These models represent a range of architectures, including
large-scale models like gpt-4o and optimized models like gpt-
4o-mini.

B. Hardware and Operating System

• CPU: 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
(2.42 GHz)

• Operating System: Windows 11 Pro
The experiments will be conducted on this CPU-based

system, a typical environment for users without access to
high-performance hardware like GPUs for inference tasks.

C. Performance Monitoring and Energy Consumption Mea-
surement

To evaluate the energy consumption and carbon emissions,
the following tools will be employed:
• MLFlow will be integrated to monitor and track the inference

time, accuracy, and computational cost of each model.
• CodeCarbon will be used to track CO emissions and energy

consumption for each inference task, helping assess the
environmental impact of running LLMs.

D. Inference Tasks for the LLMs

The models will generate C source code for a set of problems,
which are as follows:
• Prime Number Check: Prompt: Write a C program that

checks if a number is prime. The program validation returns
1 if it is prime and 0 if not. The number to check is 11.

• Finding the Greatest of Three Integers: Prompt: Write a C
program that defines three integer variables and prints the
greatest of them. The numbers to check are 11, 22, and 33.

• Even/Odd Check: Prompt: Write a C program that returns
1 if the input number is even, and 0 if it is odd. The input
number for testing will be 122.

• Absolute Difference Calculation: Prompt: Write a C program
that calculates the absolute difference between two numbers.
The input numbers are -122 and 11.

• Sum of Digits: Prompt: Write a C program that calculates
the sum of the digits of the input number. The input number
is 123.

Each task was repeated 10 times for each model to ensure
that the results are statistically significant and to account for
potential variations in model performance across multiple
runs. The generated code will be validated using gcc to
ensure correctness, and the inference time, accuracy, energy
consumption, and computational cost will be tracked.

E. Evaluation Criteria

• Inference Time: Time taken by the model to generate the
required C code.

• Code Generation Accuracy: Correctness of the generated
code and whether it can be compiled and executed without
errors.

• Energy Consumption: Measured using CodeCarbon to assess
the energy used during inference.

• Computational Cost: The cost of running inference on remote
models (via APIs for models like gpt-4o).

F. Experimental Phases

• Phase 1: Remote Inference via APIs: The first phase will
focus on querying the models remotely using API calls
(for models like GPT-4 and others from Hugging Face) and
measuring inference time, accuracy, and energy consumption.

• Future Work - Phase 2: Local Inference on CPU: The
second phase, which will be explored in future work,
will involve deploying the LLMs locally on the CPU to
assess their performance and energy efficiency in resource-
constrained environments. This phase will compare the local
CPU performance against the remote inference to evaluate
trade-offs in energy efficiency and computational cost when
running on CPUs.

This study will provide insights into the cost and environmental
impact of deploying LLMs for code generation, particularly
in scenarios where access to GPU resources is limited. The
analysis will focus on the trade-offs between performance,
energy efficiency, and cost, with the remote inference phase
being the first step toward a more comprehensive study that
will include local deployment on CPUs as future work.

V. RESULTS

The results of our experiments are presented across three
key categories: Performance and Throughput, Code Generation
Accuracy, and Energy Efficiency. The models considered for
this study are from both OpenAI and Hugging Face, with
varying parameter sizes ranging from 3.8 billion to 235 billion
parameters. Each model was evaluated based on its execution
time, accuracy, energy consumption, and CO2 emissions, which
are discussed in detail below.

11Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2025 : The Tenth International Conference on Green Communications, Computing and Technologies

A. Performance Throughput

The execution time of each model varied significantly,
primarily due to the differences in model size and complexity.
GPT-4o and GPT-4-turbo, the largest models in the study, had
execution times of 2.3 minutes and 3.5 minutes, respectively.
Despite optimizations in GPT-4-turbo, it required more time
to complete the task, suggesting trade-offs between speed and
accuracy.

In contrast, GPT-3.5-turbo was the fastest, taking only 1.9
minutes to generate code. However, this speed came at the cost
of accuracy, as shown in the next section. The smaller model,
GPT-4o-mini, took 2.8 minutes, slightly slower than GPT-4o,
but still significant for its reduced size.

The smaller models from Hugging Face, including Mistral-
7B and Meta-Llama-3-8B, took between 3.9 and 4.7 minutes
for the task, which is relatively long compared to their
smaller size. Finally, the largest models like WizardLM-2-
8x22B and Qwen/Qwen3-235B took 7.8 minutes and 1.2 hours,
respectively, showing the strong correlation between model
size and execution time.

B. Code Generation Accuracy

The accuracy of the models in generating correct C code
varied significantly, with the larger models performing better in
generating valid code. GPT-4o achieved the highest accuracy
of 54%, demonstrating its effectiveness in generating correct
code for the given tasks. On the other hand, GPT-4-turbo
showed a slight decrease in performance, with 36% accuracy,
indicating the speed optimizations may have sacrificed some
code generation quality.

GPT-3.5-turbo, with its smaller size, performed poorly, with
an accuracy of 12%, reflecting the limitations of smaller models
for such complex tasks. The smaller models, such as Mistral-
7B and Meta-Llama-3-8B had accuracy rates of 6% and 18%,
respectively, indicating that smaller parameter models struggle
with generating accurate code. Larger models like WizardLM-
2-8x22B and Qwen/Qwen3-235B both showed 17% accuracy,
suggesting that despite their massive size, they also faced
challenges in code generation.

C. Energy Efficiency

The energy consumption per inference varied based on model
size, with larger models generally consuming more energy. GPT-
4o and GPT-4-turbo consumed between 0.1–0.5 kWh, which is
typical for models of their size and complexity. Interestingly,
GPT-4o-mini, despite being smaller, consumed 0.003 kWh,
slightly more than GPT-4o, likely due to specific optimizations
and the inherent inefficiency of smaller models for complex
tasks.

In contrast, smaller models like Mistral-7B and Meta-Llama-
3-8B consumed 0.0015 kWh and 0.0028 kWh, respectively,
indicating their efficiency relative to their size. However,
larger models like WizardLM-2-8x22B and Qwen/Qwen3-235B
consumed significantly more energy, with values of 0.0047 kWh
and 0.0071 kWh, respectively, consistent with their massive
size and computational demands.

Figure 1: Execution Time vs LLMs.

CO2 emissions follow the same trend as energy consumption.
GPT-4o generated 0.000132657 kg of CO2 per inference, while
GPT-4-turbo emitted 0.000337222 kg. GPT-3.5-turbo produced
0.00044873 kg, further showing the inefficiency of smaller
models in terms of their carbon footprint. Mistral-7B and
Meta-Llama-3-8B had lower CO2 emissions of 0.000270392
kg and 0.000498069 kg, respectively, reflecting their lower
energy consumption.

The largest models had the highest emissions: WizardLM-
2-8x22B generated 0.001331077 kg and Qwen/Qwen3-235B
generated 0.005493181 kg.

VI. DISCUSSION AND EVALUATION

The results of our experiments provide valuable insights
into the trade-offs between performance, accuracy, and energy
efficiency when evaluating different LLMs for code generation
tasks. Based on the execution time, accuracy, energy consump-
tion, and CO2 emissions, we analyze the performance of the
selected models and evaluate their practical application for
real-world code generation tasks. This discussion will draw
comparisons between the models and explore the implications
of these results for both developers and environmental concerns.

A. Performance and Throughput

As shown in Figure 1, there is a clear correlation between
model size and execution time. Larger models, such as GPT-
4o and GPT-4-turbo require more time to generate code.
Specifically, GPT-4o took 2.3 minutes per task, while GPT-4-
turbo took 3.5 minutes. Although GPT-4-turbo is optimized
for faster inference, its performance trade-offs manifest in a
longer execution time compared to the base model. On the
other hand, GPT-3.5-turbo is the fastest model at 1.9 minutes,
but this speed comes at the cost of lower accuracy, as shown
in the next section.

The smaller models like Mistral-7B and Meta-Llama-3-
8B have execution times of 4.7 minutes and 3.9 minutes,
respectively. Despite their smaller parameter sizes, they do not
achieve significant speed advantages. In contrast, Qwen/Qwen3-
235B and WizardLM-2-8x22B take the longest to execute,
with 1.2 hours and 7.8 minutes, respectively, reflecting the
computational burden of their massive parameter sizes.

12Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2025 : The Tenth International Conference on Green Communications, Computing and Technologies

Figure 2: Accuracy vs LLMs.

B. Code Generation Accuracy

The accuracy of code generation, as shown in Figure 2,
is heavily influenced by model size. GPT-4o outperforms all
other models with a 54% accuracy, highlighting its ability
to understand and generate correct code. In contrast, GPT-4-
turbo achieved a lower accuracy of 36%, which suggests that
speed optimizations negatively impacted the model’s ability to
generate correct code.

The smaller models, such as GPT-3.5-turbo (12% accuracy),
Mistral-7B (6% accuracy), and Meta-Llama-3-8B (18% ac-
curacy) perform poorly in generating correct C code, which
is expected due to their limited number of parameters and
training data. Despite their reduced size, larger models like
Qwen/Qwen3-235B and WizardLM-2-8x22B also showed
relatively low accuracy (17%), indicating that even large models
do not always excel in specialized tasks like code generation,
which requires deep understanding of syntax and logic.

C. Energy Efficiency

When evaluating energy consumption (Figure 3) and CO2
emissions (Figure 4), we observe a direct correlation with
the model’s size and computational requirements. The larger
models, such as GPT-4o and GPT-4-turbo consume between 0.1
and 0.5 kWh per inference, with GPT-4o using 0.000762179
kWh and GPT-4-turbo using 0.001937503 kWh. These higher
consumption rates reflect the larger energy footprint of run-
ning complex models, particularly when deployed in cloud
environments that require significant computing resources.

Smaller models, such as Mistral-7B and Meta-Llama-3-
8B, use far less energy, consuming 0.001553531 kWh and
0.002861641 kWh, respectively. This demonstrates that smaller
models are more energy-efficient, although their reduced size
results in lower accuracy for code generation tasks. While the
smaller models are more energy-efficient, their performance
is not optimal for generating high-quality code, making them
less suitable for complex software development tasks.

The larger models like Qwen/Qwen3-235B and WizardLM-2-
8x22B consume significantly more energy, with Qwen/Qwen3-
235B using 0.007103992 kWh and WizardLM-2-8x22B using
0.004770831 kWh. These models have the highest CO2
emissions per inference, with Qwen/Qwen3-235B producing

Figure 3: Energy Consumption VS LLMs.

Figure 4: CO2 Emissions vs LLMs.

0.005493181 kg of CO2 and WizardLM-2-8x22B producing
0.001331077 kg of CO2. The high energy consumption and
emissions of these large models suggest that while they
may have certain advantages in scale, they are less efficient
for deployment in resource-constrained or environmentally
conscious environments.

D. Implications for Practical Use

The results indicate that larger models like GPT-4o offer the
best performance and accuracy but at the expense of higher
energy consumption and environmental impact (if we consider
the approximate energy consumption during the training phase).
These models are suitable for applications where accuracy is
the primary concern, and there are sufficient computational
resources. However, their high energy consumption makes them
less ideal for environmentally conscious or resource-limited
environments.

On the other hand, smaller models like Mistral-7B and
Meta-Llama-3-8B are more energy-efficient but suffer from
significantly lower accuracy, making them less suitable for
complex tasks such as code generation. GPT-4o-mini shows
promise with a balance of moderate energy consumption and
relatively good accuracy at 30%. These models could be a
viable option when moderate performance is acceptable, and
energy efficiency is prioritized.

13Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2025 : The Tenth International Conference on Green Communications, Computing and Technologies

VII. CONCLUSION AND FUTURE WORK

This study provides a comprehensive evaluation of various
LLMs for code generation tasks, focusing on performance,
accuracy, energy efficiency, and environmental impact. The
results reveal several key insights:
1) Larger models, such as GPT-4o and GPT-4-turbo offer

superior accuracy but require significantly more execution
time and consume higher amounts of energy, leading to
increased CO2 emissions. These models are optimal for
tasks where high accuracy is crucial, but their environmental
impact makes them less suitable for resource-constrained
environments.

2) Smaller models like Mistral-7B and Meta-Llama-3-8B offer
better energy efficiency and lower CO2 emissions, but their
accuracy is considerably reduced. These models may be
suitable for scenarios where energy consumption is a priority
and moderate performance is acceptable.

3) Models like GPT-4o-mini, with a balance of moderate
energy consumption and reasonable accuracy, could serve
as a compromise between large models and smaller, more
efficient models.

In conclusion, the performance of LLMs in code gener-
ation tasks is a delicate balance between accuracy, energy
consumption, and environmental impact. The choice of model
should depend on the specific use case, with larger models
being preferred for high-accuracy requirements, while smaller
models offer better energy efficiency for more environmentally-
conscious applications.

Future Work
Building on the insights from this study, several lines of

future research are planned:
• Expansion to Other LLMs: The experiments can be extended

to other LLMs beyond those evaluated in this study. Newer
models or those from different providers may offer improve-
ments in performance, energy efficiency, and environmental
impact that could alter the current conclusions.

• Evaluation on Other Software Development Tasks: While
the current study focused on code generation tasks in C
programming, future experiments will expand to other types
of software development tasks such as debugging, code
optimization, and automatic code refactoring. This will help
assess whether the trade-offs observed in this study hold true
for a wider range of software engineering tasks.

• Incorporating Local Deployment: The main future direction
involves repeating the experiments but this time using local
LLMs. This will involve deploying the models on both local
CPUs and local GPUs. By doing this, we can compare
the performance and energy consumption when models are
running locally, with the aim to identify the most efficient
configurations for resource-constrained environments. The
availability of local GPUs could offer a significant improve-
ment in execution time and energy consumption, making it
a valuable area of exploration.

• Optimization of Inference Efficiency: Future work will
also include optimizing inference strategies for energy con-

sumption and accuracy. Investigating different quantization,
pruning, and distillation methods could provide potential
pathways for improving the efficiency of LLMs without
compromising their performance.
By addressing these future directions, the research will not

only provide further insights into the trade-offs between per-
formance and efficiency but also contribute to the development
of more sustainable AI practices, particularly in the context of
code generation and software development.

ACKNOWLEDGEMENTS

The authors are part of the Software and Systems Engineer-
ing research group of Mondragon Unibertsitatea (IT1519-22),
supported by the Department of Education, Universities and
Research of the Basque Country. This research was supported
by the Ikerketa Taldeak funding (IT1519-22) and the GRECO
Elkartek project (KK-2024/00090), both funded by Eusko
Jaurlaritza.

REFERENCES

[1] E. Strubell, A. Ganesh, and A. McCallum, Energy and policy
considerations for deep learning in nlp, (visited on 09/03/2025),
2019. arXiv: 1906.02243 [cs.CL]. [Online]. Available: https:
//arxiv.org/abs/1906.02243 (visited on 09/03/2025).

[2] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, Green AI,
(visited on 09/03/2025), 2019. arXiv: 1907.10597 [cs.CY].
[Online]. Available: https://arxiv.org/abs/1907.10597 (visited
on 09/03/2025).

[3] D. Patterson et al., The carbon footprint of machine learning
training will plateau, then shrink, (visited on 09/03/2025),
2022. arXiv: 2204.05149 [cs.LG]. [Online]. Available: https:
//arxiv.org/abs/2204.05149 (visited on 09/03/2025).

[4] T. B. Brown et al., Language models are few-shot learners,
(visited on 09/03/2025), 2020. arXiv: 2005.14165 [cs.CL].
[Online]. Available: https://arxiv.org/abs/2005.14165 (visited
on 09/03/2025).

[5] J. Devlin, M. Chang, K. Lee, and K. Toutanova, Bert: Pre-
training of deep bidirectional transformers for language
understanding, (visited on 09/03/2025), 2019. arXiv: 1810.
04805 [cs.CL]. [Online]. Available: https://arxiv.org/abs/
1810.04805 (visited on 09/03/2025).

[6] M. Chen et al., Evaluating large language models trained
on code, (visited on 09/03/2025), 2021. arXiv: 2107.03374
[cs.LG]. [Online]. Available: https: / /arxiv.org/abs/2107.
03374 (visited on 09/03/2025).

[7] J. Xu, W. Zhou, Z. Fu, H. Zhou, and L. Li, A survey on
green deep learning, (visited on 09/03/2025), 2021. arXiv:
2111.05193 [cs.LG]. [Online]. Available: https://arxiv.org/
abs/2111.05193 (visited on 09/03/2025).

[8] D. Patterson et al., Carbon emissions and large neural network
training, (visited on 09/03/2025), 2021. arXiv: 2104.10350
[cs.LG]. [Online]. Available: https: / /arxiv.org/abs/2104.
10350 (visited on 09/03/2025).

[9] MLCO2, Codecarbon, (visited on 09/03/2025), 2025. [Online].
Available: https://github.com/mlco2/codecarbon (visited on
09/03/2025).

[10] Y. Rangineeni and J. Pub, “End-to-end mlops: Automating
model training, deployment, and monitoring”, Journal of Recent
Trends in Computer Science and Engineering (JRTCSE), vol. 7,
pp. 60–76, Sep. 2019.

14Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2025 : The Tenth International Conference on Green Communications, Computing and Technologies

https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/2204.05149
https://arxiv.org/abs/2204.05149
https://arxiv.org/abs/2204.05149
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2111.05193
https://arxiv.org/abs/2111.05193
https://arxiv.org/abs/2111.05193
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://arxiv.org/abs/2104.10350
https://github.com/mlco2/codecarbon

[11] A. Arora, J. Jang, and R. Zilouchian Moghaddam, Setupbench:
Assessing software engineering agents’ ability to bootstrap
development environments, (visited on 09/03/2025), 2025.

arXiv: 2507.09063 [cs.SE]. [Online]. Available: https:/ /
arxiv.org/abs/2507.09063 (visited on 09/03/2025).

15Copyright (c) IARIA, 2025. ISBN: ISBNFILL

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GREEN 2025 : The Tenth International Conference on Green Communications, Computing and Technologies

https://arxiv.org/abs/2507.09063
https://arxiv.org/abs/2507.09063
https://arxiv.org/abs/2507.09063

	Introduction
	Background
	Related work
	Energy Consumption and Sustainability in AI
	Inference Performance and Resource Allocation
	Code Generation with LLMs
	Gap in Literature

	Experimental Setup
	LLMs Selected for the Experiments
	Hardware and Operating System
	Performance Monitoring and Energy Consumption Measurement
	Inference Tasks for the LLMs
	Evaluation Criteria
	Experimental Phases

	Results
	Performance Throughput
	Code Generation Accuracy
	Energy Efficiency

	Discussion And Evaluation
	Performance and Throughput
	Code Generation Accuracy
	Energy Efficiency
	Implications for Practical Use

	Conclusion and Future Work

