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Abstract—In this paper, we investigate the ability of large
language models (LLMs) to translate American Sign Language
with GLOSS annoation into English without fine-tuning or
architectural modifications. Our findings show that pretrained
transformers achieve translation quality comparable to human
experts. While prompt engineering enhances accuracy for simpler
models, it has minimal impact on more advanced ones. Addi-
tionally, when generating multiple translation variants, the first
response is typically the most accurate, with subsequent outputs
declining in quality. These results underscore the strong zero-shot
translation capabilities of LLMs and highlight their potential for
scalable ASL-GLOSS translation applications.

Keywords-ASL-GLOSS translation; Generative pretrained trans-
formers, large language models

I. INTRODUCTION

Large Language Models (LLMs) have emerged as a trans-
formative force in natural language processing, demonstrat-
ing remarkable versatility across various applications, includ-
ing text generation, summarization, and machine translation.
These models, often referred to as foundation models, are
trained on vast corpora of text and possess extensive knowl-
edge of human languages. Their ability to generalize across a
wide range of tasks has enabled them to achieve impressive
performance, even in low-resource language translation tasks.
Recent studies have shown that LLMs excel in one-shot and
few-shot learning scenarios [1], where only a limited num-
ber of examples are available. This makes them particularly
suitable for translating languages with scarce training data.

Among the communities that could greatly benefit from
these advancements are deaf and hard-of-hearing individuals.
Sign languages serve as the primary mode of communication
for these communities; however, the automatic translation of
sign languages into spoken or written languages remains a
significant challenge [2]. Developing effective translation solu-
tions could substantially enhance accessibility and inclusivity,
supporting social integration and improving communication
opportunities for these individuals.

Automatic translation of sign languages typically follows a
two-step pipeline [3][4], although end-to-end approaches have
also been explored [5]. The first step involves recognizing
and detecting visual symbols associated with sign language

TABLE I. EXAMPLE SENTENCES IN ENGLISH AND ASL-GLOSS

English sentence ASL-GLOSS
There are a lot of studies on
speech disorders

STUDY ON SPEECH/ORAL
fs-DISORDER A-LOT

While I was a graduate student,
in a linguistics class, a profes-
sor gave a lecture about syntax.

DURING/WHILE IX-
1p GRAD STUDENT
IN CLASS_2 LONG-
AGO LINGUISTICS
TEACH+AGENT
TEACH+AGENT
DIRECT/EXPLAIN fs-
SYNTAX

My mother taught my two
brothers and me, so it was eas-
ier for us to move around.

part:indef MOTHER
TEACH IX-1p+ AND TWO
BROTHER EASY MOVE
part:indef

gestures. From these visual inputs, a structured intermediate
representation can be derived, such as ASL-GLOSS. ASL-
GLOSS serves as a symbolic transcription of American Sign
Language (ASL) gestures, capturing the essential lexical com-
ponents of signs while abstracting away certain nonmanual
markers, including facial expressions, eye movements, and
contextual cues. Although ASL-GLOSS simplifies the repre-
sentation of sign language, it remains an incomplete encoding
of meaning, as it lacks many elements necessary for full
semantic understanding, although this limitation also applies
to written text. Table I presents examples of English and ASL-
GLOSS sentences.

Existing machine translation solutions for sign-to-English
or ASL-GLOSS-to-English tasks typically rely on smaller,
domain-specific models trained exclusively on sign and gloss-
specific datasets [6]. However, these models often struggle
with generalization due to their limited exposure to the target
output language. We hypothesize that the broad linguistic
knowledge embedded in LLMs can mitigate this issue by
providing improved translations and using their comprehensive
understanding of syntax, semantics, and common expressions
in the target language.

In this work, we explore the capabilities of current LLMs
in translating ASL-GLOSS into English. Our objective is
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to assess the direct translation quality of LLMs on ASL-
GLOSS inputs and to establish a baseline accuracy for LLM-
based gloss translation. Additionally, by analyzing potential
translation errors and corrections, we aim to provide insights
into the viability of LLMs as robust components in future sign
language translation pipelines.

The remainder of this paper is organized as follows. Section
II. provides an overview of the theoretical background and
related work relevant to our study. In Section III., we introduce
the proposed methodology, including dataset descriptions and
evaluation metrics. The results and their analysis are discussed
in Section IV., highlighting both quantitative and qualitative
findings. Finally, Section V. concludes the paper by summa-
rizing the main contributions and key findings along with the
potential avenues for future research.

II. EXISITING SOLUTIONS

Machine Translation (MT) of ASL encompasses various
approaches, each leveraging different technologies to facilitate
translation between ASL and spoken or written languages. Key
methodologies include:

1) Rule-Based Systems: Early MT systems for ASL uti-
lized rule-based approaches, where linguistic experts
encoded grammatical and syntactic rules to map English
text to ASL structures [7]. An example is the TEAM pro-
totype, which analyzed English text’s syntactic and mor-
phological aspects before accessing a sign synthesizer
to produce corresponding ASL signs via a computer-
generated human avatar [8].

2) Statistical Machine Translation (SMT): SMT approaches
rely on statistical models derived from bilingual corpora
to predict translation probabilities. However, the scarcity
of large-scale parallel ASL-English corpora has limited
the effectiveness of SMT in ASL translation [9].

3) Neural Machine Translation (NMT): Recent advance-
ments in NMT have shown promise in translating spo-
ken languages. Applying NMT to ASL involves train-
ing deep learning models on annotated sign language
datasets to capture the nuances of ASL grammar and
expressions. Challenges include the need for extensive
datasets and the complexity of modeling sign language’s
spatial and temporal aspects [6].

4) Vision-Based Recognition Systems: These systems em-
ploy computer vision techniques to interpret sign lan-
guage from video input [10]. For instance, the Kinect
Sign Language Translator utilizes Microsoft’s Kinect
sensor to capture signers’ movements and translate them
into spoken language using machine learning and pattern
recognition [11].

5) Sensor-Based Recognition Systems: Some approaches
use wearable sensors to detect hand movements and
positions. For example, SignAloud incorporates gloves
equipped with sensors that transliterate ASL into English
by tracking hand movements and sending data to a
computer system for analysis and translation [12].

6) Hybrid Systems: Combining multiple methodologies,
hybrid systems aim to enhance translation accuracy.
SignAll integrates computer vision and natural language
processing to recognize hand shapes and movements,
converting this data into simple English phrases to
facilitate real-time ASL translation [13].

Despite these advancements, challenges persist, particularly
in accurately interpreting the diverse and complex structures
of ASL. Ongoing research aims to address these issues by
developing more robust models and incorporating larger, more
diverse datasets to improve the reliability and inclusivity of
ASL machine translation systems.

III. METHODOLOGY

To thoroughly evaluate ASL-GLOSS to English translation,
it is essential to carefully consider the data sources and
models used in this study. The methodology section outlines
our approach to selecting appropriate datasets, choosing rele-
vant language models, and establishing a rigorous evaluation
framework. These choices form the foundation for robust and
reproducible experimental results.

A. Datasets

To evaluate the performance of LLMs in ASLGLOSS-to-
English translation, we conducted an extensive review of avail-
able datasets. Our primary objective was to select a dataset that
meets several critical criteria. The ideal dataset would be large-
scale, contain video recordings of the signing person, provide
gloss annotations of the signed sentences, and include high-
quality English translations. Video recordings are particularly
important as they serve as the most accurate reference for
human translations, capturing the full range of visual cues
necessary for understanding sign language, including hand
movements, facial expressions, and other nonmanual markers.
Additionally, we prioritized datasets that feature complex
sentence structures and a broad spectrum of topics, ensuring
comprehensive coverage of real-world communication scenar-
ios.

However, only a limited number of datasets meet these
demanding requirements. The datasets we investigated include:

• English-ASL Gloss Parallel Corpus 2012 (ASLG-PC12):
A dataset mapping ASL gloss to formal English text[14]

• American Sign Language Linguistic Research Project
(ASLLRP) Data Access Interface (DAI): Contains video
recordings with corresponding gloss annotations [15].

• MS-ASL Dataset: A large-scale dataset for isolated sign
recognition[16].

• DAI - ASLLVD: A video dataset with ASL lexical
items[17].

• ASL Finger Spelling Dataset: Focused on finger-spelling
gestures[18].

• WLASL: A large-scale dataset for word-level American
Sign Language recognition.[19]

• American Sign Language Lexicon Video Dataset: A
comprehensive dataset with video recordings, gloss an-
notations, and English translations[20].
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Among these datasets, the American Sign Language Lex-
icon Video Dataset proved to be the most suitable for our
experiments, as it met all the aforementioned selection criteria.
Its combination of video input, detailed gloss annotations, and
high-quality English translations makes it an ideal resource
for training and evaluating ASL-GLOSS-to-English transla-
tion models. Consequently, our experimental work primarily
focuses on this dataset.

B. Large Language models

In our investigation, we selected a diverse range of language
models to evaluate their performance on the ASL-GLOSS-
to-English translation task. Given the rapid advancements in
the field, with new models emerging regularly, compiling an
exhaustive list is not feasible. However, our selection was
guided by several key considerations to ensure a representative
and comprehensive assessment.

The selected models fall into two broad categories:
• Large-Scale Proprietary Models: This category includes

cutting-edge models such as Claude and ChatGPT, which
are accessible exclusively through API-based interfaces.
These models are considered among the most complex
and sophisticated LLMs available, and we anticipated that
their extensive training data and advanced architectures
would yield the highest translation accuracy. Despite
their closed-source nature, their performance serves as
an upper-bound benchmark for comparison.

• Open-Source Models: We also included open-source
models, such as LLaMA and DeepSeek. Although these
models are typically less complex than their proprietary
counterparts, their publicly available architectures and
weights offer several advantages. Running these models
on-premise enables greater control over execution en-
vironments, facilitates further optimization, and allows
fine-tuning on domain-specific data. This flexibility is
particularly valuable for tailoring models to the nuances
of ASLGLOSS translation.

By evaluating models from both categories, we aim to bal-
ance performance, transparency, and practical deployability in
our study. This comprehensive selection will provide insights
into the trade-offs between accuracy and customizability, help-
ing to identify the most suitable models for real-world sign
language translation applications.

For the sake of reproducibility, all our experiments, in-
cluding the code and detailed parameter setups, are avail-
able at the following GitHub link to ensure reproducibility:
https://github.com/horan85/ASLGloss

IV. RESULTS

Before presenting the experimental results, we summarize
the comparative evaluation of various state-of-the-art language
models in the ASL-GLOSS to English translation task. This
analysis focuses on assessing how model architecture and
prompting strategies influence translation quality. Our goal
is to understand not only the absolute performance of these

models but also how additional linguistic context affects their
translation capabilities.

A. Model Comparisons

To systematically assess the performance of our translation
models, we curated an evaluation dataset comprising 2,040
ASL-GLOSS-English sentence pairs sourced from the Ameri-
can Sign Language Lexicon Video Dataset. This dataset serves
as a benchmark for measuring translation quality and the
generalization capabilities of our models.

We conducted experiments with various models under two
distinct prompting strategies. In the first setup, models received
only a direct translation prompt, instructing them to generate
an English sentence from a given ASL-GLOSS input. In
the second setup, we supplemented the prompt with a brief
explanation of the GLOSS structure (3,000 words in length)
and a carefully selected set of twenty example translations to
provide additional context and guidance.

As evaluation metrics, we selected the BLEU score and
cosine similarity between the embedded representations of the
translated and ground-truth sentences. For sentence embed-
dings, we utilized the CLIP-ViT-B/32 transformer model [21].

Our results for the models without additional descriptions
are presented in Table II, which reports the mean performance
along with the corresponding variances. To provide a more
comprehensive view of the distribution, Figures 1 and 2
illustrate the detailed distributions of BLEU scores and cosine
similarities, respectively. These visualizations offer deeper
insights into the variability and consistency of model outputs
across different evaluation metrics.

Our findings indicate that for more advanced and complex
models, such as ChatGPT, Claude, and DeepSeek, the inclu-
sion of structural information and example translations had
minimal impact on overall translation quality. This suggests
that these models inherently possess a strong ability to in-
terpret ASL-GLOSS sequences and generate fluent English
translations, even without explicit guidance on the source
language structure.

In contrast, the LLaMA and ChatGPT-mini models exhib-
ited moderate improvements, with increases of approximately
0.03 and 0.04 in cosine similarity and BLEU scores, respec-
tively. However, further investigation is needed to determine
whether this robustness extends to less frequent linguistic
structures or more complex GLOSS annotations.

B. Model Consistency

Since LLMs generate probabilistic outputs, translation qual-
ity can vary due to multiple factors. Additionally, ASL-GLOSS
sentences, when extracted without broader context, may have
multiple valid interpretations. To assess whether generating
multiple translation variants improves accuracy, we examined
the effect of allowing GPT-based models to produce several
alternative translations for each input.

While output variability can be adjusted by tuning the
model’s temperature parameter, we did not optimize this
aspect. Instead, we instructed the models to generate five
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Figure 1. This figure depicts the Blue scores on the American Sign
Language Lexicon Video Dataset using various LLM models as a GLOSS

to Enlish translation task.

Figure 2. This figure depicts the Cosine similarity values on the American
Sign Language Lexicon Video Dataset using various LLM models as a

GLOSS to Enlish translation task.

TABLE II. COSINE SIMILARITIES AND BLEU SCORES WITH AND
WITHOUT GLOSS DESCRIPTIONS

Model Cosine Similarity BLEU Score
ChatGPT-4o 0.881± 0.83 0.514± 0.192
ChatGPT-4o
with GLOSS description

0.880± 0.87 0.512± 0.201

Claude Sonnet 0.879± 0.94 0.518± 0.219
Claude Sonnet
with GLOSS description

0.880± 0.99 0.518± 0.244

DeepSeek V3 0.876± 0.83 0.496± 0.217
DeepSeek V3
with GLOSS description

0.876± 0.88 0.495± 0.227

Llama 3.2 0.793± 1.23 0.349± 0.203
Llama 3.2
with GLOSS description

0.824± 1.43 0.374± 0.486

ChatGPT-4o-mini 0.787± 1.26 0.324± 0.213
ChatGPT-4o-mini
with GLOSS description

0.814± 1.67 0.365± 0.455

translation variants per input to evaluate whether this approach
enhances translation quality.

Using the same dataset of 2,040 sentences, we selected
the two best-performing models (ChatGPT and Sonnet) and
tasked them with generating five distinct translations for each
ASL-GLOSS input without providing detailed GLOSS de-
scriptions. The BLEU scores for these translations are shown
in Figure 3. Similar trends were observed in cosine similarity
measurements, though these results are omitted due to space
constraints.

Notably, our findings indicate that the first generated trans-
lation was consistently the most accurate. As the ranking
progressed, translation quality gradually declined, though the
differences were minor. This suggests that while generating
multiple outputs introduces slight variations, the first transla-
tion is generally the most reliable.

Figure 3. Translation quality (in terms of BLEU scores) when we asked the
model to provide multiple variants for Claude-Sonnet (above) and

Chat-GPT-4o (below)

-

TABLE III. COSINE SIMILARITIES AND BLEU SCORES ON THE REDUCED
DATASET

Model Cosine Similarity BLEU Score
Translator 0.903± 0.361 0.582± 0.253
ChatGPT-4o 0.893± 0.49 0.548± 0.163
Claude Sonnet 0.901± 0.47 0.560± 0.182
DeepSeek V3 0.884± 0.78 0.523± 0.316
Llama 3.2 0.810± 1.23 0.377± 0.250
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Figure 4. Cosine Similarities (above) and BLEU scores (below) on the
88-sentence dataset comparing a human translator’s performance with

various LLMs

V. CONCLUSION AND FURUTE WORK

In this paper, we demonstrated the capability of large
language models (LLMs) to translate ASL-GLOSS to English
without fine-tuning or architectural modifications. Our findings
suggest that general-purpose pretrained transformers are viable
for this task, achieving translation quality comparable to that
of human experts.

A. Key Findings

• Zero-shot translation effectiveness: General-pretrained
transformers can effectively translate ASL-GLOSS with-
out additional fine-tuning, highlighting the strong zero-
shot capabilities of modern LLMs in handling structured
linguistic inputs like GLOSS.

• Limited impact of prompt engineering: While prompt
engineering improves translation accuracy for simpler
models, it has a negligible effect on more advanced
LLMs. This suggests that state-of-the-art models already
possess a robust understanding of GLOSS structures
without explicit prompting strategies.

• Quality decline in multiple outputs: When LLMs were
prompted to generate multiple translation variants, the
first response was typically the most accurate, with subse-
quent translations exhibiting a gradual decline in quality.
This suggests that probabilistic generation may introduce
increasing errors when multiple outputs are requested.

• Near-human translation accuracy: LLMs achieve trans-
lation accuracy close to that of human experts. This

underscores their potential to assist or even replace hu-
man translators in certain ASL-GLOSS translation tasks,
improving scalability and accessibility.

While our results are promising, further research is needed
to assess the robustness of LLM-based ASL-GLOSS trans-
lation across diverse linguistic structures and complex anno-
tations. Future work could explore fine-tuning approaches,
domain adaptation techniques, and real-world deployment
scenarios to enhance translation reliability and applicability.
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