
Segmented Gait Analysis Using Pressure-Sensing Insoles in a Hemiparetic Patient: 

A Case Study 

 

 Tomoko Funayama 

Dept. of Occupational Therapy 

Teikyo University of Science. 

Yamanashi, Japan 

e-mail: funayama@ntu.ac.jp 

Yasutaka Uchida 

Dept. of Life Science 

Teikyo University of Science. 

Tokyo, Japan 

e-mail: uchida@ntu.ac.jp 

Eiichi Ohkubo 

Dept. of Life Science 

Teikyo University of Science 

Tokyo, Japan 

e-mail: ohkubo@ntu.ac.jp 

Ryota Kimura 

 Dept. of Rehabilitation 

Seirei Yokohama Hospital 

Kanagawa, Japan 

e-mail: kimura-r@sis.seirei.or.jp

 
Abstract—Recent technological advancements in wearable 

devices equipped with a wide range of sensors have enabled the 

collection of detailed biomechanical data, offering new 

possibilities for assessing and supporting rehabilitation in both 

clinical and everyday settings. However, individuals with 

unstable health conditions or limited physical activity may find 

it difficult to directly apply analytical methods developed for 

healthy individuals. This study investigated gait analysis using 

smart insoles embedded with pressure sensors in four regions of 

each sole, totaling eight regions, in an individual undergoing 

rehabilitation for post-stroke hemiparesis. The patient's gait 

exhibited distinct characteristics compared to that of healthy 

individuals. Notable features included fluctuating and 

inconsistent peak and trough values, irregular peak shapes, 

variable stride times, marked left–right asymmetry, and the 

absence of distinct peaks during presumed turning phases. 

Given these differences, conventional analytical methods were 

not directly applicable; thus, a new analytical approach was 

developed. Due to the wide variability in peak amplitudes, 

applying a uniform threshold for peak detection across the 

entire dataset was not feasible. Additionally, gait involves steady 

straight walking and variable-speed phases, such as turning, 

stepping over obstacles, stopping, and swaying—phases that are 

particularly challenging for individuals with gait impairments. 

Analyzing the entire walking period under uniform conditions 

may obscure important gait characteristics. Based on 1.1 times 

the mode of the stride time, smart insole data were segmented to 

distinguish between straight and irregular walking phases, 

followed by the calculation of mean, peak, and post-peak decline 

values. This approach enabled an objective evaluation of the 

effectiveness of a gait-assist robot used in rehabilitation, 

highlighting the clinical potential of smart insole–based gait 

analysis. 

Keywords- smart insole; rehabilitation; hemiparesis; gait 

analysis. 

I.  INTRODUCTION 

Basic movements—such as walking and transitioning 
between positions, including standing up and sitting down— 
are essential components of the Activities of Daily Living 
(ADL). The soles of the feet, being the only body parts in 
contact with the ground while standing, play a critical role in 
maintaining posture and balance. Furthermore, owing to their 
distance from the heart, the feet are prone to poor blood 
circulation during prolonged periods of sitting or standing.  
Walking is considered fundamental to health that it is 
sometimes referred to as the “sixth vital sign” [1]. Therefore, 
evaluating plantar conditions and mobility is significant both 
from a functional mobility standpoint and a health monitoring 
perspective. Gait assessments have been conducted across 
diverse populations, including older adults [2]–[4]; 
individuals with central nervous system disorders such as 
stroke, Parkinson’s disease, and multiple sclerosis [5]–[9]; 
those with cardiovascular or respiratory diseases [10][11]; 
those with musculoskeletal conditions such as low back pain 
[12]; and individuals with cognitive impairments [13]. In 
recent years, advances in digital technologies have enabled 
gait assessment using wearable devices [14]–[16], including 
the development of smart insoles designed to evaluate age- 
and disease-related changes and support fall prevention [17]–
[20]. As insoles are integrated with footwear, smart insoles 
embedded with pressure sensors allow continuous gait 
monitoring over time. If wearable devices such as smart 
insoles become widely available for evaluating ADL such as 
walking, objective assessments could be conducted in clinical 
settings during therapist-led rehabilitation as well as in home 
environments. However, when gait disturbances are severe, 
applying gait analysis methods developed for healthy 
individuals may be inappropriate. In this study, we propose a 
novel gait analysis approach using pressure sensor-embedded 
smart insoles in a single patient undergoing inpatient 
rehabilitation following stroke. This case study aimed to 

18Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-294-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GLOBAL HEALTH 2025 : The Fourteenth International Conference on Global Health Challenges



demonstrate the feasibility and utility of this approach in a 
clinical setting. 

This study was approved by the Ethics Committee on 
Research with Humans as Subjects of the Teikyo University 
of Science. The participant was an individual receiving 
medical rehabilitation services and was fully informed of the 
potential benefits and risks of participating in the study. 
Written informed consent was obtained by occupational 
therapists from patients undergoing rehabilitation who 
participated in the study. Section II describes the experimental 
method, Section III presents the results, Section IV provides a 
discussion, and Section V concludes the study and outlines 
future work. 

II. EXPERIMENTAL METHOD 

A single participant undergoing gait rehabilitation was 
assessed under three conditions: before, during, and after the 
use of a gait-assistive robot. The resulting data were analyzed 
to establish a gait evaluation framework. 

A. Devices and Software 

A wireless pressure-sensing smart insole, FEELSOLE® 
(Toyoda Gosei Co., Ltd.), was used in this study. The device 
was equipped with four pressure sensors positioned at the toe, 
heel, inside, and outside, enabling measurements at a total of 
eight points across both feet. Calibration was performed prior 
to use and consisted of four steps: (1) no pressure applied 
without inserting the foot into the shoe, (2) standing with both 
feet, (3) standing on the left foot only, and (4) standing on the 
right foot only. The insole sampling frequency was 50 Hz. The 
insole was connected via Bluetooth to an iOS application, 
ORPHE TRACK® (ORPHE Inc.), which automatically 
uploaded the data to the cloud. The recorded data were 
subsequently downloaded in CSV format using the ORPHE 
ANALYTICS system for further analysis. 

 
 
 
 
 
 
 
 

Figure 1.  Appearance of smart insoles. 

 
For gait rehabilitation, the Orthobot® (FINGGAL LINK 

Inc.) was used. This device is attached to a Knee–Ankle–Foot 
Orthosis (KAFO) and helps guide the lower limb toward a 
desirable movement pattern during walking. 

B. Participant and Measurement Method 

Gait measurements were conducted on a single male 
participant in his 70s who was hospitalized and undergoing 
rehabilitation following a stroke. With the cooperation of the 
hospital’s physical and occupational therapists, gait was 
assessed under three conditions: before using the gait-assistive 
robot, during its use, and after its removal. The participant had 

left hemiparesis and higher brain dysfunction due to a stroke, 
along with a medical history of traumatic brain injury and left 
femoral neck fracture. Motor impairments resulting from prior 
traumatic brain injury were suspected to affect not only the 
left upper and lower limbs but also the right limbs. 

Rehabilitation, including physical, occupational, and 
speech-language therapies, began the day after stroke onset. 
Each therapy was provided five times per week, with each 
session lasting 40 min. Physical therapy included gait training. 
On day 16 after stroke onset, gait assessment was conducted 
using a smart insole and gait-assisted robot. Since the 
participant was unable to walk independently, a physical 
therapist provided support from behind during the 
measurement. The gait-assisted robot was attached to the 
participant’s left lower limb. The gait task included straight 
walking and a U-turn. 

C. Gait Characteristics and Analysis Method 

For analysis, we excluded the first and last 100 data points 
recorded at the beginning and end of the measurement period. 
The raw heel data are shown as the blue line in Figure 2. Our 
previous study on healthy adults investigated a method for gait 
assessment using pressure sensor-equipped insoles, and 
suggested the utility of both peak values and post-peak decline 
rates at the four insole regions during each step [21]. In the 
present investigation, the participant’s gait was compared 
with that of healthy controls, and the following distinguishing 
features were observed: (i) peak and trough values fluctuated 
and lacked consistency; (ii) peak shapes were irregular, 
occasionally presenting two successive peaks that produced 
an “M-shaped” waveform; (iii) the interval between 
successive heel peaks—that is, the stride time—was 
inconsistent; (iv) inside and outside pressures on the right foot 
were reduced; (v) pronounced left–right asymmetry was 
evident; and (vi) no distinct peaks appeared during periods 
presumed to correspond to irregular gait while turning. 

Due to the wide variation in peak amplitudes, establishing 
a single threshold for peak detection throughout the entire 
recording was impractical. Accordingly, the dataset was 
segmented to exclude intervals with prolonged stride 
durations, which were assumed to reflect irregular gait. 
Analysis was focused on periods assumed to represent straight 
walking. The methods used for data segmentation, peak 
extraction, and calculation of the post-peak decay rate are 
described in Section 2) below. 

1) Calculation of Stride Time: Since peak values 
occasionally appeared in rapid succession and irregular forms, 
a moving average was applied to smooth the data and 
calculate stride times. The signal was smoothed using a 
moving average with a window size of 11. Stride time was 
defined as the interval between two successive heel peaks on 
the same side (either left or right). 

2) Method for Segmenting Insole Data: The mode of 
stride times was determined based on the values calculated 
from the smoothed data. Periods with stride times exceeding 
1.1 times the modal duration were considered to involve 
irregular gait events, such as turning or interruptions, and 
were excluded from the analysis as nonstraight walking. The 
segmentation procedure involved the following steps: 
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• Calculation of Modal Stride Time. 
Stride duration was calculated from the smoothed 
data obtained using a moving average with a window 
size of 11. Stride duration was defined as the interval 
between a peak value x and the subsequent peak x+1. 
Peak values were defined as time points 
corresponding to the maximum force recorded by the 
insole sensor at each instance of foot-ground contact. 
Peaks were detected using the find_peaks function in 
the SciPy Python Library. Equation (1) defines the 
threshold used to detect peaks in the smoothed data. 

  () 

Subsequently, time bins were created in 0.2-second 
increments up to the maximum stride duration. 
Among these bins, the one containing the highest 
number of stride durations for the right heel—
assumed to represent the better-functioning side—
was identified, and its upper limit was defined as the 
modal stride time. 

• Exclusion of irregular gait periods. 
Time intervals exceeding 1.1 times the modal stride 
duration were regarded as irregular gait, such as 
during turning or interruptions, and were excluded 
from the analysis to isolate segments representing 
straight walking. To ensure that the start and end 
times of the straight walking segments did not overlap 
with any peak values, a buffer equal to one-fourth of 
the median stride time of the right heel (calculated 
after smoothing) was added to both ends of each 
segment. For analysis, the longest of the identified 
straight walking segments was used for further 
examination. 
 

3) Calculation of Mean Values: The mean values for 
each insole region were calculated using both nonsegmented 
and segmented raw data.  

4) Mean of Peak Values: For nonsegmented and 
segmented data, the peak values were defined as the 
maximum force detected at the heel, toe, inside, and outside 
regions of the insole during each instance of foot-ground 
contact. 

5) Calculation of Decline Rate: The decline rate reflects 
the decrease in pressure values following each peak. In this 
study, it was calculated by measuring the difference in 
weighted averages between adjacent data points. Specifically, 
the decline rate was defined as the difference between the 
weighted averages at point x and point x+1. The weighted 
average was calculated using five consecutive data points: the 
target point, two preceding points, and two succeeding points. 
To emphasize the influence of the central value, weights were 
assigned as follows: 40% to the target point, 20% to the 
points immediately before and after, and 10% to the 
secondary points before and after. Among the calculated 
decline rates, the largest value within each foot-ground 
contact was defined as the maximum decline rate. These 

maximum values were extracted for each instance, and their 
mean was then computed.  

III. RESULTS 

In this section, the results of the analysis of gait 
characteristics before, during, and after robot-assisted walking 
are presented. We compare segmented and nonsegmented 
data to examine changes in stride time, mean and peak insole 
values, and decline rates. 

A.  Data Segmentation 

Among the walking periods with irregular time segments 
excluded, the longest and second longest durations were 
identified. Figure 2 shows the walking data recorded before 
the robot was worn and after its removal. The green lines 
indicate the start times of the extracted segments estimated to 
represent straight walking, and the yellow lines indicate the 
corresponding end times. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Irregular walking exclusion time. 
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Irregular gait periods were excluded from the data 
recorded before the robot was worn. However, in the data 
recorded after the robot was removed, some segments 
presumed to represent an irregular gait were included and 
misclassified as straight walking. Additionally, in the data 
recorded while the robot was worn, a small portion of the 
irregular gait was included among the extracted segments. 

B. Stride Time 

The average stride times were calculated using the timings 
of heel peaks on the left and right sides during walking—
before wearing the robot, while wearing it, and after its 
removal. These results, based on both segmented and 
nonsegmented data (referred to as “split” and “non-split” data), 
are presented in Figure 3. 

Stride time on the left side tended to be longer on the right 
side, which was considered the better-functioning side. The 
left stride time was defined as the interval between one left 
heel contact and the next. After removal of the robot, the 
overall stride times decreased, and in the split data, the 
differences in stride times between the left and right sides 
were reduced. A particularly large difference was observed 
between the split and non-split data for the left heel. 

 
 
 
 
 
 
 
 
 

Figure 3.  Average stride time from split and non-split data. 

 
Regarding asymmetry, the difference in stride time 

between the left and right sides was particularly pronounced 
before robot use, with greater asymmetry observed in the split 
data compared to the non-split data. As illustrated in the raw 
data graphs in Figure 2, left–right stride time asymmetry was 
evident even during walking segments presumed to be straight 
walking, before and during robot use. This pattern is 
consistent with the trend shown in Figure 3. However, as 
shown in Figure 2, the number of foot contacts detected in the 
split dataset was limited. For instance, prior to robot use, the 
left stride time could only be calculated over one or two steps. 
Therefore, although these values indicate a tendency toward 
left–right differences, they were insufficient to definitively 
characterize the participant's gait. 

C. Mean Values 

The mean values of the split and non-split raw data are 
shown in Figure 4. While the overall trends were similar 
between the two types, some differences were observed. 

Specifically, the mean value for the right heel after robot 
removal was lower in the split data compared to the non-split 
data, and left–right asymmetry was reduced. Additionally, the 
mean value of the right toe increased following robot removal. 
These changes were not apparent in the non-split data; 
however, the split data revealed that robot use reduced heel 
asymmetry and increased toe loading. 

 

Figure 4.  Mean values of insole regions from split and non-split data. 

D. Mean Peak Values 

The mean peak values for each part of the insole are shown 
in Figure 5. These results show trends similar to those 
observed in Figure 4, which displays the mean values for the 
entire raw dataset. After wearing the robot, the peak values 
increased at the heel and outside region of the left side—the 
side on which the robot was worn—compared to before use. 
On the right side, which was not equipped with the robot, the 
heel peak values decreased, resulting in a reduced asymmetry 
between the sides. In addition, the toe peak values on the right 
side increased. 

 

Figure 5.  Mean peak values of insole regions in split and non-split data. 

E. Decline Rate 

The decay rates for each part of the insole are shown in 
Figure 6. When comparing the average values before and after 
the removal of the robot, overall decay rates tended to be 
higher after removal. On the left side, although a slight 
decrease was observed in the inside region for the split data, 
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increases were observed in the other regions. Notably, a 
pronounced change in the decay rate was observed at the left 
heel in the split data. On the right side, a decrease was 
observed at the heel, whereas other parts showed increased 
decay rates, with the most prominent increase occurring at the 
toe. These findings suggest that robot-assisted walking led to 
a higher rate of change per unit time, particularly on the side 
where the robot was worn. The differences between the split 
and non-split data were particularly noticeable at the left heel 
before robot use and at the right toe during robot use. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Decrease rates of insole regions in split and non-split data. 

IV. DISCUSSION 

In participants with gait impairments, the peak and valley 
values were inconsistent compared with healthy individuals, 
and M-shaped patterns—characterized by two successive 
peaks—were observed during periods presumed to 
correspond to irregular walking, such as U-turns. Therefore, 
the analysis was conducted using segmented data, excluding 
these irregular periods. The use of segmented data enables the 
detection of gait-assisted robot effects. To avoid distortion 
caused by extremely long or short stride durations, the mode, 
rather than the mean, was adopted as a representative stride 
time. Durations exceeding 1.1 times the mode were 
considered indicative of irregular walking, such as turning or 
interruptions, and were distinguished from straight walking 
periods. A lower threshold ensures stricter exclusion of 
irregular intervals, but risks omitting valid straight walking 
data. Conversely, a higher threshold allows the inclusion of 
straighter walking data, but may fail to exclude some irregular 
periods. These settings should be adjusted by considering the 
primary focus of the analysis: walking speed and balance 
ability. 

In the segmented dataset, irregular periods were 
successfully excluded under pre-robot conditions. However, 
in the post-removal condition, some data from irregular 
walking phases were not excluded and were instead classified 
as straight walking. Furthermore, even under robot-wearing 
conditions, a small amount of irregular data were included. 
One possible explanation is that the gait-assistive robot 
improved walking ability, leading to more regular patterns in 
the better-functioning right limb, even during turning. This 

trend was also observed in the raw data graph (Figure 2), 
which showed more consistent insole readings on the right 
side after robot use. Our previous investigations in healthy 
adults have also revealed that gait patterns during U-turn 
phases can resemble those observed during straight walking. 
This suggests that individuals with a certain level of walking 
ability may exhibit regular gait patterns, even during turning. 
Conversely, in the post-removal condition, the right limb 
(which retained better function) maintained regular patterns 
even during irregular walking, whereas the left limb (which 
had worn the robot and had lower functional capacity) 
exhibited irregular data, highlighting a clear asymmetry in gait 
regularity. Future studies should consider segmentation based 
not only on the better-functioning limb, but also on 
incorporating data from the left and right limbs. The results 
differed between the segmented and nonsegmented data. 
However, the number of detected foot contacts in the 
segmented data was limited. Although these values suggested 
left–right asymmetry, they were insufficient to clearly 
characterize the participant’s gait. To enhance the reliability 
of gait characterization, future analyses may need to include 
the longest segment along with other usable segments to 
increase the amount of available data. 

In the present analysis, the focus was on straight walking, 
and the longest segment from the divided data was used for 
evaluation. Irregular walking phases were not analyzed as 
straight walking. However, Leach et al. demonstrated the 
importance of assessing fall risk during turning movements 
[22]. This suggests that future analyses focusing on irregular 
gait phases could offer valuable insights into mobility 
assessment. Refining data-segmentation methods and 
applications remains an important future direction. 

Changes were observed in both the peak values and rates 
of decline in the insole data following robot-assisted walking. 
Particularly, the segmented data showed a marked increase in 
the rate of decline of the left heel (on the robot-wearing side) 
and right toe (on the nonwearing side). These results indicate 
that robot-assisted walking leads to increased pressure and 
quicker movement at the left heel and right toe. Additionally, 
the findings suggest the potential usefulness of segmented 
data for capturing such changes. 

V. CONCLUSIONS AND FUTURE WORK 

Walking includes steady-paced straight walking and 
variable-speed phases, such as turning, stepping over 
obstacles, stopping, and swaying. Therefore, analyzing the 
entire walking duration under uniform conditions may 
obscure critical gait characteristics. This is particularly 
relevant in individuals with gait impairments, for whom the 
evaluation of variable-speed phases presents additional 
challenges. This study focuses on measurements, data analysis, 
and method development. Notably, using the mode of stride 
time—rather than the mean—helped minimize the influence 
of extreme stride time values and enabled effective data 
segmentation. This approach enabled the evaluation of the gait 
improvement effects resulting from the use of a gait-assist 
robot in a rehabilitation setting. Moreover, the practical utility 
of smart insoles depends on their digital functions and 
structural design, which play a crucial role in physical comfort 
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and psychological usability, especially in everyday settings 
outside controlled clinical environments. As this was a single-
case study, the generalizability of the results is limited. Future 
studies should include a larger sample size and further 
investigate the measurement data, analysis methods, and 
insole design. 
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