
Development of Privacy-Preserving Online Monitoring Framework for Online

healthcare Applications

Minsoo Kim and Youna Jung

Department of Computer and Information Sciences

Virginia Military Institute

Lexington, Virginia, United States

e-mail: kimm@vmi.edu, jungy@vmi.edu

Abstract— Privacy concern is one of the biggest obstacles in

widespread adoption of online monitoring services on e-health

applications, even though online monitoring can significantly

improve the accuracy and quality of e-health applications. To

prevent privacy loss during online monitoring, we have

preliminarily proposed a privacy-preserving online monitoring

framework (PPoM) that enables healthcare providers and

patients to intuitively specify their own privacy policies and

enforces patients’ privacy policies in systematic manner during

monitoring. For practical use of the PPoM framework, in this

paper, we present the prototype development of the PPoM

framework in detail. For the better understanding, we provide

example usages from the standpoints of both healthcare

providers and patients. To prove the performance of the

developed prototype, we present evaluation results.

Keywords- Privacy protection; online monitoring; framework

I. INTRODUCTION

Monitoring is one of the essential techniques to evaluate
and enhance the performance of e-health applications by
tracking and analyzing the online activities of patients, such
as mouse clicks, frequency of use of an application, time
spent in a particular page, media viewed, page navigation
sequences, content entered into a textbox, location
information, whether a mobile device is being used, etc.

Due to the sensitivity of the information that e-health
applications often deal with, however, the protection of user
privacy is critical. Control over the sharing of this
information is of the utmost importance and urgency because
indiscriminate monitoring, if inconsiderate of user privacy,
may result in private health data being used for unwanted
purposes and/or shared with unknown people [1][2][3]. It is
therefore urgent and critical to enable the monitoring
identifiable user data while protecting user privacy.

To this end, we have preliminarily proposed the PPoM
framework [4] and the Health Insurance Portability and
Accountability Act (HIPAA) Compliant Privacy Policy
Language for e-health Applications [5]. The PPoM
framework enables healthcare providers to collect necessary
information without violation of patient’s privacy
preferences and HIPAA regulations and allows patients to
enforce their own privacy preferences on the user side. To
realize the proposed idea, we developed a prototype of the

PPoM framework. The ultimate goals of the prototype
development are as follows:

• For non-IT administrators of e-health applications

‒ provide an intuitive way to describe privacy policies

for their applications

‒ provide an easy way to monitor patients’ activities on

their applications and collect patients’ data without

serious privacy breach

• For patients

‒ provide a way to systematically verify an application’s

compliance with mutually agreed policies and HIPAA

‒ Provide a way to rigorously protect their private data

based on their preference on the user side

The rest of this paper is organized as follows. In Section

II, our preliminary work is briefly introduced. In Section III,
we present the architectural design of the PPoM framework
and describe details about prototype development with
example usages. In Section IV, we explain our test
environment and present evaluation results. Our conclusion
and future work are described in Section V.

II. PRELIMINARY WORK

To address the privacy issues on e-heath applications
conducting online monitoring, the PPoM framework has
been proposed [4]. In this section, we briefly introduce the
overall architecture and the operational flow of the PPoM
framework. As shown in Fig. 1, the PPoM framework
consists of four components: the PPoM Service, the PPoM
Browser, the PPoM Tools (PPoMT), and the HIPAA-
Compliant Privacy Policy Language [5].

• PPoM Service – It is an online monitoring service that

gathers only authorized user/usage data that users allow

to monitor. By specifying user policies, patients can

determine which data can be monitored. Then, the PPoM

Service selectively collects user/usage data based on user

policies. Unlike the existing monitoring services where

user data are collected based on an application’s policies

and the policies are enforced by the application itself, the

PPoM Service provides a way to refer user policies

during online monitoring in a systematic manner rather

than simply providing a written agreement.

64Copyright (c) IARIA, 2016. ISBN: 978-1-61208-511-1

GLOBAL HEALTH 2016 : The Fifth International Conference on Global Health Challenges

In-Page Selector

Application Converter

PPoM Tools

Privacy Policy Generator

Monitoring Code Generator

PPoM Monitoring Server

PPoM Service

PPoM

Browser

User E-Health Application

Administrator

User
Pol icy

App.
Pol icy

Figure 1. Overall Architecture of PPoM Framework.

• PPoM Browser – The privacy of patients must be

protected even if a user is exposed to untrustworthy e-

health applications that conduct indiscriminate

monitoring in violation of user policies. Towards this end,

the PPoM Browser understands a patient’s privacy

preferences, presents all user data being monitored, and

protects a patient’s privacy on the user side by blocking

outgoing messages which contain data he/she does not

want to disclose.

• PPoMT – Although patient monitoring is critical in e-

health applications, it is difficult for healthcare providers

to develop monitoring-enabled applications with

application policies due to lack of professional IT

knowledge. The PPoMT helps non-IT health

professionals by enabling them to specify privacy

policies for their applications, and to convert existing

applications into privacy-preserving applications.

• HIPAA-Compliant Privacy Policy Language – Existing

general-purpose privacy policy languages, including P3P

[6], APPEL [7], and XPref [8], focus on generic

user/usage data to be used for a variety of online

applications and do not give careful consideration to

health data. It is therefore impossible for both patients

and e-health providers to precisely specify their privacy

policies on health data in fine-grained level, and in turn,

it lowers the performance of the PPoM framework. To

address the lack of consideration of health data in

existing privacy policy languages, the PPoM framework

uses the HIPAA-compliant Privacy Policy Language

employing the HIPAA profile [5], which allow an e-

health provider to specify a privacy policy related to

HIPAA regulations and enable a patient to specify

his/her preference on health data in detail.

To use the PPoM framework, an online healthcare

provider first needs to upload the source code or enter the
URL(s) of his/her e-health application to the PPoMT and
then select objects to be monitored and the corresponding

privacy policies through the user-friendly interfaces
generated by the In-page Selector. The Privacy Policy
Generator then creates the application’s policies by
analyzing selected monitoring data and policies, while the
Application Converter produces updated source code by
inserting monitoring code generated by the Monitoring Code
Generator into the original source code. The application
policies and the updated source code must be deployed in the
application server.

A patient now can use e-health applications without
privacy concern. Whenever a patient enters a URL of e-
health applications, his/her PPoM browser compares user
policies and application policies. If they match, the
application server sends PPoM-enabled pages which
privacy-aware monitoring code is embed in. As the patient
interacts with the application, the PPoM browser displays all
user/usage data being monitored so that the patient can verify
privacy protection during online monitoring. The monitoring
code inserted in webpages collects only authorized user data
based on user policies. The PPoM browser will block
outgoing messages that violate the patient’s policies.

III. DEVELOPMENT OF THE PPOM FRAMEWORK

To realize the proposed idea for privacy protection
during online Monitoring, we developed a prototype of the
PPoM framework. In this section, we describe details of
implementation of each component. Note that the prototype
of the PPoM framework is developed using mainly PHP and
JavaScript. PHP is used for developing the backend of the
PPoM Browser and the PPoM Tools while JavaScript
including jQuery functions, HTML5, and CSS3 are mainly
used for developing the user interfaces (UIs) on the client
side. We use MySQL as a database of the PPoM service.

A. PPoM Service

The PPoM Service allows secure online monitoring on e-
health applications. It provides privacy-aware monitoring
APIs to online applications so that the administrators can
embed the APIs in the webpages of their applications. Note
that the privacy-aware APIs enables them to specify the type
of data to be monitored, including types of health-related and

65Copyright (c) IARIA, 2016. ISBN: 978-1-61208-511-1

GLOBAL HEALTH 2016 : The Fifth International Conference on Global Health Challenges

HIPAA-related data that are defined in the HIPAA Profile
[5]. The APIs embedded in an e-health application collect
data based on a patient’s user policies, not an application’s
policies. It means that the privacy-aware APIs do not collect
data if a patient prefers not to disclose. By doing so, the
PPoM Service provides a way to protect a patient’s privacy
from indiscriminate monitoring.

Monitoring data collected contains general usage data
such as device category, operating systems, event, and time
and also user data including health-related data. All collected
data are encoded in JavaScript Object Notation (JSON), a
lightweight data interchange format, and sent by a patient’s
web browser to the PPoM Service server. The structure of a
JSON monitoring data is shown in Fig. 2.

[ELEMENT_ID|ELEMENT_PATH] [EVENT_TYPE] [TIME]
[DATA_ TYPE] [DATA] [DEVICE_INFORMATION]

• ELEMENT ID: It is a unique ID of a HTML element.
• ELEMENT_PATH: In case of dynamic webpages, a path

from the root element is used as an ID if an element does not
have ID. The path is unique for each element.

• EVENT_TYPE: It denotes that a type of an event occurred.
The set of event types are as follows: {entering a page,
leaving a page, clicking an element, filling an element}.

• TIME: It denotes the occurring time of an event
• DATA_TYPE: It is a type of monitoring data and must be

specified based on the data types in the P3P data schema and
the HIPAA Profile [5].

• DATA: It is the value of the monitoring data.

• DEVICE_INFORMATION: It includes a device’s category,
operating system, language, and browser information.

Figure 2. The structure of a JSON object for monitoring data

Let’s assume that there is the Blood Type textbox, which
its HTML code is shown in Fig. 3 (a). A patient enters “A” in
the Blood Type textbox. The monitoring data on that textbox
is then created as shown in Fig. 3 (b). At this time, the values
of EVENT, TIME, and DEVICE_INFORMATION are
automatically collected by JavaScript Built-in functions.
Note that blood type is one of the health data type defined in
the Health data schema of the HIPAA Profile. Before
sending the monitoring data to the PPoM service server, a
PPoM browser encodes the raw monitoring data as a JSON
object as shown in Fig. 3 (c).

Fig. 4 illustrates the pseudo codes that enable the PPoM
monitoring service on the server side (the PPoM Service
server) and the application side (an e-health application). The
monitor JavaScript function described in Fig. 4 (a) must be

embedded in webpages of a PPoM-enabled e-health
application prior to monitoring. When a target event is
occurred, the monitor function captures and creates

monitored data as a JSON object. Towards this goal, the
function gathers necessary information by using JavaScript
built-in functions and properties. Then, it invokes the
jQuery.ajax function to communicate with the server-side

scripts (the receiveData function shown in Fig. 4 (b)). The

jQuery.ajax function converts a JSON object into a string

and sends the string to the PPoM Service server through the
HTTP POST method. When receiving a JSON string, the

receiveData PHP module in the PPoM Service server

converts the string into a JSON object and then stores
monitoring data in the object in its database.

<input id=“bloodtype” type=“text” data-type
=“health.bloodtype”/>

a) HTML Representation

ELEMENTID: bloodtype,
EVENT_TYPE: TEXTINPUT,
TIME: 2016-07-15T12:45:07,
DATA_TYPE: health.bloodtype,
DATA: Type A,
DEVICE_INFORMATION:DESKTOP(DEVICE CATEGORY),
WINDOWS(OS), ENGLISH(LANGUAGE),FIREFOX(BROWSER)

b) Raw Monitoring Data

{
“ELEMENT_ID”: “bloodtype”,
“EVENT_TYPE”: “TEXTINPUT”,
“TIME”: “2016-07-15T12:45:07”
“DATA_TYPE”: “health.bloodtype”,
“DATA”: “Type A”,
“DEVEICE_INFORMATION”:
 { “DEVICE_CATEGORY”: “DESKTOP”,
 “OS”: “WINDOWS”,
 “LANGUAGE”: “ENGLISH”,
 “BROWSER”: “FIREFOX” }
}

c) JSON Object of the Raw Monitoring Data

Figure 3. Examples of monitoring data.

function monitor(object, event) {
var monitoredData <= ID, EVENT_TYPE,

TIME, DATA_TYPE, DATA, DEVICE_INFORMATION
from the parameters object and event;

jQuery.ajax({
type: "post",
url: "/PPoM/monitoring.php",
data: JSON.stringify(monitoredData),
contentType:"application/json; ",
dataType: "json" });

}
a) JavaScript Function on the application side

function receiveData($monitoredData) {
$object = json_decode($monitoredData);
$link <= connection to database;
$sql <= create INSERT query to store the

 monitored information ($object)
mysqli_query($link, $sql);

}
b) PHP function in the PPoM service

Figure 4. Pseudo codes of the PPoM monitoring service on the application

side (an e-health application) and the server side (the PPoM service).

B. PPoM Browser

The PPoM Browser provides three ways to protect user
privacy. First, it enables a non-IT patient to intuitively
specify his/her privacy preferences. Through its user-friendly
interfaces shown in Fig. 5, a patient can define three different
levels of policies, the General Policies (GP), the Application-
specific Policies (AP), and the Page-specific Policies (PP).
First, the General Policies describe a patient’s general

66Copyright (c) IARIA, 2016. ISBN: 978-1-61208-511-1

GLOBAL HEALTH 2016 : The Fifth International Conference on Global Health Challenges

preference regarding data sharing. An Application-specific
Policy is applied to an online application and it affects across
webpages in an application while a Page-specific Policy is
applied to a particular webpage of an application. To define a
GP, a patient needs to specify data types that a patient allows
or disallows to be monitored across different applications. To
specify a AP or a PP, a patient needs to enter the url of an
application or a webpage. If two or more policies conflict,
then the most specific policy takes precedence. Note that the
prototype of the PPoM Browser we developed currently
supports the Application-specific policies and the Page-
specific polices.

Figure 5. A screenshot of the user interface of the PPoM browser that

displays all data being monitored when a user turns on the privacy-

preserving mode.

 Second, it displays all data being monitored when a
patient uses an e-health application. Although a patient
agrees to an application’s policies, it is critical to verify the
application’s compliance with the mutually agreed policies.
By turning on the privacy-preserving mode of the PPoM
browser, a patient can easily figure out that what usage/user
data are being monitored and protect data from unwanted
monitoring without any IT knowledge and skills. An
example use of the developed PPoM browser is shown in Fig.
5. The browser displays which data is being monitored and
who is the recipient of the data by using different-colored
check marks. The red check marks mean that the data is
protected and there is no recipient. The orange check marks
mean that only the first party (for example, an e-health
application that a patient is using) is receiving the data. The
green check marks mean that third parties (for examples,
other healthcare providers referred by the first party,
advertisement companies, and payment companies) are also
receiving monitoring data. A summary of monitoring data,
including not only general usage data (such as HTTP data,
Clientevents, and Cookies types of Dynamic data schema in
P3P) and user data (name, bday, and location of User data
schema in P3P) but also health-related data (blood type,
disabilities, and disease history of Health data schema in the
HIPAA profile) on a webpage is displayed in the status bar.

Third, it enables a patient to stop monitoring on a specific
page or web object if he/she finds out fraud activities that are
against the mutually agreed policies. Towards this end, the
PPoM Browser first renders all clickable web objects -- such
as buttons and objects handled by JavaScript click-event
handler-- and input HTML elements, such as textbox and
checkbox. It then creates checkboxes for each of them. By
changing the colors of checkmarks, a patient can easily
control data sharing. At this time, a patient has multiple
options for selecting objects: 1) select all clickable and input
elements, 2) select all clickable elements, 3) select all input
elements, 4) select an individual (clickable or input) element,
or 5) select None.

To block monitoring, a PPoM browser needs to generate
and run JavaScript codes based on a patient’s selection in
real-time. Before explaining the blocking process further,
let’s assume that the main functionalities of an e-health
application does not depend on JavaScript. To block online
monitoring on a particular web element, a PPoM browser
disables JavaScript event handlers that are associated with
the selected web elements, and in turn, a monitoring
JavaScript using those handlers will be disabled. For
example, if a patient marks the Blood Type textbox in red
color to block monitoring on that textbox, then the following
JavaScript code is generated to disable the PPoM monitoring
JavaScript on the Blood Type textbox (The ID of the textbox
element is “BLOODTYPETXT”): $(“body”).off(“keyup

keypress change click blur”, “#BLOODTYPETXT”). The
generated code then removes five event handlers from
‘BLOODTYPETXT’ element by invoking jQuery off

function. When the blocking code runs, none of monitoring
services obtain data from that textbox.

C. PPoM Tools (PPoMT)

The PPoMT is a toolkit on the server side, which enables
non-IT healthcare providers to generate application policies
and monitoring codes for their own e-health applications
through intuitive user interfaces and also easily upgrade their
existing applications into a PPoM-enabled e-health
application. The detailed explanation for each component in
the PPoMT is below.

1) In-Page Selector

The goal of the In-Page Selector is to generate modified

webpages that shows selectable HTML elements on

webpages so that an administrator of an e-health application

can select usage/user data to be monitored and policies

corresponding to each data, each page, or an entire

application. When an administrator selects a web element or

a group of elements, another window is popped up to

specify a privacy policy about the selected element(s). As

shown in the Fig. 6, a non-IT healthcare provider can create

a P3P-based application policy which deals with health data

and HIPAA regulations. Towards this end, a set of data and

policies that are selected by an administrator is delivered to

the Privacy Policy Generator and the Monitoring Code

Generator.

67Copyright (c) IARIA, 2016. ISBN: 978-1-61208-511-1

GLOBAL HEALTH 2016 : The Fifth International Conference on Global Health Challenges

Figure 6. An example of the screenshot of the PPoMT.

2) Privacy Policy Generator
The Privacy Policy Generator generates an application’s

policies in the HIPAA-Compliant Privacy Policy Language
[5] based on an administrator’s selection. Not only an
administrator of an e-health application but also a patient can
use the Privacy Policy Generator to specify a patient’s user
policy for a specific e-health application. To do so, a patient
needs to enter the url of an e-health application and select
User Policy Generation rather than Application Policy
Generation. If the User Policy Generation is selected, the
Policy Generator creates APPEL policies employing the
HIPAA profile.

3) Monitoring Code Generator
When receiving a set of data to be monitored and

relevant policies, the Monitoring Code Generator produces
privacy-aware monitoring codes for an e-health application.
Toward this goal, it first checks if each selected element has
an ID. If an element doesn’t have an ID, it assigns a unique
element ID and generates JavaScript code using the assigned
ID. Depending on the type of an application, a static
application or a dynamic application, a generated element ID
will be different. If an e-health application is a static
application that the same HTML code stored in an
application’s server is delivered to all patients’ browsers, the
Monitoring Code Generator assigns an absolute ID to an
element. Let’s assume that a webpage has several textboxes

and its HTML code is shown in Fig. 7 (a). In this example,
the Current Weight textbox has its ID ("WEIGHT") but

other three textboxes -- the feet, the inches, and the Blood
Type textboxes-- do not have their IDs.

If the webpage is a static page, then the Monitoring Code
Generator automatically creates IDs for three textboxes:
"PPOM-ELEMENT-0001" and "PPOM-ELEMENT-0002" for the feet
and inches of the Height textbox and "PPOM-ELEMENT-0003"
for the Blood Type textbox. The generated monitoring code
for the static webpage is shown in Fig. 7 (b). On the other
hand, if an application is a dynamic application that the
HTML codes are dynamically generated by an application
server on demand, a path of an element from a root of a
Document Object Model (DOM) object is used as a unique
ID because an element’s path is unchangeable. The
monitoring code for a dynamic webpage is shown in Fig. 7
(c). As you can see, except the pre-defined ID of the Current
Weight textbox, for other three textboxes which do not have
IDs, their paths are used to identify each textbox. For
examples, "input[type=text]:nth-of-type(2)" and "input[type=
text]:nth-of-type(3)" for the feet and inches of the Height
textbox and "input[type='text']:nth-of-type(4)" for the Blood
Type textbox. Note that the PPoMT uses the PPoM Service
so privacy-aware monitoring script code is generated as
default, but it is possible to use different monitoring services
such as Google Analytics.

68Copyright (c) IARIA, 2016. ISBN: 978-1-61208-511-1

GLOBAL HEALTH 2016 : The Fifth International Conference on Global Health Challenges

<body>
Current Weight:<input id="WEIGHT" type="text">lbs.
Height: <input type="text">feet
 <input type="text">inches
Blood Type: <input type="text">
<input id="BUTTON1" type="submit" value="Submit">
</body>

a) A partial HTML code of an e-health application shown in Fig. 5

<body>
Current Weight: <input id="WEIGHT" type="text">
 lbs.
Height:<input id="PPOM-ELEMENT-0001" type="text">
 feet
 <input id="PPOM-ELEMENT-0002" type="text">
 inches
Blood Type:
 <input id="PPOM-ELEMENT-0003" type="text">
<input id="button1" type="submit" value="Submit">
</body>

<script>

$("#WEIGHT").change(function() {
monitor($(this), "change");

});
$("#PPOM-ELEMENT-0001").change(function() {

monitor($(this), "change");
});
$("#PPOM-ELEMENT-0002").change(function() {

monitor($(this), "change");
});
$("#PPOM-ELEMENT-0003").change(function() {

monitor($(this), "change");
});
$("#BUTTON1").click(function() {

monitor($(this), "click");
});

</script>
b) HTML code converted by the PPoMT in case of a static application

<script>
$("#WEIGHT").change(function(){

monitor($(this), "change");});
$("input[type='text']:nth-of-
type(2)").change(function()

{ monitor($(this), "change");});
$("input[type='text']:nth-of-
type(3)").change(function()
 { monitor($(this), "change");});
$("input[type='text']:nth-of-
type(4)").change(function()
 { monitor($(this), "change"); });
$("#BUTTON1").click(function(){

monitor($(this), "click"); });
</script>
c) Monitoring JavaScript code generated in case of a dynamic application

Figure 7. Examples of monitoring code generated by the PPoMT.

4) Application Converter
This component produces a PPoM-enabled application

by inserting monitoring codes generated by the Monitoring
Code Generator into DOM objects for each webpage in an
application. Depending on a type of an application, the
conversion process would be different. In case of a static

application, the Application Converter can systematically
generate the updated HTML code. If an application is
however a dynamic application, the PPoMT provides
monitoring script code only and then an administrator should
manually insert the generated monitoring code into the
server-side program that dynamically creates webpages.

IV. EVALUATION RESULTS

 To test the usability of the proposed PPoM framework,
we first develop two types of sample e-health applications
that each has ten webpages containing different numbers of
monitoring elements without IDs and a prototype of the
PPoM framework, including the PPoM service, the PPoM
browser, and the PPoMT. Then, we test the performance of
the PPoMT according to the evaluation plans described in [4].

697

697.5

698

698.5

699

699.5

700

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

KB

Number of Elements

HTML Code Size

0

10

20

30

40

50

60

70

80

90

100

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

KB

Number of Elements

Monitoring Code Size

(a) (b)

0

100

200

300

400

500

600

700

800

900

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

KB

Number of Elements

Total Page Size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Sec.

Number of Elements

Page Loading Time

(c) (d)

Figure 8. Evaluation Results.

As shown in Fig. 8, the size of HTML code that
generated by the Application Converter for dynamic
webpages is zero since the PPoMT will not generate HTML
code for a dynamic application while the size of HTML code
for static webpages increases linearly as the number of the
monitoring elements increases.

In case of static webpages, the size of the generated
monitoring code remains steady once it reaches a certain size
even though the number of monitoring elements increases
linearly. However, the size of monitoring code for dynamic

: static application

: dynamic application

69Copyright (c) IARIA, 2016. ISBN: 978-1-61208-511-1

GLOBAL HEALTH 2016 : The Fifth International Conference on Global Health Challenges

webpages linearly increases according to increase of the
number of monitoring elements (See Fig. 8 (b)). This is
because specifying paths from root is costly, especially for
complex web pages.

As you can see in Fig. 8 (c) and (d), in case of static
webpages, the number of monitoring elements does not
affect the size of converted webpages that produced by the
PPoMT and also the page loading time. However, in case of
dynamic webpages, the increase in the number of monitoring
elements affects the page loading time. If a dynamic page is
complex, the loading delay becomes a big obstacle. It is one
of our challenges to find out a way to minimize the loading
delay caused on dynamic webpages.

TABLE I. FAILURE RATIO IN THE PPOM SERVICE

 Monitored Not Monitored

Allowed (a) 4,897 (b) 345

Not Allowed (c) 0 (d) 3,477

TABLE II. SUCCESSFUL BLOCKADE RATIO IN THE PPOM BROWSER

 Sent Blocked

Allowed (e) 5,242 (f) 0

Not Allowed (g) 0 (h) 3,477

To evaluate the privacy protection of the PPoM Browser

and the PPoM Service, we produce five hundreds of different
sets of patients’ privacy preferences (i.e., allow or disallow
monitoring on particular web elements) and activities on a
sample static application (i.e., navigating webpages, clicking
buttons, or entering data in input elements). Using the sets of
user policies and activities, we test the PPoM browser and
the PPoM Service. To evaluate the privacy protection on the
prototype of the PPoM framework, we measure two factors:
the failure ratio (c/(a+c) in Table I) and the successful
blockade ratio (h/(g+h) in Table II).

The failure ratio evaluates privacy protection on the
server side (the PPoM Service server) and the successful
blockade ratio evaluates protection on the client side (the
PPoM Browser). As shown in Tables I and II, none of
user/usage data that patients do not allow to be monitored
was captured by the PPoM Service and none of the
unauthorized data was sent from the PPoM Browser.
However, as shown in Table II, we found some data loss in
the PPoM Service server. The PPoM Browser sent 5,242
data (a+b), but the PPoM Server received only 4,897 data
(a). It may be caused by heavy load of transaction or
overheads for checking application and user policies. To
figure out the source of the resulting data loss, we need to
investigate more in the future.

V. CONCLUSION

Privacy protection is critical for widespread use of e-
health applications. Without proper methods for the privacy
preservation, people may keep hesitating to use e-health
applications, even though e-health applications help them
access healthcare services in easy and convenient way at the
reduced cost. To address the privacy issue, we develop the
prototype of the PPoM framework that protects user privacy
in both the application side and the user side. To prove the
performance and the usability of the developed prototype, we
present the evaluation results. Towards our ultimate goal,
however, we need to complete the following tasks in the
future:

• Research a way to reduce data loss ratio on the PPoM

service.

• Investigate a method to reduce the size of the

monitoring codes generated by the PPoMT, especially

for dynamic e-health applications.

• Field tests of the prototype with actual e-health

applications.

REFERENCES

[1] J. R. Mayer and J. C. Mitchell, “Third-Party Web Tracking: Policy
and Technology,” Proc. IEEE Symp. on Security and Privacy (SP
'12), IEEE Press, pp. 413-427, 2012.

[2] M. Bilenko and M. Richardson, “Predictive client-side profiles for
personalized advertising,” Proc. ACM SIGKDD conf. on Knowledge
discovery and data mining (KDD '11), ACM New York, pp. 413-421,
2011.

[3] A. McDonald and L. F. Cranor, “Beliefs and Behaviors: Internet
Users' Understanding of Behavioral Advertising,” TPRC 2010 Social
Science Research Network (SSRN), August 16, pp. 1-31, 2010,
Available from http://ssrn.com/abstract=1989092 [retrieved:
September, 2016].

[4] Y. Jung, “Toward Usable and Trustworthy Online Monitoring on e-
health Applications,” International Journal On Advances in Life
Sciences, vol. 8, numbers 1 and 2, pp. 122-132, June, 2016

[5] Y. Jung and M. Kim, “HIPAA-Compliant Privacy Policy Language
for e-health Applications”, Proc. the 6th International Conference on
Current and Future Trends of Information and Communication
Technologies in Healthcare, September, London, United Kingdom, in
press.

[6] P3P 1.1. http://www.w3.org/TR/P3P11/ [retrieved: September, 2016].

[7] A P3P Preference Exchange Language (APPEL) version 1.0.
https://www.w3.org/TR/P3P-preferences/ [retrieved: September,
2016].

[8] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “An XPath-based
preference language for P3P,” Proc. the 12th international conference
on World Wide Web (WWW '03), ACM, New York, pp. 629-639,
2003.

70Copyright (c) IARIA, 2016. ISBN: 978-1-61208-511-1

GLOBAL HEALTH 2016 : The Fifth International Conference on Global Health Challenges

