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Abstract—As machine learning becomes increasingly perva-
sive, its resource demands and financial implications escalate,
necessitating energy and cost optimisations to meet stakeholder
demands. Quality metrics for predictive machine learning models
are abundant, but efficiency metrics remain rare. We propose a
framework for efficiency metrics, that enables the comparison
of distinct efficiency types. A quality-focused efficiency metric is
introduced that considers resource consumption, computational
effort, and runtime in addition to prediction quality. The metric
has been successfully tested for usability, plausibility, and com-
pensation for dataset size and host performance. This framework
enables informed decisions to be made about the use and design
of machine learning in an environmentally responsible and cost-
effective manner.

Index Terms—machine learning; nlp; efficiency; metric; soft-
ware performance; automl.

I. INTRODUCTION

Decades ago, the primary motivation behind the pursuit of
computational efficiency was the limited computing power
available at the time. Computing resources had to be used
judiciously to overcome the constraints imposed by hardware
limitations. The advent of powerful computing resources,
particularly in the field of Machine Learning (ML), has shifted
the focus to achieving superior prediction quality, relegating
efficiency to a secondary concern. As ML continues to evolve,
the future landscape of human-computer interaction will be
profoundly influenced by the widespread adoption of Large
Language Models (LLMs) [1]. This shift is also driven by
the integration of ML into heterogeneous computing environ-
ments, such as edge computing on resource-limited hardware.
From a green computing and sustainability perspective, the
use of resource-intensive solutions such as transformer-based
word embeddings or LLMs may not always be financially or
environmentally viable [2]. As a result, there is a growing de-
mand for efficiency, especially for the widespread application
of ML. The objective of this publication is to contribute to the
improvement of efficiency in ML by introducing robust metrics
for measuring the efficiency of machine learning models.

ML research has focused on improving model quality, for
which a number of metrics are available. Research on effective
ML lacks standardised and comprehensive efficiency metrics.
To ensure reproducibility and facilitate result comparison, best
practices in ML research typically include detailed descrip-

tions of experiments, encompassing datasets, preprocessing
steps, machine learning techniques, hyper-parameters, and
hardware setups [3]. The absence of a dataset-agnostic proce-
dures and missing ’Golden Standard’ datasets pose challenges
in achieving true repeatability and fair comparisons in Natural
Language Processing (NLP) [4]. Furthermore, evaluating the
impact of novelties in ML process steps, such as improved
preprocessing, on prediction quality is a complicated task, as
the other ML steps may be influential.

The delicate balance between complexity and outcome is
often overlooked in research efforts to utilise all available
resources to reduce time-to-solution. Evaluating time and
space complexity becomes subordinated to finding the best
model or process. Numrich stated [5]: “Increasing productivity
by minimising the total-time-to solution is a somewhat ill-
defined statement of the problem. We propose an alternative
statement: at each moment in time, use the resources available
in an optimal way to accomplish a mission within imposed
constraints.” It becomes essential to establish metrics that
address the efficiency concerns alongside prediction quality
in the context of ML research.

We present a proposal to fill the existing gap by introducing
novel metrics for measuring the efficiency of machine learning
models. By incorporating resource consumption, computa-
tional effort, and runtime considerations into our efficiency
metrics, we aim to provide a holistic perspective on the
true efficiency of ML models. We demonstrate the process
of defining a quality focused efficiency metric (Figure 1)
and present the Quality COmpact (QCO) Efficiency Metric
(Equations 4 & 5). We recognise the importance of dataset-
agnostic evaluation and propose solutions to address this
challenge and demonstrate the advantages of our metric for
evaluating hyperparameter tuning. Our goal is to empower
researchers and practitioners to make informed decisions that
prioritise both prediction quality and efficiency, thus advancing
the field of ML towards sustainable, green, and economically
feasible solutions.

The structure of the paper is as follows: Section 2 (State of
the Art) covers the research on efficiency types and metrics
in ML. In Section 3 the efficiency metric is presented by
elaborating on its objectives, followed by the theoretical foun-
dations of efficiency dimensions and concepts, and finally the
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definition of the efficiency metrics. In the subsequent Section
4, the metric for quality-focused efficiency is defined, adhering
to a specified protocol. The score equations for QCOF are
presented, accompanied by a brief explanation of its usage.
The Evaluation Section 5 uses two experiments to assess the
performance of the metric. The results obtained are discussed
in detail in Section 6, leading to the presentation of the
conclusion (Section 7).

II. STATE OF THE ART

This section begins with approaches that deal with computa-
tional cost as a method. The goal of predicting computational
cost incorporate with the prediction of financial cost. Then,
approaches to resource effectiveness are considered. Their goal
is to find algorithms that work in most cost-effective way.
Finally, general approaches to efficiency metrics are examined.

Computational Cost or efficiency is based on the com-
putational effort. Most statistical ML algorithms can be ad-
dressed and their time complexity or space requirements can
be calculated. For example, the time complexity of gradient
descent is O(ndk), where d is the number of features and n
is the number of rows. In the context of transformer-based
approaches, the number of operations for multi-head attention
can be calculated as n2d+nd2, where n is the sequence length
and d is the depth [6]. Translating these statistical calculations
into real training times is challenging due to numerous opti-
misations of modern CPUs and GPUs that change the type
of computation and the number of operations [7][8][9]. The
approach presented here defines work and duration dimensions
based on actual measurements.

Computational Cost for Deep Learning is specific to deep
learning, as it relies on complex neural network architectures,
which makes direct computation of complexity difficult. Sev-
eral approaches attempt to predict complexity, such as the
proposal by Li et al. [10], which introduces two classes of
prediction models for distributed SGD. The use of profiling
information in this approach is similar to the method presented
here, but with limited validity for deep learning optimised with
distributed SGD.

Resource Efficiency is important for deep learning, where
hardware requirements differ from those of statistical machine
learning and are constantly evolving. Research aims to adapt
deep learning to specific hardware. Yang et al. [11] developed
a method to bridge this gap, focusing on computing the
model locally near the sensor. In HPC, research such as
Performance Metrics based on computational action (Num-
rich [5]) optimises the use of hardware. Resource efficiency
focuses primarily on the optimal hardware usage of specific
algorithms, ignoring algorithm complexity or runtime. The
efficiency definition presented here addresses this aspect to
provide comprehensive statements about the entire ML task.

Efficiency Comparison plays a role in the evaluation of
novel approaches. For instance, Thomson et al. [12] present
an optimisation for machine learning-based compilers that
focuses on process speedup while overlooking the impact on
resource consumption. Fischer et al. [13] propose a framework

Fig. 1. Development of Quality Focused Efficiency Metric.

for evaluating the energy efficiency of ML without consid-
ering prediction performance. Kumar, Goyal & Varma [14]
develop ML with a small footprint and compares efficiency
based on model size, prediction quality, prediction time and
prediction energy. Discussions of the novel approach primarily
revolve around individual measurements, lacking an overall
efficiency comparison. In contrast, Huang et al. [15] discusses
the selection of an object detection architecture in terms of
efficiency, defining it as a speed/memory/accuracy trade-off
and evaluating it through two-dimensional trade-off curves.
The proposed efficiency metric would provide a balanced and
meaningful score for evaluating [14] and [15].

Efficiency metrics were ’invented’ for HPC research, which
deals with highly scaled hardware systems and highly spe-
cialised applications, making efficiency statements easier to
derive and crucial. The difficulties have been recognised
and discussed from an early stage [16] - to philosophical
considerations [17]. Numrich of Cray Research developed an
approach based on physical laws [18] [5], which inspired the
proposed metric based on dimensions reflecting components
of a physical law.

III. EFFICIENCY METRIC PROPOSAL

This proposal encompasses two integral parts: the devel-
opment of abstract efficiency metrics and the definition of the
quality-focused efficiency metric. We introduce the objectives,
limitations, and use cases of efficiency in ML, and establish
basic efficiency types based on trade-off relationships. Draw-
ing inspiration from the laws of physics, we define efficiency
using efficiency dimensions for quality, work, space, load, and
duration of the ML procedure, with each dimension compris-
ing measurements of the ML process. We outline two types of
metrics, namely the efficiency vector, which provides insight
into the raw strengths and weaknesses of the ML process in
terms of efficiency, and the focused efficiency scores, which
are designed for ease of interpretation. To enhance the signif-
icance of scores, a defined procedure is employed to adjust
dimensional weights and perform sophisticated measurement
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TABLE I
LIMITATIONS OF QUALITY COMPACT (QCO) METRIC

Aspect Valid Range or Category Balanced

Dataset Labelled Text Samples, Size <256 MB Yes1

ML-Task Text Classification, NLP-Tasks4 No2

Classifiers All ML Techniques No3

Host-setup Non-HPC, Non-GPU, RAM <128GB Yes1

Training Duration 48h Yes1

Calculation Amount 63P FLOPS, 800M Minor Page Faults Yes1

(1) Compensation, e.g., efficiency remains consistent regardless of dataset
size. (2) Scores from different tasks are not comparable. (3) Provides

comparable efficiency scores per ML technique. (4) untested

smoothing. As an example, we outline the metric equation
for quality-focused efficiency and propose a metric definition
protocol to achieve metric validity. This protocol is applied
to define the quality-focused efficiency metric, including the
definition of the equation for score calculation, appropriate
measurement selection, smoothing of measurement values, and
dimension weight development.

A. Objectives & Limitations

An objective of this approach is to enable its applicability
to all ML techniques. Measurements should be available for
common host setups. The efficiency should be balance effects
of different host setups. Additional requirements need to be
derived from use cases. Certain measurements depend on ML
task characteristics, such as dataset size, or runtime conditions,
such as duration (see Table I). Valid measurement ranges may
be enforced by smoothing techniques.

The application of the ML process involves objectives and
constraints. The following use cases have specific efficiency
requirements.

1) Effects of changes in the ML process: The effects of
different techniques, such as preprocessing techniques,
need to be measured [19].

2) Select ML technique by efficiency: Identify the ML
technique that achieves high classification quality while
minimising the use of computational resources. [11].

3) ML technique for limited resources or private data: Se-
lect a Whitebox ML technique suitable for local model
training [20].

4) Parameter optimisation: Effectiveness as a cost function
in the optimisation of hyperparameters or setups [21].

5) Performance comparison: Compare the performance of
an ML technique on different host setups to evaluate ML
efficiency [22].

6) Predicting computational costs: Predicting the cost by
predicting computational effectiveness of an ML tech-
nique in a production setup [23].

B. Dimensions

The concepts of efficiency in the use cases are different, but
are defined on the basis of similar components. All concepts

consider the trade-off between the performance of the model
and the resources consumed during training or inference. The
key components under consideration for the efficiency metrics
are:

Accuracy or Performance. The efficiency of the machine
learning model is correlated with its accuracy or performance.
Standard metrics such as accuracy, precision, recall, F1-Score,
or Area Under the ROC curve (AUROC) can be used to
measure this, depending on the specific task.

Resource Utilisation. Efficiency should take into consider-
ation the resources consumed during the training or inference
process. This includes computational resources like CPU,
GPU, or memory usage. Efficient models should minimising
resource utilisation.

Relative Resource Utilisation. The load imposed on the host
by the machine learning process provides a means of measur-
ing the relative utilisation of hardware resources. A higher load
indicates a more efficient use of available resources, as fewer
resources are left unused.

Computational Effort. Efficiency is affected by the complex-
ity of the ML process, or the amount of computation needed
to train the model or compute a result for inference. Efficiency
is improved when the computational effort is minimised.

Training Duration. The definition of efficiency can include
the time to train the machine learning model. Faster training
times can be beneficial, especially in scenarios where models
need to be trained frequently or where time constraints exist.

Inference Latency. For models deployed in real-time or
interactive applications, the time taken to make predictions
or perform inference is critical. Low inference latency or fast
response times can be important efficiency metrics in such
cases.

In the context of cost-effectiveness in machine learning
research, different dimensions or base units are considered.
The need to define base units, such as distance and power,
which can be used to define efficiency, has been discussed by
Numrich [24]. This approach uses abstract dimensions, which
provides adaptation through flexible adaption. The proposed
efficiency metric uses the following efficiency dimensions, with
a description of valid measurements:
Quality. (Or Performance) The machine learning model

should achieve the desired level of accuracy as a perfor-
mance indicator for addressing the given task or problem.
Measurement can be conducted using appropriate evalu-
ation metrics tailored to the specific task, including accu-
racy, precision, recall, F1-Score, or AUROC. Preferably
scores that compensate unbalanced dataset [6].

Work. (Or Computational Effort, Computational Complexity)
The number of computational operations, such as matrix
multiplications, gradient computations, data transforma-
tions as well as the usage of computational-cache (e.g.,
CPU L1-Cache). The theoretical amount of work can
be calculated by applying the theory of computational
complexity. The real workload differs due to optimisation
at the software and hardware level. [7]–[9]. The measure-
ment shall count generated and processed compute steps,
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optionally data transfers through memory and network.
Computational steps can be counted direct (floating point
operations or instructions) [6] or indirect by measuring
side-effects of computation, e.g., memory management
activity.

Load. (Or Relative Resource Consumption) Relative host
usage reflects the degree to which all available resources
on the host are being used. This includes relative usage
of compute units (CPU and GPU cores), and relative
memory usage. It also includes information about load
related memory management events such as major page
faults.

Space. (Or Absolute Resource Consumption, Space Complex-
ity) The amount of data resources, such as memory
and storage, needed by the machine learning process.
Space usage of memory is measured by resource usage on
the host system. This includes main memory usage and
allocation such as virtual memory allocation, resident set
size, working set size or stack size.

Duration. (Or Time Requirements) Time-related measure-
ments, such as training time or inference latency and
include time to complete the ML procedure or time spent
on processing units.

Other non-dimension specific measures include the character-
istics of the dataset, such as information about the number of
samples and the size of the dataset. For special purpose met-
rics, sample attributes such as number of sentences, number
of words and linguistic text attributes can be obtained.

C. Efficiency

Efficiency (Cost-Effectiveness) refers to achieving a high
level of performance or accuracy while optimising the utili-
sation of resources and minimising associated costs. It aims
to strike a balance between the effectiveness (performance)
of the model and the costs or resources required to achieve
that effectiveness. This approach covers three concepts of cost-
effectiveness:

Solution Efficiency. Efficiency as the balance solution
achievement and cost. Solutions are focuses like quality,
costs include efforts done and resources consumed. Every
aspect is provided by one or multiple efficiency dimen-
sions. Solution efficiency with quality focus describes
how much computational effort was used to achieve
the prediction quality. This reflects the efficiency of
the model, i.e., the algorithm and its implementation.
Efficiency increases by doing less work in less time
and achieving higher prediction quality. Other focuses is
achieving low latency of ML inference.

Resource Efficiency. Efficiency as the degree to which re-
sources are used. Resource efficiency is the capability
of the ML procedure to use all available resources. It
increases by adapting to host setup by using more existing
resources. Important for designing hardware for specific
ML Techniques and adapting ML algorithms to specific
hardware [25]

TABLE II
INSTANTIATION PROTOCOL

Step Objective

1 Select Efficiency Metric
2 Define Validity Requirements
3 Setup and Conduct Experiment
4 Define Dimensions
5 Analyse measurements
6 Assign measurements to Dimensions
7 Define Validity Ranges
8 Normalisation of Measurement-Values
9 Determine Dimensional Weights

10 Define Score compensation factor
11 Define Score Equation

TABLE III
VALIDITY REQUIREMENTS

Aspect Count Variables Optional

Dataset >=2 Size, Sample Count Sample Length,
Language

Vectorization >=2 Algorithm Dictionary Size,
Model Size

Classifier >=4 Algorithm,
Classifier Tech. Hyperparameters

Host-Setup >=2 Hardware Conf.,
Operating System Software Version

Synthetic Efficiency. Efficiency as a tool for measuring spe-
cial aspects of performance to analyse specific attributes,
such as text quality indicators [26] or performance com-
parisons [27].

Efficiency rules are defined based on the efficiency objectives:

1 Solution Efficiency
1.1 The more quality is achieved in less time, work and

effort, the higher the ML quality efficiency.
1.2 The less time it takes to achieve more quality, the higher

the ML-Speed-Efficiency.
1.3 The less work required for more quality, the higher the

ML-Work-Efficiency.
2 Resource efficiency

2.1 The more load is used for more quality, less duration,
less work, the higher the ML resource efficiency.

3 Synthetic efficiency
3.1 The less computational work is necessary per data

chunk the higher the ML model efficiency.
Beside the efficiency objectives, two diametral requirements

on handling of the ML efficiency results are encountered:
Interpretability and Usability. The more information a metric
provides, the greater the need for interpretation. This approach
provides metrics at two levels of complexity. (i) Efficiency
is determined as a single scalar by the at-a-glance metric
(compact metric score) while supporting weights for each
dimension. (ii) The efficiency vector metric represents unin-
terpreted values per dimension.
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D. Compact Efficiency Metrics

Efficiency in the field of ML shows variability depending
on the specific application. Metrics are proposed for specific
purposes and categorised according to their level of complex-
ity. The group of compact metrics uses a subset of dimensions
that contribute to the calculation of an efficiency score, which
is determined with respect to the dominant dimension. The
compact efficiency (CO) metric is defined in Definition 1.

Definition 1: It exists a compact efficiency score CO of
a ML procedure M for focused dimensions F with a focus
weight α and unfocused dimensions U (1); based on efficiency
dimensions (D) quality q, work w, space s, load l and duration
d with specific dimension weights β defined by (2).

[F ]CO(M) = (F × α)× U (1)
[F ]CO(M) = (qM × βq)× (wM × βw)× (sM × βs)

× (lM × βl)× (dM × βd)× ψ (2)

where D = {r ∈ R | r > 1} and {q, w, s, l, d ∈ D}
F ⊆ D and U = D\F
ψ = Score-Compensation

Quality Focused COmpact Efficiency Metric (QCO). A
compact metric to reflect quality-focused efficiency. A score
describes the best solution with a predefined high relevance
of the quality dimension and low relevance of the work
and duration dimensions. Relevant dimensions: Quality, Work,
Space, Duration. Dominant dimension: Quality.

The QCO-score for an ML process M is derived from (1)
& (2) for the Quality-Focus, as stated by (3). The quality
dimension is represent by q, which measures the quality or
performance of the machine learning model. w represents
the dimension of computational effort, which quantifies the
computational operations or effort required for the machine
learning tasks. The resource consumption dimension s mea-
sures the amount of system resources required during the
execution of the model. d represents the dimension of duration,
which measures the time or duration required to train the
model. The weight per dimension β is employed to adjust the
importance of dimensions, while α represents the additional
weight of the focus dimension, both derived from expert
knowledge of the use case. The compensation factor ψ is
introduced to optimise the readability of the score, where
1 > ψ ≥ 0.1. The dominance of quality q is reflected in
the numerator, so efficiency is defined as the quotient of
quality divided by work w, space s and duration d (terms
in the denominator). The dimensions are intended to increase
in importance with a growth proportional to their current size,
so the weights β of the dimensions and the focus weight α
are treated as exponents with the respective dimension as the
base.

TABLE IV
HOST-SETUPS

No. Type CPU-Model Clock Threads RAM

1 Virtualised AMD Ryzen 7 5800U 1,9 8 16
2 BareMetal Intel Core i5-6200U 2,3 4 8
3 BareMetal Intel Core i7-7700 3,6 16 32
4 Virtualised Intel Xeon Gold 6230 2,1 4 8
5 Virtualised AMD EPYC 7742 2,2 16 16

[Clock in GHz, RAM in GB.]
OS: Linux, Language: Python3,

Libraries: Scikit-learn [28], DistilBERT [29], torch [30], pandas [31].

QCO(M) =
qα∗βq

(wβw + sβs + dβd)
∗ ψ

(3)

Resource Focused Compact Efficiency Metric (RCO). Com-
pact metric to reflect resource-oriented efficiency. A score
describes the best solution with a predefined high relevance
of the relative load usage and a low relevance of the quality
dimension. Relevant dimensions: Load, Quality, Work, Dura-
tion. Dominant dimension: Load.
Inference Focused Compact Efficiency Metric (ICO). Com-
pact metric to reflect resource-oriented efficiency. A score
describes the best solution with a predefined high relevance
of duration, low relevance of the quality dimension and
lowest relevance of work. Relevant dimensions: Quality, Work,
Duration. Dominant dimension: Duration.
Algorithmic Focused Compact Efficiency Metric (ACO).
Compact metric to reflect resource-oriented efficiency. A score
describes the best solution with predefined high relevance
of work and duration, low relevance of duration, quality,
and dataset dimension. Relevant dimensions: Quality, Work,
Duration, Dataset. Dominant dimension: Work.

E. Efficiency Vector Metric (EV)

The CO metrics condense efficiency information into a
score. To provide information of the dimension specific per-
formance the EV metric reveals the dimension scores of the
CO metric. The EV is available per CO as a vector, to describe
the efficiency in the vector space of the specific CO. For QCO
the QEV is represented by a vector in a Quality-Work-Space-
Duration space.

IV. COMPACT METRIC INSTANTIATION

In order to use the proposed efficiency metric, the abstract
definitions need to be instantiated into explicit definitions by
empirical method (Table II). This requires conducting an ML
experiment that maps a specific use case and involves the
collection of measurements. The instantiation of the metrics
thus depends on the parameters of the experiment. The validity
of the metric instantiation is positively correlated with the size
of the use case, such as the number of datasets.

The instantiation stages for a CO-Metric are as follows: The
experiment is designed, deployed and measurements captured.
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Fig. 2. Pearson Correlation Coefficients of empirical Measurement Values.

TABLE V
MEASUREMENTS

Type DIM IMP TRANS DEP

F1-Score Quality 10 None
Bal.-Acc. Quality 10 None
FLOPS Work[CPU] 10 Log 63P Data
MinorPF Work[CPU] 5 Log 800M Data
RSS (avg) Space[Mem] 10 Log 128G Time
CPU Time [ns] Duration 10 Log 172T
Data Size - 10 Log 256M

The formulas for the dimensions are defined and measured
values are assigned (Table VI). Validity ranges are specified
and the measured values are smoothed accordingly (Table VI).
The determination of the dimensional weights and the score
compensation factor ψ completes the Metric Equation (4).

For reasons of compactness, the instantiation is restricted to
QCO metric.

A. The QCO-Metric Instance

The dimensions and the QCO score are instantiated accord-
ing to the protocol given in Table II.

Use Case 1 requires efficiency as quality per work, space,
and time. The QCO-Score is applicable. Experiment 1 has
been set up based on Use Case 1 to instantiate a Quality

TABLE VI
QCO INSTANCES

Dimension QCOF QCOP (*)

Quality (F1 + BACC) / 2 (F1 + BACC) / 2
Work FLOPS / Dataset[kB] Minor PF / Dataset[kB]
Space aRSS/s[MB] * Duration[s] aRSS[MB] * Duration[s]
Duration Time on CPU [ns] Time on CPU [ns]

(*) FLOPS-Measurement was not available on all hosts.

Fig. 3. Spread and Skewness per Dimension after logarithmic smoothing.

Focused Metric. The required validity for different datasets and
ML procedures results in the empirical variance requirements
presented in Table III. To gain comparison validity among
host-setups, four different computing environments were set
up (No. 1-4 as shown in Table IV).

Two datasets were selected, a spam classification [32] and
am movie review classification [33]. Vectorization was done
using the classical TF-IDF algorithm as wells as by word em-
bedding based on BERT. The classifiers chosen were Support
Vector Machines, Naı̈ve Bayes (NB), Gradient Descent (GD)
and Random Forest (RF). In addition, a transformer-based
ML procedure (DistilBERT-Setup) was performed. In the
DistilBERT-Setup, the model was fine-tuned on the datasets
and used for vectorization and classification.

The measurements were provided by a set of Linux tools:
• time. Basic process measurement (CPU, Memory).
• pidstat. Advanced process measurement (CPU, Mem-

ory, IO-Usage).
• perf. Performance counter capture. (CPU, Memory).
Quality scores were computed separately from the ML

procedure. Measurements were grouped for resource domain,
e.g., memory consumption or computational work on CPU.
The groups were filtered by correlation, the heatmap (Fig-
ure IV) shows Pearson Correlation Coefficients for selected
measurements. perf was not supported on all host setups
due to missing performance counters and conflicts with power
saving methods. Two sets of measurements has to be set up
which results in two QCO flavors: F loating Point Operation
(QCOF ) based and Minor Page F ault (QCOF ) based. The
selected measurements are listed in Table V.

Range definition is necessary for normalisation. Valid ranges
for this QCO-Instance are listed in Table I. Normalisation
is necessary as different units and types of data are used
in calculation. Performing monotonic data transformation on
dimensions values lead to a range between 0 to 2. The
transformation range is based on the maximum values per
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QCOF (M) =
((F1+BACC

2
)6)

(log63P FLOPS/DS[kB] + log128GRSS[MB] ∗ log864MD[s] + log172T TOC[ns]
∗ 10

(4)

QCOF (M) =
((F1+BACC

2
)6)

(log800M MPF/DS[kB] + log128GRSS[MB] ∗ log864MD[s] + log172T TOC[ns]
∗ 10

(5)

where F1 = F1-Score, BACC = Balanced Accuracy Score,
FLOPS = Floating Point Ops., MPF = Minor Page Faults,

DS = Dataset-Size, RSS = Resident Set Size,
D = Duration, TOC = Time on CPU

dimension. The valid ranges are thus not related to mea-
surement ranges. The definition of valid measurement ranges
(Table I) enables data transformations on measurement values.
After transformation values are in an closed scale with minor
decreased distribution (Figure 3).

The dimension-equations are defined by interpreting the
dependencies of the measurements (Table V). Especially the
dependency on duration and data size has been considered.

The dimension weight is used to adjust the importance of the
focused metrics. The importance of quality is based on domain
knowledge: Quality is about two times more important than
work, space, and duration which delivers βQ = 6. Readability
compensation ψ is set to 10.

QCO for is defined for each measure set, which results in
4 and 5

B. QCO Metric Usage

1) Select QCO type according to available measurements.
If CPU-Performance-Counters are available QCOF, oth-
erwise QCOP. Respect expected validity ranges (Table I.

2) Perform training on a dataset subset while capturing
measurements according Table VI.

3) Calculate efficiency by equations 4 5.

C. QCO Score Calculation

The Quality-Focused Score is calculated for FLOPS-based-
score as QCOF (4) and QCOP for Page-Fault-based score
(5).

V. EVALUATION

The usability, plausibility and balance of the proposed
metric is assessed in a comprehensive evaluation.

A. Experiments

In Experiment 2, binary classification tasks were performed
by different vectorization and classifier technologies. Two
datasets are selected for Experiment 2, both with moderate
text length; SMS Spam Classification (25.000 samples)[32]

and Movie Survey Classification (7.805 samples) [33]. The
experiments were run on host 1 (Table IV) in two virtual
hosts with different virtualisation technologies. The results of
experiment 2 are shown in Table VII. To compare the QCOF
and QCOP metrics in Experiment 2, two set of QCO had to
be created as some FLOPS measurement were not available
(QCO1 & QCO2∗).

In Experiment 3, the metric was further evaluated by apply-
ing it to an optimisation problem similar to Use Case 4. The
objective was hyper-parameter optimisation with efficiency
as the cost function. The ML process involved fine-tuning a
transformer model (DistilBERT [29]), word embedding and
text classification. The experiment aimed to find the most
efficient value for the Maximum Sequence Length (MSL) for
the SMS spam detection task [32], which was run on Host 5
(IV).

B. Usability

Experiment 2 shows surprising results that can be explained
by runtime conditions such as schedulers, competing pro-
cesses and caching techniques. The experiment is not de-
signed to make general statements about specific combinations
of vectorization or classification methods. Consequently, the
following statements apply only to this experiment, which
does not preclude testing the usefulness of the efficiency
metric. The word embedding method is on average superior
to the TFIDF in terms of quality, but there are classifiers
(NB, GD) that can compensate for the quality disadvantage
and in some cases achieve the highest efficiency. This is
due to the low workload. The transformer method requires
significantly more work. It achieves high quality, but also takes
the longest time. The Random Forest (RF) classifier has a low
efficiency because it requires a lot of computation and time to
achieve good quality. The Support Vector Machine (only linear
kernel) classifier benefits most from the word embeddings
and therefore achieves good efficiency. When comparing the
combinations in terms of the time to work ratio (WO-Focus),
the worst ratio (1.28) is found for IMDB/TFIDF/SVM and
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TABLE VII
QCO EVALUATION RESULTS

EVMetric QCO Metrics Rankings
DAT VECT CLF DUR QUA TIME SPA WOP WOF QCOP QCOF EXP1 QCO1P EXP2 QCO2P QCO2F

SMS TFIDF NB 00:00:34 0,968 0,407 0,260 1,043 0,691 1,260 1,726 1 1 1 1 1
SMS TFIDF GD 00:02:36 0,972 0,583 0,371 1,043 0,631 1,190 1,678 2 2 2 2 2
IMDB TFIDF GD 00:00:19 0,885 0,339 0,222 0,616 0,610 1,145 1,153 3 3 3 3 3
SMS DIST-T DIST-T 00:01:34 0,982 0,525 0,384 1,249 1,099 6 4
SMS BERT SVM 00:11:29 0,972 0,755 0,510 1,143 1,465 1,018 0,852 4 5 5 4 4
IMDB DIST-T DIST-T 02:38:32 0,982 1,058 0,795 1,058 0,970 5 6
SMS BERT GD 02:04:00 0,978 1,030 0,696 1,140 1,637 0,956 0,752 8 7 4 5 6
IMDB DISTIL DISTIL 11:31:52 0,978 1,228 0,923 1,136 0,848 7 8
IMDB TFIDF NB 00:01:18 0,845 0,504 0,330 0,618 0,581 0,766 0,797 9 9 6 6 5
SMS BERT NB 01:58:30 0,932 1,024 0,692 1,141 1,638 0,715 0,563 11 10 8 7 8
SMS DISTIL DISTIL 01:39:58 0,983 1,005 0,750 1,845 0,697 12 11
SMS BERT RF 01:09:50 0,916 0,963 0,651 1,140 1,639 0,660 0,516 10 12 7 8 9
IMDB TFIDF RF 00:00:58 0,809 0,469 0,309 0,617 0,646 0,604 0,586 15 13 9 9 7
SMS TFIDF RF 00:03:02 0,787 0,601 0,376 1,043 0,931 0,335 0,363 16 14 12 10 10
IMDB TFIDF SVM 00:20:20 0,714 0,821 0,554 0,638 0,812 0,223 0,194 13 15 11 11 11
SMS TFIDF SVM 00:00:35 0,652 0,409 0,264 1,048 1,092 0,117 0,113 14 16 10 12 12

Cloumns: Dataset, Vectorizer, Classifier, Duration, Quality, Time, Space, WOF = Work (FLOPS), WOP = Work (Minor Page Faults), QCO Metrics,
Rankings by Domain EXP erts, or QCO, SMS = SMS Spam Dataset[32], IDB = IMDB Dataset[33], BERT = BERT word embedding, DIST-T = finetuned

DistilBERT word embedding (PyTorch) & classification, DISTIL = finetuned DistilBERT word embedding (TensorFlow + keras) & classification, GD =
Gradient Descent, SVM = Support Vector Machine, NB = Naı̈ve Bayes

the best for SMS/TFIDF/NB with 0.39. This leads to the
conclusion that the measurement of time does not reflect the
amount of work.

In Experiment 3, both QCOF and QCOP were success-
fully computed (see Table VIII). The most efficient MSL
configuration consisted of 512 tokens, resulting in a high
classification quality and moderate duration. On the other
hand, the configuration with 126 tokens showed an increased
workload and duration. The fastest result was obtained with
an MSL of 256 tokens.

C. Plausibility

QCO was successfully generated for all ML methods in
Experiment 2. A comparative assessment of QCO based on
expert rankings is used for evaluation. Domain experts ranked
the dimensions, listed in Table VII Column Rank-EXP. Com-
paring expert and QCO rankings, a minimal deviation from the
expert rank was observed for high quality ML methods, but
the deviation increased with decreasing quality. This variance
can be attributed to the expert’s specific weighting of quality
relevance, which is particularly evident in the DistilBERT
setups.

D. Balance & Compensation

QCO achieved a balance of aspects through compensation
(Table I). The results of Experiment 2 showed no anomalies
for different datasets; even ML processes with large datasets
achieved high efficiency. Moreover, significant differences
in speed and computational complexity were observed for
comparable efficiency, suggesting a balance in these aspects.
Due to the small number of hosts available for evaluation, the
balance on host setups could not be verified.

TABLE VIII
EFFIENCY OF DISTILBERT

Measurements Dimensions Scores
SL Duration F1 Q W S T QCOF QCOP

128 09:08:50 0,76 0,64 3,02 0,45 0,78 0,159 0,164
256 00:27:02 0,78 0,64 2,86 0,45 0,71 0,171 0,172
512 00:50:13 0,78 0,65 2,94 0,47 0,72 0,183 0,174

Text Classification Efficiency with DistilBERT with different maximum
Sequence Length (SL). Smoothed Dimensions: Quality, Work, Space and
T ime. Efficiency Scores Quality Focused based on FLOPS (QCOF ) and

Minor Page Faults (QCOP )

VI. DISCUSSION

This study proposes an efficiency metrics framework for
machine learning techniques that addresses different aspects of
cost-effectiveness, resource utilisation and model performance.
The approach is intended to be adaptable and applicable to a
variety of ML techniques and host setups. The objectives of
the efficiency metric framework have been defined to address
different real-world scenarios and use cases. The proposed
efficiency metrics provides information for identifying the
optimal ML technique and hyperparameters, selecting ML
techniques for limited resources or private data, compar-
ing classification performance across different host setups,
and estimating computational costs. The metric framework
introduces several dimensions that collectively capture the
efficiency of ML techniques to achieve these goals. These
dimensions include quality, work, load, space and duration,
each of which contributes to the overall efficiency score. The
dimensions are designed to measure different aspects of ML
performance and resource utilisation, allowing for a compre-
hensive evaluation. One of the key advantages of the proposed
framework is its adaptability to different ML techniques and
tasks. The dimensions and metrics can be adjusted based on
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specific use cases and requirements, ensuring relevance and
accuracy in different contexts. This adaptability makes the
metric framework suitable for a wide range of applications,
from small-scale experiments to large-scale production sys-
tems.

The efficiency metrics introduced in the framework, such
as QCO, FCO, ICO and ACO, provide different perspectives
on efficiency. These compact metrics provide a clear, at-a-
glance view of efficiency, making it easier for researchers and
practitioners to evaluate and compare different ML techniques.
In addition, the Efficiency Vector (EV ) metric provides de-
tailed information about the performance of ML techniques on
individual dimensions, providing insights for further analysis
and improvement.

The process of instantiating the efficiency metrics requires
empirical investigation to ensure that the metric definitions
are concrete and applicable to specific ML experiments. The
validity of metric instantiation is emphasised, and the size of
the experiment plays an important role in achieving reliable
results. By conducting experiments on different datasets and
host setups, the metric instantiation gains credibility and
comparability.

Overall, the proposed efficiency metrics framework offers a
promising approach for quantifying and comparing the cost-
effectiveness of machine learning methods. By providing a
comprehensive view of efficiency across multiple dimensions,
it enables researchers and practitioners to make informed deci-
sions regarding ML techniques, resource allocation, and model
performance optimisation. The adaptability and applicability
of the metrics in different contexts make them a valuable tool
for advancing the field of ML and facilitating the development
of efficient and effective ML models.

VII. CONCLUSION AND FUTURE WORK

The successful calculation and evaluation of efficiency
scores will pave the way for further achievements in the effi-
ciency of machine learning research. By introducing complex
dimensions that take into account measurement correlations,
such as FLOPS to data volume or memory usage to duration
time, we were able to potentially balance the metric and
achieve a compensation of dataset size and host-setup.

When evaluating the QCO dimensions, we encountered a
limitation due to insufficient samples. However, the FLOPS-
based instance showed consistency and our attempt to use
a small page fault measure to support the work dimension
showed partial success. To gain further insight into efficiency
correlations, future work could focus on dimensions that
incorporate ML-specific attributes, such as model size.

It should be noted that the validation methods of the
proposed metric currently rely on peer opinion. While this
provides valuable insights, we recognise the importance of
statistical validation to increase the credibility and robustness
of the metric.

The efficiency of machine learning methods is undoubtedly
influenced by expert opinion and the relevance of quality to
the specific application. However, we need to be aware of

the potential exponential increase in complexity if quality is
used as the only guiding principle for development. Striking a
balance between different efficiency dimensions is crucial to
ensure a practical and rational approach to optimising machine
learning processes.

Further research and statistical validation will contribute
to the refinement and wider adoption of these efficiency
metrics, ultimately advancing the field of ML and facilitating
the development of efficient and effective machine learning
models.
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