
Cost and Carbon Reduction for Microsoft Azure
Virtual Machines Using Workload Analysis

1st Daisy Wong
Richard Montgomery High School

United States
w6daisy@gmail.com

2nd Oliver Zhang
Strake Jesuit College Preparatory

United States
oliver.zhang0712@gmail.com

3rd Jacky Huang
St. Anne’s-Belfield School

United States
zzandkun@gmail.com

Abstract—Cloud computing has rapidly become the dominant
platform for businesses across various sectors. However, many
companies find it challenging to effectively control costs, often
resulting in suboptimal resource allocation and unnecessary
overspending. Moreover, the expansion of cloud computing has
spurred a surge in electricity consumption, causing a correspond-
ing rise in greenhouse gas emissions. This paper aims to reduce
both the cost associated with Virtual Machines (VMs) in the cloud
and the carbon footprint generated by cloud computing activities.
To tackle this issue, we analyze the 2019 Azure cloud trace,
which incorporates data from more than 2.6 million VMs and
historical records of grid emissions intensity from the California
ISO Northern Region. We also devise a machine learning model
to predict costs based on core and memory size and formulate
a waste metric that captured over 90% of the wastage in cloud
workloads. In addition, we propose a cost reduction algorithm
that helps to save nearly 4 million dollars. Furthermore, we
developed a carbon awareness algorithm that could substantially
reduce the carbon emissions of VMs by 51%.

Index Terms—cloud computing, Microsoft Azure, virtual ma-
chines, cost reduction, carbon reduction, workload analysis

I. INTRODUCTION

Cloud computing has experienced significant growth in re-
cent years, driven by the growing demand for cloud computing
infrastructure. According to a report by FMI [1], the global
VM market is expected to grow at a Compound Annual
Growth Rate (CAGR) of 20.3% between 2023 and 2033. The
market was valued at US $5,174.3 million in 2022 and is
expected to reach US $26,042.8 million by 2033.

As cloud computing continues gaining momentum, orga-
nizations increasingly rely on cloud-based infrastructure to
support their computing needs. However, cloud costs can
spiral out of control if not managed properly, with VM usage
significantly contributing to cloud costs. The report by Flexera
[2] has indicated that enterprises wasting over 30% of their
cloud spending, with wasted spending totaling $14.1 billion
annually. As a result, reducing cloud expenditure has become
a top priority for organizations using the cloud.

To address this issue, we investigate the problem of reduc-
ing costs and carbon emissions of cloud computing. To our
knowledge, only a few works have attempted to reduce costs
using real VM workloads, such as [3]–[5]. Furthermore, most
of the works on energy-efficient management systems for VMs
in the cloud proposed various migration algorithms [12] [13].
Our study deviates from existing literature and instead looks

at carbon reduction through VM scheduling. Specifically, we
make the following contributions.

Real-world workload analysis. To understand the waste
problem, we analyze the characteristics of approximately 2.7
million VMs in the Azure Public Dataset [14] to verify the
existence of waste in cloud computing. Our workload analysis
shows that the average utilization rate of all VMs is only
15.59%. Moreover, we observe a consistent pattern that as
the VM requests more resources (such as memory and cores),
its average utilization rate tends to decrease.

VM Cost Prediction Model. As the dataset does not
indicate cost per VM, our study utilizes a linear regression
algorithm to estimate the cost of each VM using their spe-
cific characteristics. The algorithm considers various factors,
including public pricing models by Microsoft [15], how many
gigabytes of memory the VM has, and the number of cores
the VM has. By accurately predicting the cost of each VM,
our algorithm reveals the estimated cost of each VM.

Waste Quantification. Building on top of the proposed cost
prediction model, we further propose a metric to quantify the
waste of each VM. In this study, we quantify the waste of each
VM by considering the total cost and resource utilization. This
metric provides users with a clear understanding of the extent
of waste in the cloud infrastructure and enables them to prior-
itize cost optimization efforts. Our waste quantification offers
key insights into users of the cloud and our analysis confirms
that many users waste significant cloud resources, leading to
unnecessary costs. This finding highlights the importance of
cost optimization for VMs in cloud computing environments.

Cost Reduction Algorithm. Our study proposes an ef-
fective solution for reducing the cost of cloud computing.
Using the established waste metrics, we find VMs with high
wastage frequently possess larger cores that are underutilized.
Therefore, our proposed strategy involves downgrading VMs
by reducing their core size until it reaches the minimum core
size or the utilization surpasses 100%. By implementing this
approach, users can effectively reduce costs without compro-
mising performance. The results from our simulations confirm
that we have achieved cost savings of up to 17%.

Carbon Reduction Algorithm. Our research introduces an
innovative carbon reduction algorithm that aims to maximize
the efficiency of cloud computing while minimizing carbon
emissions. To achieve this, we utilize the Carbon Intensity
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Data provided by WattTime [17] to assess the relative carbon
reductions achievable by each VM during its operation. This
data measures the emission rate of electricity generators on
the local grid at a specific time, represented in units of total
pounds of emissions per megawatt-hour. The dataset we utilize
contains carbon intensity levels for California ISO (CAISO)
region in July, recorded at 5-minute intervals. Leveraging this
information, our carbon reduction algorithm makes predictions
about the carbon intensity expected in the next 24 hours.
It then strategically assigns VMs to a time window where
they can contribute to carbon emissions reduction effectively.
By adopting this approach, users can actively minimize their
carbon footprint without compromising the quality of service.

The rest of the paper is organized as follows. Section II
discusses related work, and Section III presents a thorough
analysis of the workload. The cost reduction algorithms are
presented in Section IV, and Section V presents the carbon
reduction algorithm. Section VI provides an in-depth discus-
sion of the experimental results obtained. Finally, Section
VII presents the conclusions drawn from this research and
potential future work.

II. RELATED WORK

Several studies have investigated cost reduction for VMs in
the cloud, offering valuable insights into optimizing resource
allocation and managing costs. For instance, Flexera’s State
of the Cloud 2022 report [2] highlighted the increasing usage
of cloud services and provided recommendations for cost
management from a company’s perspective. Others such as
Cortez et al. [3] explored resource management and proposed
a workload prediction model that can leverage machine learn-
ing techniques to enhance resource allocation in large cloud
platforms. Similarly, Hadary et al. [6] developed a system
that employed machine learning algorithms to automate VM
allocation for large-scale cloud deployments. However, these
studies did not address cost reduction from the user’s stand-
point.

In the realm of published literature focusing on carbon
reduction strategies, several approaches have been explored,
primarily centered around individual or multiple data cen-
ters. Notable examples include [7] and [8]. However, some
researchers, as demonstrated by [9], have taken into considera-
tion distributed data centers with varying carbon footprints and
power usage effectiveness. Meanwhile, Beloglazov and Buyya
[10] have evaluated heuristics aimed at dynamically reallo-
cating VMs to minimize energy consumption. Furthermore,
several other studies have examined alternative methodologies,
such as migration algorithms that may pose challenges for
users rather than enterprises [11] [12].

In contrast, our study analyzes the specific workloads of
individual users and presents a comprehensive solution tailored
to their needs. We introduce a program that automatically
leverages historical data, utilization rates, and other factors to
recommend the most cost-effective VM for a given workload.
By directly addressing user requirements, our solution bridges
the gap in existing research and offers a practical approach to

cost reduction. We also propose a program that suggests users
to reschedule work when possible to improve environmental
sustainability. Users can significantly enhance their cost and
carbon management practices, achieving substantial cost re-
ductions without compromising performance or quality. The
unique focus of our paper on individual users sets it apart
from previous studies, making it a valuable contribution to
the cloud computing cost and carbon reduction field.

III. WORKLOAD ANALYSIS

In this section, we characterize the workload of Azure VMs.
Exploring their characteristics and focusing on which intrinsic
aspects of application and function will help enable numerous
platform optimizations.

A. Microsoft Azure Workload

Dataset. In this paper, we utilize the Azure Public Dataset
Version 2 [13], a cloud trace generated in 2019 from the
Microsoft Azure platform. The dataset includes detailed in-
formation of approximately 2.7 million VMs created by over
6,600 users in July 2019, such as the timestamp in seconds
when the VM is first created (starting at 0), the timestamp
in seconds when the VM is deleted, VM size in terms of
maximum core and memory (GBs), the average and maximum
CPU utilization, as well as the string IDs of users.

B. Cost Analysis

Tools. While the Azure Public Dataset Version 2 [13]
provided relevant information concerning VM characteristics,
it excluded essential information regarding the price of each
VM, which is essential for calculating the cost of each VM.
To solve this problem, we utilize third-party tools such as the
pricing calculator offered by Azure Microsoft [14], Orange
[15], and SciKit Learn [16] to develop a cost prediction model.

Figure 1. Data used to calculate cost

Pricing Calculator. To analyze the cost of all VMs, we first
need to find the pricing of each VM. The pricing calculator
offered by Azure Microsoft [14] calculates the prices of each
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VM based on numerous factors. We set the VMs to be in
the region of the East US, Windows operating system, OS-
only type, standard tier, and memory-optimized category for
730 hours. In choosing instances, we picked instances that
matched the core and memory with the lowest temporary
storage. However, not every VM reported on the Azure Public
dataset Version 2 was provided on the pricing calculator. As
seen in Figure 1, there were instances of core and memory
pairs that were not provided on the pricing calculator. The
cost in the figure was measured in cost per hour.

Figure 2. First few row of our training dataset

Linear Regression. We use the linear regression tool from
Sckikit Learn [16] to solve this problem. In addition to the
data shown in Figure 1, we included other data from the
pricing calculator in order to train our our model. The first
few rows of our training dataset can be seen in Figure 2.
We chose linear regression because the variables, namely core
size and memory space, exhibit a linear relationship. Hence,
linear regression is more suitable for capturing this linear
association, as opposed to quadratic or alternative regression
models. Through our linear regression model, we obtain the
coefficient of determination R2 as 0.98566, signaling the
accuracy of our prediction model. Our model is determined
through the following equation:

price = 0.01530 + 0.00055× core+ 0.014222×mem

Where 0.01530 represents the intercept, 0.00055 constitutes
the slope for the core variable, and 0.014222 forms the slope
for the memory variable.

Additionally, compared to other machine learning tech-
niques, linear regression handles overfitting relatively well
using different procedures such as reduction techniques, reg-
ularization, and cross validation. While comparing our linear
regression results to other machine learning techniques, we
found the linear regression results to be more accurate.

Finally, with the price of VMs of different core sizes and
memory space combinations, we are able to calculate the cost
of each VM based on runtime using the following equation:

cost = price× (
runtime

3600
)

The VM cost is calculated as the product of the VM’s price,
which depends on its core size and memory space, and the
duration in hours. The runtime is calculated by subtracting the
deletion timestamp from the creation timestamp. To convert
this duration into hours, we divided the result by 3600, as
there are 3600 seconds in an hour.

C. Utilization Analysis

Figure 3. Utilization of VMs

Figure 4. Percent wasted for VMs

User Analysis. Many Azure users created more than one
VM. Based on different users, some VMs averaged with low
core and memory count, while other VMs averaged with
higher core and memory count. Although we observe that
some users can efficiently utilize cloud resources, a large group
of users also seem to be managing their resources ineffectively.
We will refer to the first group of users as the “experienced”
users and the second group as the “inexperienced users.”

Experienced users all utilized VMs in an indistinguishable
manner. Most importantly, their VMs consisted of low core
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and memory count (often two cores and two GB). Their VMs
ran for a short time rather than the entire 30 days analyzed
in the dataset. Their experience was also evident in their high
utilization rates, which signified that these experienced users
were using their VM for a limited time before deleting it
immediately. Inexperienced users utilized VMs in opposition
to experienced users. Their VMs consisted of high core and
memory count (many of which used the maximum 64 cores
and 70 GB).

Additionally, these VMs had a duration averaging 30 days
with extremely low utilization rates, sometimes running below
1%. The characteristics of the VMs created by inexperienced
users portray the typical scenario of creating a VM and
forgetting to shut it down when it is no longer needed.
Consequently, these VMs cause significant waste.

VM Analysis. The distribution chart depicted in Figure 3
illustrates a negative exponential curve. Analyzing the chart
more in-depth reveals that more than half (55%) of VMs had
a utilization rate below 10%. The largest bar indicates about
24% of VMs being utilized at below 2%. More significantly,
24% of VMs had a utilization rate of less than 2%. The
analysis shows cause for concern since most VMs show
wasteful spending, and many of these VMs are generated by
inexperienced users. The trends in Figure 3 correlate with the
trends depicted in Figure 4. The percentage wasted for VMs
was calculated through a cost over waste ratio. The data in
Figure 4 acknowledges that 51% of VMs wasted more than
90% of their expenses. Moreover, 25% of VMs drained more
than 97.5% of costs. Note that 5% of VMs had zero percent
wasted due to their time of use being zero seconds. Overall the
two trends detailed in Figures 3 and 4 emphasize the potential
for a significant cost reduction, which this paper seeks to
contribute.

D. Waste Analysis

The waste of cloud expenditure is calculated using the
formula below:

waste =
cost× (100− util)

100

According to our calculations, the combined cost of all VMs
exceeds $23 million, with an estimated waste of over $20
million. These figures highlight that customers are squandering
approximately 90% of their VM resources. The disparity
between waste and cost emphasizes the urgency to reduce
cloud cost and waste.

IV. COST REDUCTION ALGORITHMS

Recall Section III. C, inexperienced users utilize large
VMs at lower utilization rates, leading to some of the most
significant waste in the cloud. Inspired by this observation,
we propose two cost reduction algorithms that are referred to
as aggressive downgrading approach and passive downgrading
approach.

Downgrading a VM involves reducing its core size to
the smallest possible core. Instead of considering memory

space, we prioritize core size when downgrading VMs since
utilization issues usually relate to core size rather than memory
space. The aggressive approach focuses on downgrading VMs
based on cores and the lowest memory, while the passive
approach considers downgrading VMs based on the core with
the highest memory.

Figure 5. A list of VM core/memory combination

A. Sample Cases and Approaches

The two approaches are illustrated in Figure 5 through the
pathways on the left and right sides of the table, respectively.
In the first approach, which is more aggressive, the downgrad-
ing is performed based on the cores with the lowest memory.
Let us consider an example where we attempt to downgrade a
VM with a core size of 30 and 70 GB of memory. Following
the “aggressive” approach (indicated by the red arrows on the
left), the VM is downgraded to the core level with the smallest
memory space.

On the other hand, the second approach adopts a passive
strategy by downgrading based on the cores with the highest
memory. If we were to apply the “passive” approach to
downgrade a VM with a core size of 30 and 70 GB of
memory, it would follow the pathway depicted on the right
side of Figure 5, indicated by the blue arrows, resulting in a
downgrade to the core level with the largest memory space.

B. Threshold Selection

It would be highly inefficient to downgrade every VM
in the trace. To identify VMs eligible for downgrading, we
established a criterion that selected VMs must have exceeded
a 10% waste threshold, as indicated by the distribution chart
shown in Figure 4.

Considering the limitations imposed by maximum utiliza-
tion, average utilization, and core sizes, our proposed ap-
proaches necessitate VM utilization to fall within a range
of 0% to 33%-50%. Let us assume a VM with 8 cores is
downgraded to 4 cores. To calculate the new utilization, we
divide the two core sizes, resulting in a quotient of 2, and
multiply it by the old utilization rate. Since the maximum
utilization possible for all VMs is 100%, the theoretical
maximum utilization can only reach 50%. Similarly, if we
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Algorithm 1 Aggressive Downgrading
Require: percentWasted ≥ 10

while canDowngrade and core >= 2 do
if core = 2 then

newMaxUtil = 2/2×maxUtil
newUtil = 2/2× util
core = 2
mem = 2

else
newMaxUtil = oldCore/newCore×maxUtil
newUtil = oldCore/newCore× util
if newMaxUtil < 100 then

maxUtil = newMaxUtil
util = newUtil

else
canDowngrade = false

end if
end if
if newMaxUtil > 100 or newUtil > 100 then

core = coreLevel
mem = memLevel

end if
end while

Algorithm 2 Passive Downgrading
Require:

percentWasted ≥ 10
core ≥ 2 and mem ≥ 8
while canDowngrade and core >= 2 do

if core = 2 then
newMaxUtil = 2/2×maxUtil
newUtil = 2/2× util
core = 2
mem = 8

else
newMaxUtil = oldCore/newCore×maxUtil
newUtil = oldCore/newCore× util
if newMaxUtil < 100 then

maxUtil = newMaxUtil
util = newUtil

else
canDowngrade = false

end if
end if
if newMaxUtil > 100 or newUtil > 100 then

core = coreLevel
mem = memLevel

end if
end while

consider a VM with 24 cores downgraded to the next level, 8
cores, following the same principle, the maximum utilization
can only be 33.3%. These restrictions significantly contribute
to the efficiency of targeting and downgrading VMs.

When the VM initiates the downgrade process, it computes
and assigns the new maximum utilization, average utilization,
memory, and cores to their respective variables. If either the
maximum or average utilization surpasses 100%, the down-
grade process is halted since utilization cannot exceed 100%.
Likewise, if the VM reaches the minimum downgrade level
with a core size of 2, the downgrade process is also concluded.

V. CARBON REDUCTION ALGORITHM

VMs consume massive amounts of energy, often from
fossil fuel-based sources, thus leading to significant carbon
emissions. This section presents a carbon reduction algorithm
that identifies proper VMs and reschedules them to a low-
carbon window to reduce their carbon footprint.

A. Carbon Intensity

Carbon intensity is the measurement of emissions generated
relative to the energy consumed. In this paper, we use the
Marginal Operating Emissions Rate (MOER), a widely used
metric, to measure the carbon intensity in units of pounds of
emissions per megawatt-hour. MOER measures the emissions
rate of electricity generators on a certain grid at a certain time.
Low MOER indicates that electricity is more environmentally
friendly and vice versa. The Azure trace [13] was created
with data from July 2019. Consequently, we utilized the
corresponding MOER dataset from CAISO North during July
2019 as our carbon intensity data.

Figure 6. Forecasted and actual MOER from July 2-5, 2019

As illustrated by the blue line in Figure 6, MOER values
in the CAISO North region vary greatly, but typically surges
during the day when electricity demand is higher. This in-
creased energy consumption by businesses and households
often prompts grids to deploy additional generators, including
those with higher emissions, to meet the heightened demand.
Conversely, demand and MOER tend to decrease during the
night, enabling a shift towards more sustainable electricity
generation. This variability in MOER arises from the interplay

5Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-097-1

GREEN 2023 : The Eighth International Conference on Green Communications, Computing and Technologies



of numerous external factors that shape the dynamics of the
electricity grid, which include weather and the makeup of
generators within the grid (renewable or non-renewable).

B. Carbon Intensity Forecasting

Forecasting MOER allows workloads to be delayed until
times of low MOER to reduce carbon emissions. Our fore-
casting algorithm uses a robust prediction methodology. Our
methodology operates under the assumption that the MOER
levels observed today will persist unchanged into tomorrow.
Alternative forecasting models, such as the moving average
approach, were also evaluated and tested. Nonetheless, due
to challenges posed by data availability, the moving average
model encountered limitations in precisely anticipating MOER
levels.

The subsequent component of the algorithm centers on
optimizing carbon reduction. This is achieved by identifying
the interval with the lowest MOER level averages over the next
24 hours to execute the workload. Operational activities are
postponed and rescheduled until the interval mentioned above.
As shown in Figure 6, workloads during the high MOER times
are shifted to times of lower MOER levels, thereby reducing
carbon emissions.

There are three types of workloads in the Azure Pub-
lic Dataset “Delay-sensitive,” “Delay-insensitive,” and “Un-
known.” As their names suggest, delay-sensitive workloads
are time-sensitive, delay-insensitive workloads are not, and
unknown workloads do not specify whether it is time-sensitive.
Because users did not mark unknown type workloads as
delay-sensitive, we assumed they could be postponed. For our
simulation, we ran both “Delay-insensitive” and “Unknown”
type workloads through the optimization algorithm as they
were more amenable to rescheduling and could tolerate delays.

Algorithm 3 Carbon Reduction
Require: RunTime > 0
AverageMOER = Average MOER in Window
Window ← Start T ime to EndT ime
for

(
1Day

5minutes

)
do

Shift Window By 5 Minutes
NewAverage← Average of Modified Window
if NewAverageMOER < AverageMOER then

AverageMOER← NewAverageMOER
BestWindow ←Window

end if
end for
Reschedule Task to BestWindow
Savings = DefaultEmission−AverageMOER

PercentSavings = 100×
(

Savings
DefaultEmission

)
Our carbon reduction program, found as Algorithm 3,

works by identifying the length of the window and shifting
it until it finds the best duration with the lowest MOER
levels. The workload depicted in Figure 6 shows the results
of optimization. The program matched the window length to

the corresponding MOER levels. It then shifts the window
and calculates the new average; if the new average is lower
than the past lowest average, the new average is set as the
lowest average, and the best window is set to that duration.
The window shifts every 5 minutes to match the MOER data
that only provides data in five minute intervals. The program
then loops 720 times, the number of 5 minute intervals in a
day, to find the lowest average and the corresponding window.
Then, it calculates the percent saving after optimization.

VI. EXPERIMENTAL RESULTS

In this section, we will discuss the experimental results from
the simulations on the cost and carbon reduction programs.

A. Cost Reduction Results

We ran our simulations on the entirety of the 2019 Azure
cloud trace [13]. First, we calculated the total cost of over 2.6
million VMs in the trace, resulting in a total of $23,144,128.53
before downgrading. Then, we ran two simulations to com-
pare user savings using the two cost reduction algorithms
presented in Section IV. After downgrading, the cost savings
were astonishing. Through our first downgrading approach,
1,975,282 VMs were aggressively downgraded and saved users
a total of almost $4 million or 17% in savings. Through our
second downgrading approach, 730,436 VMs were passively
downgraded and saved users a total of about $950,000 or 4%
in savings.

B. Carbon Reduction Results

We ran the carbon reduction simulation on both“Delay-
insensitive” workloads and “Unknown” type workloads. In
the“Delay-insensitive” group, we observed savings ranging
from 0 to 8%, with mean savings around 0.2%. In the
“Unknown” group of workloads, the average savings was 55%.
Percent savings overall averaged 51%. The drastic difference
in outcomes is explained by the differences in run time
each group has. “Delay-insensitive” workloads run for long
durations, with an average of 26 days and peaks around
30. These lengthy workloads are too substantial to generate
significant savings through optimization, as they are too large
to accommodate the dips of MOER. Meanwhile, the average
run time of “Unknown” type workloads is only approximately
four and a half hours, making them more susceptible to
generating sizeable savings during optimization.

VII. CONCLUSION AND FUTURE WORK

This paper analyzed the Azure workload of over 2.6 million
VMs. We developed two cost reduction algorithms and a car-
bon reduction algorithm. The experimental results have shown
that our proposed algorithms can help reduce costs of up to
17% of cost by efficiently choosing core size and memory
space and reducing on average 51% of carbon emissions by
rescheduling workloads to a low carbon time. In the future,
we would like to explore the relationship between cost savings
and carbon reduction.

Our proposals faces a few limitations. While the cost
reduction algorithm is limited by sheer number of VMs in
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the dataset, the carbon reduction algorithm is limited by the
challenge of accurately predicting MOER due to its complex
nature influenced by various external factors. Our algorithm
adopts a simplified approach, primarily relying on historical
MOER data to extrapolate future levels. This simplification
enhances computational efficiency and operational feasibility
but sacrifices precision by disregarding the intricate dynamics
underlying MOER fluctuations. This can be addressed in future
work by developing a more sophisticated algorithm incorpo-
rating external factors to achieve more precise forecasting of
MOER levels.

Our study was conducted with the assumption that we can
change VM size and run time whenever it is needed. However,
this does not reflect the real world scenarios 100% of the time.
Thus although our solution aims to tackle memory space issues
through the duo use of the aggressive and passive algorithm,
real world applications of the cost reduction algorithm could
still be constrained by VM availability and memory space; a
VM may still be reduced to a level where the program does
not have enough memory to run. Additionally, both the cost
and carbon reduction algorithms would need user consent to
downgrade their VMs, as some users may require a specific
VM size without changes, or other users may not be able to
reschedule their VM workloads.

Overall, we believe inexperienced users mentioned in Sec-
tion III. C would benefit the most from our cost reduction
program. Users with workloads that can be rescheduled would
save the most carbon reductions. Both the cost and carbon
reduction algorithms are recommended to be implemented
in real cloud providers such Microsoft Azure, Amazon Web
Services (AWS), Alibaba etc.
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