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Abstract— In recent years, wearable sensor devices that can be 

worn in daily life have rapidly gained popularity. The ability to 

monitor daily life, through a prolonged assessment, enables the 

detection of subtle changes in health status. Evaluating 

individuals in their usual daily settings provides an assessment 

that cannot be obtained within a hospital environment. However, 

there are not many research data on how activities specifically 

and objectively affect health. Therefore, in this study, we 

utilized an optical sensor device worn on the wrist to measure 

daily activities during individuals' daily routines. We studied 

heart rate and Fourier analysis and examined the relationship 

between condition and activity. As a result, the following aspects 

were deemed necessary to consider during measurement: 1) 

Analyze the data, taking into account not only the unstable 

period until the device stabilizes but also the time when subjects 

are operating the device. Consider the excluded data time and 

set the measurement time accordingly. 2) In addition to 

frequencies of 1Hz, 0.3Hz, 0.1Hz, also include analysis of the 

low-frequency ranges, such as 0.01Hz. 3) In case of significant 

variations in optical sensor data caused by arm movements, 

during abrupt and rapid changes (such as when the measured 

values from the accelerometer sensor exceed a certain 

threshold), data is excluded from the analysis of the light sensor. 

4) Divide and analyze the data based on units, such as 10 seconds, 

1 minute, 10 minutes, and investigate the changes in a time series. 

5) Compare changes during activities and rest periods, and 

within the subject's activities. Examine the variations in the time 

required for cool-down and recovery. 6) Consider external 

factors, such as the influence of natural light, fluorescent lights, 

and vibrations from cars or trains. This study suggests that 

tailored measurement and analysis for various activities and 

environments are crucial in order to utilize optical sensor for 

health promotion and rehabilitation in daily life activities. 

Keywords- Optical Sensor; Activities of Daily Living; 

Spectrum Analysis; Self-Therapy. 

I.  INTRODUCTION 

To enhance the quality of life of individuals with health-
related issues, it is crucial to examine the reciprocal 
relationship between health conditions and activities of daily 
living and to make necessary adjustments in their daily lives. 
Circadian rhythms also affect health, and activities such as 
sleeping, eating, and outdoor activities affect circadian 
rhythms [1]–[3]. Effective self-management of activities and 
maintenance of health conditions are essential for self-therapy 
and improving the overall quality of life. However, grasping 
the relationship between health condition and daily activities 
is not a straightforward task. Life activities are not simply 
judged as inherently good or bad for one’s health. They are 
influenced by various factors, such as the individual's health 
condition, intensity of activities, habituation, personal 
adaptation, and environment, and depend largely on the 
balance of these factors. There are situations similar to those 
of workaholics, in which individuals may become engrossed 
in their activities and find it difficult to pay attention to their 
health. Compared to objective conditions, such as fever and 
coughing, it is more difficult to accurately assess subjective 
conditions, such as pain and fatigue. The ability to objectively 
perceive fluctuations in health conditions during their daily 
lives and comprehend the activities that affect their mind and 
physical well-being holds significant potential for enhancing 
health management among individuals facing health 
challenges [4]–[8]. Moreover, it is valuable for rehabilitation 
in daily living [9]–[12]. Recently, several monitoring and 
support devices and systems using wearable sensors have 
been researched, developed, and commercialized for older 
adults and individuals with health issues [13]–[16]. Wearable 
devices that employ sensors, such as acceleration, temperature, 
and pressure sensors are becoming increasingly popular [17]. 

We have studied methods for assessing body changes 
during activities. In addition, the relationship between daily 
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activities and heart rate has been examined using an optical 
sensor device [18]–[21]. Therefore, in this study, we 
conducted an exploratory investigation using a wrist-worn 
wearable device equipped with optical sensors in the context 
of individuals' daily routines. Activities and health conditions 
were recorded using a cloud-based service, whereas 
simultaneous measurements were conducted using a wearable 
device. We studied the heart rate and Fourier analysis and 
examined the relationship between the condition and activity. 
We suggest certain aspects of the measurement methodology 
for use during daily activities. 

This study was approved by the Ethics Committee on 
Research with Humans as Subjects of the Teikyo University 
of Science. Section II describes the experimental method, 
Section III describes the results, Section IV presents the 
discussion, and Section V presents the conclusions and future 
work. 

II. EXPERIMENTAL METHOD 

A. Devices 

The device used for the measurement was a Maxim 
Integrated MAXREFDES103, which was worn on the wrist 
as a wristwatch. The measurements can be obtained using a 
PC and an Android device. Three LEDs (green, red, and 
infrared) were used as optical lights. The green LED uses two 
diodes and outputs the green and green2 data. It incorporates 
an Arm Cortex-M4F embedded processor and supports 
Bluetooth connectivity for data transfer. The Sampling 
frequency was set to 25 Hz. This device outputs four types of 
optical light data (green, green2, red, and infrared) in CSV 
format, three-axis accelerometer data (x, y, and z), heart rate, 
transcutaneous arterial oxygen saturation (SpO2), and 
timestamp information. The heart rate was calculated and 
provided as a value using MAXREFDES103. In this study, we 
used the green light sensor data, heart rate, and timestamps 
obtained from the CSV output. 

 
 

 
Figure 1.   Device used (MAXREFDES103). 

 

B. Measurement  

The measurements were conducted during the participants' 
daily life activities, as determined by his judgment, using a 
MAXREFDES103 device. The corresponding situations were 
simultaneously recorded. The subject was a single man in his 
60s, and the data obtained from this individual were used for 
the analysis. Information on health conditions, stress levels, 
activity details, activity duration, and activity location from 
Google Form records were used in the analysis. Health 

conditions and stress levels were recorded on a scale of 1 to 
10, with 1 representing the best state and 10 representing the 
worst perceived state. A free-text field was also included. 

C. Analysis Method 

The analysis excluded the initial two minutes of data 
obtained from the device, comprising 3000 data points, and 
the final 1000 data points. This exclusion was made to account 
for the time required for the data to stabilize and the time spent 
by the subject to operate the device. Thus, a fixed duration of 
time at the start and end of the measurement period, which 
included the time spent by the subject operating the clock, was 
excluded from the analysis. The Fourier analysis was 
performed using the fft function from the NumPy library in 
Python, specifically numpy.fft.fft. 

III. RESULTS 

A. Optical data used in the analysis 

We examined the data outputted in four CSV files based 
on three types of light: green, infrared, and red. The green 
LED utilizes two different diodes and outputs data for green 
and green 2. Although the intensity of the stronger light 
differed from one implementation to another, green light was 
used because it was often relatively strong in spectral intensity. 
Figure 2 shows a graph of the output data obtained using 
optical light. Infrared (hereafter referred to as IR) refers to the 
near-infrared light. Figure 3 shows an example graph of the 
green output data, limiting the number of data points to 500.  
 

 

Figure 2.  An example of output data by optical light type. 

 

 

Figure 3.  Green output data only 500. 
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There were periods of rapid changes in the output data 

within short durations, as well as periods with minimal 
variations. 

B. Data Interval Used for Analysis 

Measurements during daily activities are often performed 
over long periods. This results in a large amount of data. The 
obtained long-duration data were divided, and the frequencies 
that were deemed to be influenced by heart rate were 
identified through Fourier analysis and compared with the 
heart rates calculated from the device. The frequency with the 
highest spectral intensity in the range of 0.9 Hz to 2.5 Hz by 
Fourier analysis was considered to be the frequency that was 
influenced by the heart rate. The division was performed 
based on the number of data points after the start of the 
measurement, specifically at intervals of 250, 500, 1000, 2000, 
4000, 6000, 8000, 10000, 15000, 20000 and 30000 data points. 
Each interval of 250 data points corresponded to 
approximately 10 seconds. An example of this is shown in 
Figure 4. 

 

 

Figure 4.  0.9-2.5 Hz Frequency at maximum spectral and heart rate. 

 
As the number of data points increased, the difference 

between the heart rates calculated from the device and the 
actual heart rates increased. With 250 data points, the heart 
rates closely matched, and this was often the case for up to 
1000 data points. Although there were instances where the 
heart rates matched, even with a larger number of data points, 
inconsistencies became more frequent when the number of 
data points exceeded 2000. This may be attributed to factors, 
other than the heart rate mixing in at 0.9-2.5 Hz, such as 
increased measurement time, an increase in the number of 
different heart rates (i.e., more variation in heart rate values) 
and the impact of Fourier analysis, among other 
considerations. 

C. Characteristic Frequency Bands 

The number of data points was set to 1000, 2000, 4000, 
6000, 8000, 10000, 15000, and 20000 or more, each of which 
was Fourier-analyzed to examine the spectral intensity and 
frequency band characteristics. Peaks were observed near 1.5 
Hz, 0.3 Hz, 0.1 Hz, and occasionally below 0.1 Hz with 
increments of 0.01 Hz, with an occasional peak around 0.01 

Hz below 0.1 Hz. Figure 5 and 6 show sample diagrams of the 
relationship between the spectral intensity and frequency 
based on Fourier analysis for 1000 and 15,000 data points, 
respectively. Figure 7 shows an example of the low-frequency 
region down to 0.20 Hz for 15000 data points. 
 

 

Figure 5.  An example with 1000 Data Points. 

 

 

Figure 6.  An example with 15000 Data Points. 

 

 

Figure 7.  An example with the Low-Frequency Section with 15000 Data 

Points. 

D. Frequency Characteristics due to Health Condition and 

Stress 

The recorded measurements on a 10-point scale for health 
condition and stress levels were compared in terms of heart 
rate between states 8 and 9, indicating poor health and high 
stress, and between states 4 and 5, representing normal 
conditions. Because there were no recorded measurements for 
the states rated 3 or below, relatively good states 4 and 5 were 
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used for comparison. Figure 8 shows the relationships 
between perceived health conditions, stress, and heart rate. 

 

 

Figure 8.  Heart rate related to health condition and stress. 

 
There have been times when both self-perceived health 

condition and stress level were nine, and during those times, 
we noticed that the maximum, minimum, and mean heart rates 
were all high. However, a distinct correlation between the 
heart rate and these factors could not be established. Even 
when the patient’s health was relatively good, the maximum 
heart rate remained high. 

We examined self-perceived health conditions, stress, and 
the results of the Fourier analysis (see Figure 9). We extracted 
the frequencies at the peak spectral intensity within the ranges 
of 0.01-0.05 Hz, 0.05-0.15 Hz, 0.2-0.4 Hz, and 0.9-2.5 Hz. 
The numbers on the X-axis of the graph represent the stress 
levels on the right side of the graph, ranging from 1 to 10, and 
the health conditions on the left side of the graph, ranging 
from 1 to 10. No obvious features were observed over the 
entire frequency range. 
 

 

Figure 9.  Fourier analysis data related to health condition and stress. 

 
We compared the spectrum intensity and frequency plots 

from the Fourier analysis. Figures 10 and 11 represent poor 
and good health, respectively. Figures 10 and 11 show 
approximately 5000 data points. 
 

 

Figure 10.  Fourier analysis results for poor health. 

 

 

Figure 11.  Fourier analysis results for good health. 

 
Although there were no common characteristics across all 

instances, during periods of poor health, the peaks in the 
frequency range associated with heart rate and respiration 
appeared jagged and fluctuating, rather than well defined. 
However, during times of good health, there were also 
instances where sharp peaks were observed during periods. 

E. Frequency Characteristics due to Bathing 

The effects of bathing on each frequency band were also 
examined. The Fourier results before and after bathing, 
analyzed at 6000 number of data points, are shown in Figures 
12 and 13.  
 

 

Figure 12.  Fourier analysis before bathing. 
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Figure 13.  Fourier analysis after bathing. 

 
After extracting the frequencies at maximum spectrum in 

the frequency bands 0.01-0.05 Hz, 0.05-0.15 Hz, 0.2-0.4 Hz, 
and 0.9-2.5 Hz, it was observed that the frequencies after 
bathing were higher in all frequency bands. This is illustrated 
in Figure 14. Owing to the potential differences in the Fourier 
analysis results between long durations with a large number 
of data points and short durations with a small number of data 
points, we extracted and examined the frequencies at the peaks 
of the maximum spectral intensity when analyzing the data 
with 250 and 1000 data points. The results are summarized in 
Table 1. 
 

 

Figure 14.   Frequency of the strongest of the spectrum in each frequency 

band before and after bathing. 

 

TABLE I.  FREQUENCY DIFFERENCES BASED ON DATA POINTS. 

       
250  

data 

1000 

data 

6000 

data 

0.2-0.4Hz Before Bathing 0.20  0.37  0.21  

0.2-0.4Hz After Bathing 0.20  0.30  0.30  

0.9-2.5Hz Before Bathing 1.20  1.27  1.27  

0.9-2.5Hz After Bathing 1.30  1.02  1.39  

 
 

In the case of 250 data points, for the frequency range of 
0.2-0.4 Hz, the frequencies were 0.20 Hz before bathing and 
0.20 Hz after bathing, and for the frequency range of 0.9-2.5 
Hz, the frequencies were 1.20 Hz before bathing and 1.30 Hz 
after bathing. In the case of 1000 data points, for the frequency 
range of 0.2-0.4 Hz, the frequencies were 0.37 Hz before 
bathing and 0.30 Hz after bathing, and for the frequency range 
of 0.9-2.5 Hz, the frequencies were 1.27 Hz before bathing 

and 1.02 Hz after bathing. The frequency varied depending on 
the data segmentation method used. 
 

F. Frequency Characteristics due to driving a car 

The raw data obtained during car driving are shown in 
Figure 15, and the Fourier analysis is shown in Figure 16. 
During car driving, the wrist wearing the device moves 
frequently because of steering wheel manipulation. 
 

 

Figure 15.  The raw data during car driving. 

 

 

Figure 16.  Fourier analysis data during car driving. 

 
Figure 16 shows repeated significant fluctuations. The 

effect of each frequency band was also examined. No clear 
peaks were found in all frequency ranges, including 0.01-0.05 
Hz, 0.05-0.15 Hz, 0.2-0.4 Hz, and 0.9-2.5 Hz. 

IV. DISCUSSION 

In this study, it was observed that as the number of data 
points increased, there was a tendency for a larger difference 
between the calculated heart rate from the device and the 
frequency at the maximum spectral intensity. Several factors 
are considered to contribute to this phenomenon. First, as the 
measurement duration increases, the device may move, 
resulting in unstable data acquisition. Second, factors other 
than the pulse rate can interfere with the frequency range of 
0.9-2.5 Hz. Additionally, an increased variety of pulse rates 
and a higher occurrence of different pulse rate values can 
occur, leading to variations in pulse rate measurements. 
Finally, the characteristics of the Fourier analysis, such as the 
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influence of rapid changes within short time intervals on the 
entire spectrum, can also play a role. 

The spectral intensity and frequency band characteristics 
were examined using a Fourier analysis with different 
numbers of data points (1000, 2000, 4000, 6000, 8000, 10000, 
15000, and 20000 or more). When using a dataset of 1000 data 
points, discernible peaks were observed at approximately 1.5 
Hz, 0.3 Hz, and 0.1 Hz. One thousand data points were 
equivalent to 40 s. When using a larger number of data points, 
such as 15000, it was occasionally observed that peaks near 
0.01 Hz were present. It is considered that frequencies around 
1.5 Hz are influenced by the pulse rate, whereas frequencies 
around 0.3 Hz are influenced by respiration. The peak near 0.1 
Hz could potentially be associated with Myer wave-related 
sinus arrhythmia (MWSA) derived from blood pressure. The 
frequency range of 0.15-0.45 Hz represented high-frequency 
(HF) components influenced by parasympathetic nervous 
control, the range of 0.04-0.15 Hz represented low-frequency 
(LF) components influenced by sympathetic nervous control, 
and frequencies below 0.1 Hz might be related to myogenic 
and neurohumoral factors [22]–[24]. However, it should be 
noted that measurements taken during daily activities are 
influenced by various factors and do not necessarily 
accurately represent specific biological information. Hayano 
cautioned that applying the association between short-term 
heart rate variability measured under strictly controlled 
conditions and autonomic function to long-term heart rate 
variability recorded during free activity often leads to 
erroneous interpretations [25]. 

With the widespread adoption of wearable devices, 
measuring daily activities and physiological signals has 
become easier. Therefore, in addition to correlating 
physiological information, it is important to consider activities, 
perceived health conditions, or stress levels during daily life 
to enhance rehabilitation and lifestyle interventions. In post-
exercise rehabilitation, cool-down is important, and in 
cardiovascular rehabilitation, it is typically set 5 to 10 min [26]. 
The cool-down duration may increase with higher levels of 
fatigue. Cool-down is the process of returning a fatigued body 
and mind to their original state and promoting recovery. Rest 
is crucial in daily life, and there are instances in which the 
body unconsciously rests, even during activity. When 
measuring the extent of activity and the necessary cool-down, 
a segmentation method based on 10-minute intervals may be 
potentially. Ten minutes is 15000 data points, and the fact that 
a peak around 0.01 Hz was sometimes seen may be one guide 
to the division method of 15000 data according to 10-min 
intervals. 

In terms of health condition and stress, sharp peaks that 
were not observed during periods of poor health were 
observed during periods of good health. It is possible that 
during poor health conditions, the heart rate is not stable and 
the heart rate variation increases, whereas during good health 
conditions, there are times when the heart rate is stable at a 
certain level. In this study, no clear relationship was found 
between the Fourier analysis results and health conditions. 
Nonetheless, physical conditions are related to biological 
information. It is well known that there is a correlation 
between stress and biological information, as observed in 

white-coat hypertension. However, the manifestation of this 
relationship varies between individuals. As there was no 
change in biological information, does not mean there was no 
change in health conditions. The awareness of health 
conditions also varies among individuals. Factors such as 
individual differences in manifestation, the relationship 
between subjective awareness of health conditions and stress, 
a low correlation between biological information and 
manifestation, challenges in measurement methods, and 
devices not picking up information may contribute to these 
observations. 

In the investigation before and after bathing, with 6000 
data points, the frequency at the peak spectrum was higher in 
all frequency ranges of 0.01-0.05 Hz, 0.05-0.15 Hz, 0.2-0.4 
Hz, and 0.9-2.5 Hz compared to before bathing. However, 
with 1000 data points, it was lower in the frequency ranges of 
0.2-0.4 Hz and 0.9-2.5 Hz. The frequency ranges of 0.01-0.05 
Hz and 0.05-0.15 Hz were excluded from the analysis due to 
the limited number of data points. It can be inferred that the 
frequency is higher after bathing; however, depending on the 
extracted data to be analyzed, such as when movement is 
involved, the results may not match. 

No distinctive results were observed while driving. This 
may be due to external factors other than the individual, such 
as the repeated movement of the upper limbs while wearing 
the device during steering wheel operation and the vibration 
of the vehicle. Considering that driving always occurs 
outdoors, natural light may also have an impact. However, the 
fact that a device is affected also implies that it affects a person. 
Considering the external factors that can influence a person, it 
is important to conduct further investigation. Additionally, by 
dividing and analyzing the data in short intervals, such as 10 
s, instead of long durations, it may be possible to obtain 
distinctive data when the upper limbs wearing the device are 
in a stationary state. 

V. CONCLUSION AND FUTURE WORK 

Measurements during activity cannot be directly 
extrapolated from results obtained during rest. However, long-
term measurements are beneficial for rehabilitation in daily 
life. It is important to consider what kind of activity, perceived 
health condition, and stress the individual is undergoing, and 
how they respond to them. In doing so, the following points 
will be important to keep in mind. In addition to frequencies 
of 1 Hz, 0.3 Hz, and 0.1 Hz, the analysis should include low-
frequency ranges, such as 0.01 Hz. For long-term 
measurements, data points should be excluded from the 
analysis if there are significant device movements or rapid 
changes This implies that there are changes that exceeding a 
certain threshold within a specific time frame. If 
accelerometer data is also collected, any time data in which 
the accelerometer readings surpass a certain threshold will be 
excluded from the analysis. The data will be divided and 
analyzed at different time intervals: 10 s, 1 min, and 10 min. 
It is important to compare changes due to activity and rest as 
well as changes during the subject's activity, examine the 
changes in the time required for recovery, including cool-
down, and consider the influence of factors such as natural 
light, fluorescent lighting, and external stimuli, such as 
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vibrations from cars or trains should be considered. These are 
our suggestions. Human behavior is diverse and the impact of 
activities on the body is influenced by individual preferences, 
personalities, and characteristics. Therefore, it was not 
possible to categorize them mechanically. However, with the 
advent of big data utilization, it is possible to make objective 
judgments from the flexible data of activities. We intend to 
continue investigating the relationship between activities and 
health conditions to contribute to our understanding of 
lifestyle pathology and health promotion. 
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