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Abstract—Software engineering is experiencing the impact
of AI on its productivity through rapid code generation, code
fixes, and workflow automation. However, there is a hidden
cost to this convenience, namely a growing double debt of
carbon emissions and technical inefficiencies that jeopardise
sustainability. Carbon debt is discussed in this paper, referring to
the invisible and cumulative environmental damage resulting from
the frequent use of AI-driven tools. AI sustainability discussions
often overlook the impact of inference phase emissions in this
field, where productivity tools lack built-in insights that measure
hidden, accumulated environmental burdens. There is a lack of
a conceptual and structured method to incentivise carbon debt.
This paper conceptually illustrates the negative contribution of
AI-assisted development tools, leading to pragmatic mitigation
strategies and a preliminary formalization of a measurable
sustainability framework for AI-driven development workflows.

Keywords-carbon debt; sustainability; technical debt; AI DevTools;
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I. INTRODUCTION

The swift adoption of Artificial Intelligence (AI) into
software engineering has fundamentally changed how software
is designed, developed, tested, and maintained. Tools such as
GitHub Copilot, automated bug fixers, and intelligent testing
frameworks now assist developers at nearly every stage of the
software lifecycle, ensuring productivity through generating
code, debugging, and streamlining workflows. However, their
downside is an invisible cost due to the constant use of
computing power to support large-scale AI models running in
the background. When software engineers use AI-generated
suggestions or machine learning tests, the associated processes
are executed in high-energy-consuming data centres, which con-
tribute to a significant environmental footprint. In areas where
these centres use fossil fuels or operate with passive regulatory
oversight, as revealed by Elon Musk’s xAI data centre, which
used unauthorized gas turbines [1], the carbon intensity of AI
services continues to increase, exacerbating the hidden carbon
debt. The infrastructure that powers AI-driven development
tools is resource-intensive, and its environmental impact extends
far beyond electricity consumption. Graphic Processing Units
(GPUs), the computational core of these AI tools, are produced
using rare earth minerals and resource-intensive manufacturing
techniques with complex supply chains, which are frequently
linked to labour issues and environmentally damaging mining
activities [2], [3]. Once deployed, these GPUs work in data
centres that need massive cooling systems whose operations

require a lot of electricity and water to keep running at optimal
efficiency [4]. Likewise, the short lifespans of AI devices add
to the increasing amount of electronic waste, which worsen
climate change and emit harmful substances if not adequately
controlled [5]. These lifecycle impact, ranging from extraction
to disposal, add up to what can be referred to as a form
of carbon debt (a concealed but growing environmental cost
associated with the creation and application of AI technologies).
While the carbon cost of training huge AI models has received
a lot of attention, the accumulated impact of using them during
day-to-day software development is less known and rarely
acknowledged.

Like financial debt, carbon debt is a hidden expense that
eventually needs to be paid back to mitigate environmental
impact, as discussed in [6], for the necessity of meeting climate
targets. Carbon debt is an imperceptible environmental cost that
accumulates over time as a result of adopting energy-intensive
AI-driven software engineering methodologies [7]. Similar to
the well-known concept of technical debt in software develop-
ment [8], carbon debt builds subtly and is often overlooked in
the short term. Indeed, these debts are interconnected as the
same AI tools that accelerate development today also contribute
to escalating sustainability risks, which can have significant
long-term repercussions if left unaddressed [8]. As such, carbon
debt highlights the trade-offs between immediate efficiency
gains and future environmental liabilities. Although end users
may not be aware of the carbon impact of AI technologies, ac-
knowledging their influence is becoming increasingly essential
as these tools are integrated into development workflows. This
study provides a conceptual analysis for understanding and
mitigating carbon debt in software engineering by proposing
a shift in mindset from prioritizing efficiency to embracing
environmental responsibility. Additionally, the goal is to educate
with ideas or actionable solutions needed to make carbon-aware
software development a core part of responsible AI practice
and frame the urgency of AI-assisted Software engineering
emissions as debt before regulators or climate consequences
force our hand.

This paper seeks to answer the following research questions:
RQ1: How does AI-assisted software development contribute
to carbon debt, a hidden form of environmental damage?
RQ2: What strategies can be applied to mitigate carbon
debt without reinforcing the unethical adoption of AI in SE
workflows?
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In software engineering, AI Development Tools (DevTools)
are frequently evaluated in terms of productivity and code
quality, with their ecological impacts totally ignored and
unmeasured. This study introduces carbon debt as a conceptual
lens to understand better the long-term consequences and
advocates for incorporating environmental criteria, such as the
sustainability impact factor, into our assessment of the utility
and responsibility of such tools. The value of this contribution
is to spark discussion through the conceptual lens of carbon
debt and guide future research to explore how this framing
might be quantified, modeled, or embedded into development
environments.

The paper is structured as follows: Section II illustrates
the emissions from AI software engineering tools. Section III
portrays the double debt trap and the invisible accumulation
of carbon debt. Next, Section IV presents mitigation strategies
across the perspectives of multiple stakeholders. The early
contours of a sustainability impact assessment are proposed
in Section V for future evaluation of the responsibilities of
these AI tools. Critical reflections and limitations are discussed
in Section VI. Finally, Section VII concludes this study and
provides an outlook for further research.

II. CARBON DEBT IN AI-DRIVEN SOFTWARE ENGINEERING

The increasing integration of AI tools into software de-
velopment workflows comes with an unclear sustainability
concern that is not immediately visible but has long-term
consequences for the planet, as it is underexplored. In contrast
to financial costs that are obvious in cloud service bills, the
AI coding tools increasingly being adopted in development
build up carbon emissions [9] shrouded in opacity as invisible
carbon debt. GitHub Copilot, Amazon CodeWhisperer, and
ChatGPT are examples [10] of these tools that, with each query,
assist developers with real-time code suggestions and blocks of
logic generation, thus requiring computational resources [11].
Each interaction implies running inference on massive Large
Language Models (LLMs) in energy-intensive data centres,
resulting in non-trivial energy consumption [12] that scales
rapidly with frequent usage. This leads to an unacknowledged
environmental burden referred to as carbon debt [13].

A. The Hidden Emissions of Everyday AI-assisted Tools

These tools constantly feed user input to LLMs hosted in
cloud infrastructures that consume much energy [12], [14],
[15]. The training stage of large models, which is, in fact,
energy-intensive, has been the focus of most research on the
environmental impact of AI [13], [15]. But, inference (the
real-time application of these models each time a developer
inputs a line of code or requests code, then gets a suggestion)
is instead the primary cause of carbon debt rather than training,
as observed by studies quantifying carbon emissions from AI
inference [16]–[18]. This continual inference workload [16], is
multiplied across thousands of users, Integrated Development
Environments (IDEs), and ongoing delivery pipelines, resulting
in significant energy usage [19] that remains largely overlooked.
As such, in the realm of AI-assisted software engineering,

the impact of daily tool usage in terms of long-term carbon
emissions is still quite open for investigation. The following
are examples of energy-intensive cloud infrastructure that are
ingrained in Software Engineering workflows and could be
invoked repeatedly during coding:

• Github Copilot
Every code suggestion GitHub Copilot generates requires
inference from a LLM hosted on Microsoft Azure servers
because it is frequently used as an AI coding assistance. The
model powering Copilot (Codex) is fine-tuned from GPT-3
and probably used less energy during training; nonetheless,
the estimated emissions of GPT-3 of about 500 tonnes of
CO2 [20] serve as a valuable benchmark for measuring the
environmental impact of LLM-based tools. While Microsoft
does not disclose precise figures, each suggestion is reported
by community estimates to consume about 0.002kWh of
energy, equivalent to roughly 1.2g CO2 per inference [21].
This is in line with broader estimates of small-scale AI
inference tasks energy use [13], [15], [17], [18]. Even
though this reported value seems low in isolation, the total
carbon emissions from ongoing, real-time inferences made
during daily software engineering tasks could add up to
a non-negligible environmental cost. This observation is
consistent with broader research in the field, which shows
how, when scaled to millions of operations, seemingly
minor per-inference energy costs can substantially impact
the overall carbon footprint [13].

• AI Testing Tools
These tools are essential to CI/CD pipelines as they enhance
developer productivity. Several automated test generators,
such as EvoSuite [22] and DiffBlue [23], often generate
redundant or inefficient test cases. The authors in [24] show
that automated test generation using EvoSuite can produce up
to 28% low cohesion and approximately 50% high coupling
test methods even after test minimization. This observation
suggests that many generated test cases are functionally
redundant, which implies more execution and more energy
consumption, as they do not improve code reliability but
still burn energy. So, when such tools run frequently, the
compounded energy from computing power used for testing
quickly becomes significant [10], [12]. Additionally, prior
studies have shown that continuous integration systems can
amplify energy use by an order of magnitude (potentially
10x) when augmented with tools like test generation and
fault localisation [25], [26]. The energy footprint of CI/CD
workflows could rise rapidly if AI tools result in more test
inefficiencies. Like the emission from Copilot, this waste is
invisible to developers and silently adds to the carbon debt.

In contrast to broadly applicable AI technologies like
ChatGPT, the aforementioned AI tools alleviate carbon debt
more through regular integration within IDEs and pipelines
as a result of their widespread adoption. These examples
above highlight a critical blind spot: unlike performance
measurements (such as latency and accuracy), which are clearly
visible, developers do not have feedback mechanisms to identify
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the carbon cost of using AI tools in daily software engineering
operations. Reliable carbon accounting for AI tools remains
scarce, highlighting the need for transparent and standardized
emission metrics for both training and inference phases.

B. Why Carbon Debt is a Debt

Debt is the commitment to pay back funds or resources,
often with added interest, as defined by the Oxford English
Dictionary [27]. Beyond finance, the term is often used in a
metaphorical sense to refer to hidden accumulated costs that
require future repayment, like environmental or technical debt.
As such, the carbon debt of AI-assisted software engineering
works similarly. Global threats are increasing exponentially
with higher temperatures, according to the Intergovernmental
Panel on Climate Change (IPCC) [28], which also notes that
economic impacts from climate change are being tracked in
energy, agriculture, and other vulnerable sectors [28]. As such,
carbon emissions are increased by carbon debt from widespread
computational operations, such as the real-time use of AI
tools that make high energy consumption, which eventually
contributes to the global emission budget, exacerbating the
threats. The IPCC (2023) also emphasizes that postponing
mitigation efforts is expected to increase future costs, including
infrastructure damage and health-related impacts. Highlighting
the importance of early intervention in mitigating carbon debt
in AI-assisted software engineering. Similar to financial debt
bearing compound interest, the seemingly negligible energy
cost of each inference adds up to cumulative emissions through
the numerous daily operations, which causes the carbon debt
of AI-assisted tools to grow exponentially [9], [10]. For
illustrative purposes, if 30% of the approximately 26 million
developers [29] adopted AI coding tools at 50 suggestions per
day, and assuming an estimated 0.002 kWh per suggestion [21].
The annual energy use could reach approximately 285 million
kWh, which could lead to annual carbon emissions exceeding
100000 tonnes [30], that is comparable roughly to the emissions
produced by 20000-25000 passenger vehicles each year [31].
These illustrative projections display the cumulative climate
cost of real-time inference and are highly sensitive to adoption
rates and infrastructure efficiency. The tech sector frequently
presents AI as environmentally friendly (i.e., intrinsically
“green”) because of data centres that are powered by renewable
energy. But this information is quite misleading. Firstly, cloud
providers like Microsoft that are committed to achieving 100%
renewable energy by 2025 through annual purchases and
matching over 95% of its Scope 2 emissions using renewable
energy instruments like Power Purchase Agreement (PPA) and
Renewable Energy Certificate (REC) [32]. But Microsoft’s
2022 report shows that, on an hourly basis, just 60% of its
electricity use came from carbon-free sources, underscoring the
difference between energy accounting and actual clean energy
(real carbon-free) usage [32]. Secondly, training a large LLM,
like GPT-3, has a carbon impact of about 552 metric tonnes
of CO2; nonetheless, this number does not include emissions
from the construction of data centres or the manufacturing of
GPUs [20]. This upfront carbon debt, which is paid before any

inference is ever made, added to the overlooked embodied
emissions, contributes highly to the overall environmental
impact as increased productivity from faster code generation
leads to higher energy use.

III. TECHNICAL DEBT ANALOGY AND PIPELINE

Technical debt occurs when developers use shortcuts or
suboptimal solutions to achieve short-term goals, which even-
tually increases complexity and maintenance expenses in the
long run [8]. This section observes the role of AI in software
engineering in relation to technical debt within the context of
sustainability. It examines how the lifecycle of technical debt
is well related to carbon debt.

A. AI’s Hidden Tax on Code Quality

Developers identify inefficiencies in AI-generated code, as
revealed in a study [33], where approximately 40% of code
snippets suggested by Copilot contain security vulnerabilities.
These flaws increase future maintenance workloads and reduce
code quality, which may require a lot of energy use for the
necessary later fixes. According to studies, code generated
by AI-assisted tools often contains structural issues like poor
modularity and tight coupling (“code smells”) [33], [34], which
can make it challenging to maintain and result in future updates
that require high energy demands. These problems are similar
to those of traditional technical debt but with a carbon twist.

B. Maintenance Burden of Hidden Cost

Due to challenges in code maintainability and security
vulnerabilities brought by AI-suggested code, post-deployment
fixes for AI-assisted software projects have been found to
occur frequently [33], [35]. This goes to show the frequent
need for fixes and remediation, thereby resulting in escalating
energy demands indirectly linked to more carbon debt. Thus,
AI-assisted development works on a carbon credit basis,
whereby rising emissions from subsequent maintenance
balance out the energy savings of quick initial coding. The
industry lacks tools to account for this delayed sustainability
responsibility, making the environmental benefits of AI’s
productivity questionable.

Both categories portray the double debt trap, in which
AI-assisted tools create technical debt that silently inflates
carbon debt. Whereby code quality tradeoffs lead to higher
maintenance requirements that contribute to a loop of increasing
energy consumption and carbon impact. In contrast, other
technical debt dimensions, such as security and scalability debt,
are typically resolved with localised solutions (such as patching
a single library) instead of systemic energy loss. In essence,
just as technical debt prioritises speed over quality, carbon debt
similarly compromises sustainability for productivity.

The analysis of emissions from AI-SE tools (Section II)
and their cumulative consequences through technical debt
(Section III) yields insights into RQ1, illustrating that carbon
debt builds up undetected throughout the lifecycle of AI-
assisted software development.
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IV. STRATEGIES TO MITIGATE CARBON DEBT

The first step in addressing the issue of carbon debt, which
is a hidden cost of AI-assisted software engineering, is to
identify targeted strategies and practical solutions inspired by
the technical debt analogy. To avoid relegating sustainability to
a secondary concern, proactive approaches are needed to ensure
that AI development is in line with long-term environmental
goals. Rather than providing concrete technical solutions, these
approaches serve as foundational concepts for software design,
educational initiatives, and future research endeavors.

A. Operationalizing Carbon Awareness

One key challenge to lowering carbon debt in software devel-
opment is its invisibility. Usually, developers don’t get feedback
on the energy costs or carbon emissions associated with
using AI tools. So, to improve awareness, carbon transparency
features could be incorporated, relying on prior research on
machine learning emissions tracking [18], [36]–[38].
• Real-time emissions dashboard to display approximate

carbon emissions, for example, IDE plugins such as Code-
Carbon [38], per AI suggestions, or after code completions
per day.

• Eco-modes that limit the use of AI tools or give priority to
suggestions that are energy-effective.

• Contextual pop-ups that alert developers when behaviours
like repeated Copilot requests exceed sustainability thresh-
olds.

These will help developers strike a balance between productivity
and sustainability by highlighting the environmental impact of
AI and recognizing carbon impact as an essential element of
software quality.

B. Context-Aware AI Tool Usage

Selective invocation is a significant mitigating technique
since the usage of AI tools varies depending on their impact.
This means avoiding unnecessary applications like boilerplate
code and deploying large models for complex tasks to limit
useless inference overhead [12], [13]. Some sustainability-
focused practices:
• Prompt engineering, which will reduce energy use by, for

example, generating a low memory algorithm [34], [39].
• AI-assisted refactoring of carbon-heavy patterns, such as

nested loops, to improve efficiency, and also flagging
excessive energy use by setting CO2 limits daily, for example.

Giving developers usage reports promotes introspection and
effective adoption of tools.

C. Integrating Sustainability in Education

A cultural shift is necessary to mitigate carbon debt, as
developers cannot efficiently handle what remains beyond
awareness. Incorporating sustainability principles in software
engineering education as AI becomes more ingrained in
development practices [40], [41].
• Workshops on Green AI and techniques to audit AI tools

for carbon efficiency.

• Hands-on exercises on energy consumption of both manual
and AI-assisted tasks.

• Reflective workshops on environmental compromises in
software design.

D. Policy Levers

Carbon accountability could be enforced, such as expanding
the EU’s Carbon Border Adjustment Mechanism to include
cloud-based AI capabilities.

E. Advocating for Purpose-Limited Technology

Energy-intensive AI tools that offer only marginal benefits
could be rejected or stop being used when their core justification
remains weak. Thereby promoting simple, sustainable solutions
like writing code manually to create maintainable software
rather than using possibly redundant recommendations. Some-
times, the most moral and environmentally responsible course
of action for a developer is to choose not to adopt technological
advancement when the ecological costs are unjustifiable.

Without visibility into emissions, AI DevTools leave careful
users in the dark (unaware of their ecological impact). There-
fore, reforming the system is necessary for significant change,
while individual efforts to reduce carbon debt are essential.

V. TOWARDS SUSTAINABILITY IMPACT ASSESSMENT

With the aim of understanding the environmental costs of AI-
supported software engineering, this study presents the concept
of carbon debt, which lays the groundwork for developing
visible, measurable, and actionable assessment mechanisms.
This concept can be considered as a focused instance of the
broader Sustainability Impact Factor (SIF) framework suggested
by Lawrenz et al. [42]. The authors propose measuring the
fixed and variable environmental consequences of digital tools
and services to promote the implementation of service-level
sustainability reporting in circular ecosystems. It is worth
acknowledging the significant cost associated with training
large models and manufacturing the supporting hardware (i.e.,
fixed sustainability impact). However, in the present context,
the focus is on the variable sustainability impact resulting from
the ongoing, cumulative emissions from the regular use of AI
tools, which accumulate invisibly over the daily interactions
of millions of developers. As the systematic tracking of
these emissions could form part of a measurable component
within a tool-specific SIF that can guide responsible usage
and development behaviours. The following Tab I suggests
preliminary criteria intended for initial discussion regarding
the SIF for AI DevTools:

The mitigation strategies proposed in Section IV collectively
address RQ2 and respond to the double debt issue of aiming
to maintain productivity while minimizing both environmental
and technical debt associated with AI tools. Section V extends
the discussion toward future impact tracking models.

VI. DISCUSSION AND LIMITATIONS

Generally, in software engineering, emphasis is laid on
fairness, bias, transparency, and privacy, whilst environmental
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TABLE I. PRELIMINARY CONCEPTUAL DIMENSIONS PROPOSAL OF A
SUSTAINABILITY IMPACT FACTOR FRAMED FROM THE CARBON DEBT

CONCEPT.

Dimension Illustrative Metric Rationale
Operational
Efficiency

CO2e per 1000 com-
pletions or test execu-
tions

Measures the continuous cost
of routine tool usage

Model
Training
Efficiency

Total carbon emis-
sions during pretrain-
ing and fine-tuning

symbolizes the environmental
impact of AI model develop-
ment

Usage Inten-
sity

Average daily invoca-
tions per developer

Shows the level of integration
and influence the tool has in
workflows

Energy
Source

Ratio of renewable to
fossil-powered infer-
ence

Distinguishes between
greener and carbon-intensive
AI operations

Hardware
Lifecycle

Average GPU replace-
ment cycle alongside
e-waste per model

Highlight the physical re-
source impacts and disposal
challenges

Transparency
Practices

Availability of data
on model size, energy
use, and emissions

Encourages accountability in
sustainability reporting

impact is often ignored [43]. To guarantee a really responsible
approach to AI, software development must address carbon
awareness and sustainability as equally essential components, as
they indicate our broader interaction with digital infrastructure
and planetary boundaries. Instead of being an afterthought,
carbon impact must be a visible, measurable indicator. As
AI DevTools continue to be integrated into daily workflows
(e.g., Copilot, CodeWhisperer, testing suites), their substantial
energy impact over time [13], [20] must be a shared responsi-
bility between developers, hosting companies, regulators, and
educational institutions. The actors mentioned above should
broaden their view of accountability related to the impact of
AI in software engineering on society and the environment. In
an era of climate urgency, passive observation is unacceptable,
as it is essential to ensure that advancement does not come at
the price of sustainability.

A more effective approach worth considering is to avoid
utilising AI when the assumption of its benefits could be
challenged. Techno-critical scholars like Schmachtenberger [44]
argue that adopting technological advancements must start
with a convincing, fact-based argument that proves that their
advantages outweigh their harm while justifying that the harms
are reasonable. From this perspective, harm mitigation is not
enough compared to not adopting these energy-intensive AI
tools, as non-adoption is the most ethical and carbon-conscious
decision to begin with.

Throughout this study, increasing awareness about Carbon
Debt in AI-assisted Software Engineering is the goal. But it
is also important to recognise a number of limitations present
here:
• Although studies show that AI technologies produce emis-

sions when inferring, this research does not provide empirical
energy values nor accurate measurements of carbon implica-
tions in development processes.

• The mitigation strategies proposed were all based on the
assumption that AI will remain embedded in software
workflows (currently reflecting industry trends). They can

make a difference, but would not solve the carbon debt
problem, and as a result, a "non-use" AI solution was
included but not fully explored in its radicality.

• This study acknowledges technical aspects of carbon debt
but does not explore issues such as organisational, economic,
and political-economic considerations that also influence AI
adoption and provider infrastructure.

VII. CONCLUSION AND FUTURE WORK

The increasing integration of AI-assisted software
engineering tools has unveiled an invisibly unacknowledged
environmental cost, namely carbon debt. Every output produced
by AI is dependent on energy-intensive infrastructure, which
results in cumulative emissions that are invisible but increase
with usage. This debt, left unmanaged, would accumulate
over time and threaten the viability of our ecosystem, even
though it does not damage the code. This study defines
the concept of carbon debt, inspired by technical debt as
a prism through which environmental costs of AI can be
viewed. Several strategies to identify and reduce carbon
debt were mentioned, such as making the invisible visible,
selective AI tool usage, prioritizing long-term sustainability,
distributing responsibility, and providing developer education
with an emphasis on sustainability. Bringing forth the fact
that carbon awareness should be part of responsible AI
components in software design. Notwithstanding, the strategy
of technological minimalism is mentioned. A cultural and
structural shift is necessary for the future. We need toolmakers
to stop considering it as an afterthought, developers to follow
responsible and reflective practices, educators to equip the next
generation with, for example, green coding, and policymakers
to create policies that make sustainability the profitable choice.
Moreover, a preliminary proposal was discussed on how
carbon debt could evolve into a traceable and measurable
system (conceptually inspired by previous research in circular
economy modelling), thereby promoting accountability in AI
DevTool ecosystems. Sustainability must be a primary concern,
and discussions about ethical innovation, software quality, and
the future of digital systems should all include consideration
of carbon debt. A collective action is then required for the
transition to a carbon-aware digital economy.

To operationalise this concept, future research should focus
on building measurement tools that can take into account both
direct energy use (such as code completions) and indirect infras-
tructure emissions (such as CI/CD pipelines). By incorporating
these measurements into developer environments through IDE
plugins, the carbon debt of AI-assisted software development
may become easier to understand and control. Additionally,
carbon-aware DevTools that offer real-time feedback regarding
carbon cost should be explored, and programmable "green
modes" should be investigated that can restrict high-emission
model invocation or promote lighter alternatives. In another
view, research should be done on formalizing carbon debt as a
measurable software quality attribute alongside performance
and maintainability. Moreover, research should be done to
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develop actual metrics for the suggested SIF, as no such stan-
dardized rating currently exists, and to test their applicability in
workflows. This paper outlines an initial conceptual structure
and indicators that shape the language and questions that
empirical work must eventually address. This entails accounting
for contextual factors such as infrastructure quality, energy
systems, and developer behavior. Finally, more studies should
be done on the ethical analysis of AI in Software Engineering
beyond harm reduction to critically examine its necessity and
bring about discussion on the non-adoption justification and/or
minimalism of AI tools. The goal is to put sustainability at
the center of responsible innovation debates.
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