
DPS: A Novel Approach for Efficient Direction-Based Neighborhood Queries

Pedro Henrique Bergamo Bertolli and Marcela Xavier Ribeiro
Department of Computer Science

Universidade Federal de São Carlos (UFSCar)
e-mail: pbertolli@estudante.ufscar.br, marcelaxr@ufscar.br

Abstract—Current spatial search methods predominantly focus
on distance-based metrics, while direction-based queries have
emerged to address applications requiring diverse directional
coverage. Existing direction-based approaches like the Direction-
Based Surrounder (DBS) and Direction-Aware Nearest Neighbor
(DNN) employ iterative algorithms that require examining multiple
objects and their spatial relationships, leading to high computa-
tional costs particularly in dense datasets. These methods also
suffer from either overly restricted results (DBS) or directionally
clustered outcomes (DNN) due to their selection criteria. This
paper introduces Direction Proximity Search (DPS), a novel
approach that ensures directional diversity—defined as having
at most one object per angular interval—while significantly
reducing computational overhead. By employing geometric space
partitioning to divide the search space into equal angular regions
and a refinement phase that selects the nearest object per
directional interval, DPS eliminates the need for extensive object-
to-object comparisons. Experiments on both synthetic and real
datasets show that DPS achieves processing time reductions of
up to 99.9% specifically for high-density distributions (Bit and
Sierpinski) with large datasets, while consistently maintaining
the desired directional diversity property across all tested
configurations.

Keywords-Spatial databases; surrounding queries; efficient pro-
cessing; directional diversity.

I. INTRODUCTION

Spatial queries with directional diversity are essential for
critical applications where distance alone cannot guarantee
accessibility. In emergency response scenarios—such as fires,
floods, or traffic incidents—the nearest facilities may be un-
reachable, making it crucial to identify alternatives distributed
across different directions. The widespread adoption of mobile
devices has made spatial data processing essential in various
domains, including location-based recommendations, route
planning, environmental monitoring, and urban mapping. These
applications rely on spatial queries to retrieve and analyze
geographic information, helping users make informed decisions
based on their spatial context.

Spatial query processing typically relies on Geographic In-
formation Systems (GIS) and spatial databases. These systems
manage geometric objects (points, lines, and polygons) that
represent entities in the real world. For example, a restaurant
can be represented as either a simple point or, more precisely, as
a polygon depicting its physical boundaries. The query point in
these systems could represent various entities: a mobile user’s
location, a point of interest, or a vehicle’s projected position.

Although distance-based queries are prevalent, incorporating
directional diversity has become increasingly crucial. This is
particularly evident in emergency scenarios, where the nearest
service point may not be the most accessible. During a fire,

for example, the closest hospitals or fire stations might be
inaccessible due to smoke or the spread of the fire. Similarly,
during floods, nearby shelters could be in areas prone to
submersion or landslides. In urban settings, traffic congestion,
road closures, or construction work can render the closest
facilities temporarily unreachable, highlighting the need for
directionally diverse alternatives.

To address the limitations of purely distance-based ap-
proaches, nearest surrounder queries [1] were introduced as
queries that consider both distance and direction of objects in re-
lation to a query point. Subsequently, the DBS [2] and DNN [3]
queries emerged as variations of this approach. These queries
employ a fundamental concept called "dominance relation",
which uses direction and distance properties to determine which
objects should be included in the result set. While DBS applies
dominance relations between pairs of objects, resulting in more
restricted results, DNN considers object triplets, potentially
yielding more diversity, but sometimes spatially concentrated
outcomes.

In critical applications, particularly emergency planning and
response, the speed of information delivery is crucial. Decision-
makers need instant access to results to plan their actions and
execute the necessary procedures. However, current approaches
face two main limitations: computational inefficiency due to
iterative processing and suboptimal result distribution that is
either too restrictive or lacks sufficient directional spread.

This paper makes three key contributions: (1) a novel geomet-
ric partitioning strategy that efficiently handles direction-based
queries; (2) substantial computational efficiency improvements
over existing methods; and (3) comprehensive experimental
evaluation that demonstrates scalability across diverse datasets.
The remainder of the paper is organized as follows: Section
II reviews related work in spatial queries and direction-based
methods. Section III introduces our novel Direction Proximity
Search (DPS) approach, detailing its partitioning, processing,
and refinement phases. Section IV describes our experimental
evaluation methodology and datasets. Section V discusses the
performance results and comparative analysis. Finally, Section
VI concludes the paper and outlines future research directions.

II. RELATED WORK

This section presents a systematic review of the literature
on direction-based neighborhood queries and optimization
techniques. The research was carried out in the major digital
libraries (IEEE, Science Direct, Springer, ACM DL, and
Google Scholar), resulting in 11 relevant studies after applying
selection criteria. The analysis revealed six main categories of

62Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

https://orcid.org/0009-0007-9253-0189
https://orcid.org/0000-0002-2323-5326

approaches: spatial indexing (C1), formal query definitions
(C2), dominance-based algorithms (C3), computational ge-
ometry techniques (C4), visibility-based direction methods
(C5), and performance testing (C6). Most works span multiple
categories, demonstrating the interconnected nature of these
approaches. Regarding spatial indexing (C1), Lee et al. [1]
introduced direction-based neighborhood queries with the
sweep and ripple algorithms using R-tree structures. Zhang
et al. [4] and Chung et al. [5] expanded this approach, while
Nutanong et al. [6] developed R*-Tree pruning techniques
to reduce disk access. For formal query definitions (C2),
Lee et al.’s work [1] established the theoretical foundations
that supported subsequent studies, notably the DBS and
DNN queries presented by Guo [2][3]. In dominance-based
algorithms (C3), the relationship between objects determines
the result set. Table I summarizes the key characteristics and
computational limitations of the main direction-based query
methods: DBS and DNN.

TABLE I
CHARACTERISTICS OF EXISTING DIRECTION-BASED QUERY

METHODS

Method Time Complexity Dominance Result
(worst case) Relation Distribution

DBS O(n2) Pairwise Sparse
(2θ interval) (uniform coverage)

DNN O(n2) Triplet-based Dense
(relaxed criteria) (potential clustering)

As shown in Table I, the DBS algorithm [2] requires
O(n2) comparisons in the worst case to examine all object
pairs. Its restrictive dominance relationship, where objects
dominate within a 2θ angular interval, can lead to overly
limited result sets, especially with larger θ values where a single
object can eliminate many candidates within its dominance
range. The DNN algorithm [3] provides better directional
diversity through less restrictive dominance rules but still
has O(n2) worst-case complexity, making it computationally
expensive for large datasets. Additionally, its relaxed dominance
criteria can result in directionally close objects being returned,
potentially compromising the spatial distribution consistency
despite producing larger result sets.

For computational geometry techniques (C4) and visibility-
based methods (C5), Lee et al. [1], Nutanong et al. [6], and
Chung et al. [5] grounded the direction aspect as a visibility
field. Nutanong et al. introduced the concept of minimum
visible distance (MinViDist), while Chung et al. relied on angle
and direction calculations. Regarding performance testing (C6),
Carniel [7], [8] focused on general spatial query definitions,
discussing future optimization challenges. A significant gap
exists in the literature: the absence of comparative performance
analyses between different algorithms, and the fundamental
trade-off between computational efficiency and directional
diversity in existing methods.

III. DIRECTION PROXIMITY SEARCH

This section presents the DPS method and its implementa-
tion. We detail its architecture and operation, introducing a

novel direction-based neighborhood query that addresses key
limitations in existing approaches.

We begin by formally defining the core concepts of DPS.
The parameter θ determines the directional diversity of the
result set - it ensures that returned objects are separated by
at least θ degrees. For any two objects oi, oj ∈ D relative to
query point q, their angular separation is the angle between
vectors −→qoi and −→qoj , denoted as ̸ (−→qoi,−→qoj).

In DPS, an object o dominates an angular region R of size
θ if: (i) o is the nearest object to q within R, and (ii) no closer
object exists within θ/2 degrees of o. This ensures directional
diversity by allowing at most one object per θ interval, resulting
in a maximum of ⌈360/θ⌉ objects in the result set.

DPS employs geometric partitioning to divide the 360° space
around q into n = 360/(θ/2) equal partitions. Each partition
spans θ/2 degrees, allowing two adjacent partitions to form
a complete θ interval. This approach eliminates the O(n2)
pairwise comparisons required by DBS and DNN. For a fixed
θ, DPS achieves O(n) time complexity, as the number of
partitions k = 360/(θ/2) is constant.

A. Partitioning

The partitioning algorithm systematically divides the spatial
domain around the query point into equal geometric regions.
This geometric partitioning constitutes the initial phase of the
DPS query, formally defined as DPS = (t, q, θ, distMax), where
t denotes the dataset, q represents the query point, θ specifies
the angular constraint, and distMax determines the maximum
search radius.

The number of partitions is defined by φn = 360◦

θ/2 . Each
partition has an angular interval of θ/2, allowing two adjacent
partitions to form a complete θ interval. The first partition φ1

is constructed using Algorithm 1.

Algorithm 1 First Partition Construction
Require: Query point q, dataset D, angle θ, distance distMax
Ensure: First partition φ1

1: NN ← FindNearestNeighbor(q, D)
2: NN ′ ← Project(NN , distMax)
3: v⃗ ←

−−−→
qNN ′

4: ls ← Rotate(v⃗, θ/2)
5: φ1 ← CreatePolygon(q, NN ′, ls)
6: return φ1

To illustrate this process, we use a sample dataset with
13 points and parameters DPS = (sample, POINT(0 0), 90◦,
200000). With θ = 90◦, we obtain φn = 8 partitions. The
nearest neighbor to query point POINT(0,0) is point a.

Following Algorithm 1, we project point a to create NN’
at distance 200000, then rotate the vector

−−−→
qNN ′ by θ/2 to

obtain the upper boundary ls. The resulting polygon forms the
first partition φ1, as illustrated in Figure 1.

Subsequent partitions are created in clockwise direction using
Algorithm 2, which systematically generates all φn partitions.

63Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 1. Construction of φ1.

Algorithm 2 Complete Partitioning
Require: First partition φ1, angle θ, number of partitions φn

Ensure: Set of partitions Φ
1: Φ← {φ1}
2: for i = 2 to φn do
3: lprev ← GetUpperBoundary(φi−1)
4: lnew ← Rotate(lprev , −θ/2)
5: φi ← CreatePartition(lprev , lnew)
6: Φ← Φ ∪ {φi}
7: end for
8: return Φ

B. Processing

This step is responsible for finding the nearest object to
q within each partition. The process requires identifying all
objects that intersect with each partition and determining the
one closest to q. The partitioning strategy enables an optimized
processing approach by confining the search to individual
partitions, where only a single nearest object needs to be
identified. This significantly reduces computational overhead
compared to traditional methods that require multiple object
comparisons to establish dominance relationships.

The processing is performed sequentially φn-1 times, once
for each partition except the first one, which already has
its Nearest Neighbor (NN) calculated during the partitioning
step. Following the geometric partitioning in our example, this
step identifies the nearest objects to the query point qp for
each partition. These objects, highlighted in red in Figure 2,
are accompanied by a table that presents their distances in
ascending order and their directions relative to qp.

The key advantage of this approach is that it reduces
processing to φn-1 sequential operations, whereas traditional
methods require multiple comparisons among objects until
either meeting stopping conditions or, in the worst case,
examining the entire dataset.

Figure 2. Objects identified as NN for each partition and their respective
directions and distances relative to qp.

C. Refinement

After identifying all NN of q in their respective partitions,
the refinement step ensures directional diversity. Objects are
considered directionally close if their angular separation is
less than θ/2. The refinement merges adjacent partitions into
composite partitions of size θ, selecting only the nearest object
from each composite partition.

To formalize the refinement process, we introduce the
following definitions:

Definition 1 (Ordered Processing List): The processing
result is a list of tuples containing partition identifier, NN object,
and distance from q to NN, Listp = (φiid , NNi, dist(q,NNi)),
... (φnid , NNn, dist(q,NNn)), sorted by ascending distance.

Definition 2 (Adjacent Partition): Adjacent partitions
comprise predecessor and successor partitions in an ordered
partition list.

Definition 3 (Ignored Partition): A partition is marked as
ignored if its NN object is at an angular distance less than θ/2
from the NN of a dominant partition.

The refinement algorithm (Algorithm 3) systematically
processes the ordered list to determine the final result set.

Algorithm 3 DPS Refinement
Require: Ordered processing list Listp
Ensure: Result set R

1: ignored← ∅
2: R← ∅
3: for each (φi, NNi, disti) in Listp do
4: if φi /∈ ignored then
5: R← R ∪ {NNi}
6: adjacent← GetAdjacentPartitions(φi)
7: ignored← ignored ∪ adjacent
8: end if
9: end for

10: return R

In our example, Algorithm 3 starts with partition φ1

containing object a. Since a dominates a complete θ interval, its
successor partition is marked as ignored, as shown in Figure 3.

64Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 3. Ignored partition in the first iteration of the refinement step.

In the next iteration, the algorithm examines the next NN
object that is not in an ignored partition. In this case, it is the
point k in φ6, which then marks its predecessor and successor
partitions as ignored, as illustrated in Figure 4.

Figure 4. Adjacent partitions of φ6 marked as ignored.

Subsequently, the object m in φ8 does not mark any partitions
as ignored, since its predecessor φ7 was already ignored by
φ6. Being the last partition, φ8 has no successor according to
the definition of the adjacent partition. Finally, object j in φ4

is verified and marks φ3 as an ignored partition, as shown in
Figure 5.

Definition 4 (Dominant Partition): Partitions containing
the nearest object to q in an ordered processing list, not marked
as ignored. These partitions contain objects for the DPS query
result set.

Definition 5 (Composite Partition): A composite partition
(PC) joins two consecutive partitions where k ranges from 1
to n

2 :

PCk = (φ2k−1, φ2k) (1)

Figure 5. Final iteration of the refinement step.

From the upper limit (ls) of partition φ1, we define the
angular intervals (λ) for the composite partitions PCk. For
PC1, the upper limit is as follows:

lsPC1
=
−−−→
qNN′ +

θ

2
(2)

The lower limit is calculated by subtracting θ from the upper
limit:

liPC1
=
−→
qls− θ (3)

For subsequent composite partitions PCk (k > 1), the angular
interval is calculated from the lower limit of the previous
partition:

λPCk
=
−−−−−→
qliPCk−1

− θ (4)

The final result set contains all NN objects from non-ignored
partitions. Each object dominates the θ interval defined by a
composite partition. Figure 6 shows the result set and identifies
the composite partitions (PC), formed by consecutive partitions:
PC1 = φ1 and φ2, PC2 = φ3 and φ4, PC3 = φ5 and φ6, PC4

= φ7 and φ8.
The refinement algorithm transforms the processing results

into an ordered list, determines the dominant partitions, and
combines them into composite partitions, ensuring that each
object in PCk is dominant over a complete interval θ.

IV. EXPERIMENTAL EVALUATION

A. Datasets

To vary the distribution and complexity of spatial objects,
synthetic and real datasets were constructed for the experiments.

The Spider spatial data generator [9] was used to generate
synthetic data within the [0,1] interval, containing different
volumes and distributions. The generated volumes were defined
into three distinct categories: small, medium, and large, con-
taining 20,000, 200,000, and 2,000,000 records, respectively.

The data distribution was generated considering the 5 types
of distributions available for point objects in the generator:
uniform, diagonal, Gaussian, Sierpinski, and bit. A dataset was

65Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 6. DPS query result with answer objects in their respective dominance
intervals.

generated for each combination of volume and distribution,
totaling 15 datasets.

Real-world data was collected from the OpenStreetMap
platform [10], resulting in three datasets extracted from the
Brazil map: a small dataset with points representing schools,
a medium dataset with street intersections, and a large dataset
with all point-type objects. These datasets vary in volume,
representing small, medium, and large datasets.

B. Experimental Design

The experimental design was structured to comprehensively
evaluate the algorithm performance under various conditions
by systematically varying the query parameters. The primary
parameter, θ, was tested using four distinct values: 20, 45,
60, and 90 degrees, applied consistently across all databases.
Although most queries shared the same input parameters, the
proposed DPS query required an additional parameter, distMax,
which defines the maximum partition length in meters. This
parameter was adjusted between real and synthetic databases
to account for differences in data variation.

The experiment encompassed a total of 18 databases, 15
synthetic and 3 real. Each database was tested against four
values of θ, resulting in 72 unique query scenarios. These
scenarios were then doubled to compare performance between
indexed and non-indexed databases, creating 144 distinct test
configurations. Each configuration was evaluated using three
different algorithms (DBS, DNN and DPS), culminating in
432 total test loads. Of these, 360 test loads were executed on
synthetic data, while the remaining 72 were performed on real
data.

C. Experimental Setup

The experiments were conducted on a physical machine with
the following specifications: Intel(R) Core(TM) i7-10750H
CPU @ 2.60GHz with 12 cores, 16 GB of RAM, 1 TB SSD,
running Ubuntu 20.04.1 LTS (64-bit). The spatial database
was implemented using PostgreSQL 12.4 with PostGIS 3.0.2
extension.

For indexed experiments, we employed the Generalized
Search Tree (GiST) indexing method provided by PostGIS,
which implements a variant of the R-Tree structure. All queries
(DBS, DNN, and DPS) were executed systematically, with
results stored in a dedicated results table. To ensure consistency
and prevent caching effects, the system cache was cleared
before each test execution using standard Linux cache clearing
procedures.

D. Performance Analysis
Although statistical tests were not performed, the perfor-

mance differences are substantial enough to demonstrate DPS
superiority. DPS completed some queries on large datasets
in under 25 seconds, while DBS and DNN were unable to
complete the same queries even after 24 hours—representing
a performance improvement of at least 3,456x. Such extreme
differences, consistent across multiple configurations, clearly
indicate algorithmic advantages beyond measurement uncer-
tainties.

DPS query demonstrated superior efficiency in a significant
portion of the test scenarios, outperforming other methods in
52.8% of cases for non-indexed databases and 61.1% of cases
for indexed databases, as illustrated in Figure 7. Specifically, it
achieved better performance in 38 out of 72 query scenarios for
non-indexed databases and 44 out of 72 scenarios for indexed
databases, indicating robust performance across both database
types.

Figure 7. Frequency of algorithms (DPS, DBS, DNN) achieving fastest query
execution across indexed and non-indexed databases.

Figure 8 presents a detailed breakdown of the results by
data distribution, revealing significant performance patterns.
The DPS algorithm demonstrated remarkable effectiveness
on both synthetic and real datasets. In Bit and Sierpinski
distributions, it consistently achieved optimal performance
across all configurations, with a maximum frequency of 12
best results in both indexed and non-indexed scenarios. For
real data, the algorithm also showed strong performance,
achieving 9 and 10 best results in non-indexed and indexed
configurations respectively. Although performance was more
modest with the Gaussian distribution, the algorithm still
maintained consistent effectiveness across diagonal and uniform
distributions, demonstrating its versatility across different data
patterns.

66Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 8. Frequency of DPS achieving fastest query execution across data
distributions.

A deeper analysis of query execution times for Bit and
Sierpinski distributions revealed significant differences among
the algorithms. Both DBS and DNN algorithms encountered
considerable challenges, particularly when processing large
databases. In most cases involving large-scale datasets, these
algorithms failed to complete execution even after 24 hours
of processing time. The only exception occurred with the
Sierpinski distribution, where both DBS and DNN converged
to a solution in approximately 77 minutes using a θ parameter
of 90°. In contrast, the DPS algorithm demonstrated remarkable
efficiency. For angles of 20°, the execution time remained under
25 seconds, and for larger angles, it further decreased to less
than 11 seconds. This performance improvement highlights
the algorithm’s scalability and optimization capabilities. To
better illustrate this performance contrast, Figure 9 presents
the execution time in seconds for the DPS algorithm. The
graph shows results for both Bit and Sierpinski distributions
in large-scale databases, comparing different values of the θ
parameter across indexed and non-indexed databases.

Figure 9. DPS algorithm execution time as a function of θ for larges indexed
and non-indexed databases.

In the analysis of real-world data distributions, the DPS
query demonstrated superior performance across most tested
scenarios. The algorithm showed less favorable results for

90° angles in both indexed and non-indexed large-volume
databases, as well as for 60° angles in smaller non-indexed
databases. Despite these exceptions, DPS achieved excellent
execution time results. Table II presents the execution times
for different configurations of DBS, DNN, and DPS queries
on real databases.

TABLE II
EXECUTION TIME COMPARISON BETWEEN DBS, DNN AND DPS

ALGORITHMS.

Database Size Angle Non-Indexed Indexed
DBS DNN DPS DBS DNN DPS

Small 20° 4.37 4.36 3.14 4.19 4.22 1.26
45° 2.18 2.13 1.59 2.00 2.05 0.80
60° 1.25 1.24 1.34 1.13 1.14 0.78
90° 1.28 1.18 0.87 1.11 1.19 0.66

Medium 20° 187.87 183.04 4.51 177.45 182.37 5.05
45° 21.84 21.81 2.39 21.30 22.16 2.51
60° 6.04 6.05 1.92 5.92 6.01 2.09
90° 0.78 0.76 1.50 0.71 0.71 1.63

Large 20° 93.44 98.22 37.41 91.63 98.58 32.13
45° 74.59 73.90 19.06 72.57 73.02 19.44
60° 33.97 33.85 15.27 32.80 32.50 16.75
90° 4.22 3.97 11.61 3.52 3.49 13.49

The analysis of the variation of the query angle, shown in
Figure 10, demonstrates that DPS achieved better performance
with smaller angles, particularly at θ = 20. From a total of
18 queries per angle (15 on synthetic datasets and 3 on real
datasets), the algorithm achieved the best 14 results on indexed
bases (77.78%) and 12 on non-indexed bases (66.7%) for
θ = 20.

Figure 10. DPS performance comparison at different angles with and without
index.

The diversity of objects returned by the DPS query reinforces
this work’s objective of providing consistent and homogeneous
diversity in the response set, regardless of query parameters,
distribution, and volume. This characteristic is demonstrated
in 11, which presents a comparison of the number of objects
returned in the response set among DPS, DBS, and DNN
algorithms, considering only different configurations of real
databases. As explained in the refinement step, if all partitions
contain data, the maximum number of objects found is equal to
the number of composite partitions; that is, it has a maximum
of θ/360 response objects.

67Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Figure 11. Comparative analysis of retrieved object counts for DPS, DBS,
and DNN on real data.

V. RESULTS DISCUSSION

Overall, the DPS algorithm demonstrated superior perfor-
mance compared to DBS and DNN algorithms, excelling in
52.8% of queries on non-indexed databases and 61.1% on
indexed databases. These results demonstrate its versatility and
efficiency in different application contexts.

In synthetic databases with Bit and Sierpinski distributions,
DPS achieved exceptional performance, showing a 99.9%
improvement in execution time for all queries on large
databases. This result can be attributed to the high density
of objects concentrated in specific directions, a characteristic
that benefits the algorithm’s geometric partitioning approach.
The processing step efficiently identifies the NN point in each
partition, significantly reducing the number of comparisons
needed to determine the result set.

The same pattern of high object density in specific directions
was observed in real-world data. This characteristic of spatial
distribution explains the algorithm’s excellent performance
on real databases, as geometric partitioning proves to be
particularly efficient when objects are concentrated in specific
directions.

DPS showed better performance with smaller angle param-
eters, such as 20° and 45°. This behavior can be explained
by the fact that smaller angles impose less strict dominance
restrictions for DBS and DNN queries, meaning more objects
must be evaluated before the stopping condition is reached.

Regarding the diversity of results, DPS consistently maintains
that the maximum number of returned objects will be equal to
360◦/θ, which means that there will be at most one dominant
object for each θ interval.

VI. CONCLUSION AND FUTURE WORK

This paper presented DPS, a geometric partitioning approach
for direction-based queries. DPS reduces execution time by up
to 99.9% compared to existing methods—completing queries
in under 25 seconds that previously took over 24 hours. It also

ensures directional diversity by returning at most one object
per θ interval.

While our experiments focused on geographic datasets, DPS
has potential applications beyond traditional GIS systems.
The algorithm’s ability to efficiently identify directionally
diverse neighbors could benefit autonomous navigation systems
when detecting surrounding obstacles, or assist IoT networks
in selecting well-distributed sensor nodes. The consistent
directional coverage guaranteed by DPS makes it particularly
suitable for emergency response scenarios where alternative
routes in different directions are critical.

Our evaluation was limited to datasets of up to 2 million
points. Although DPS performed well at this scale, real-
world applications with larger datasets may present additional
challenges requiring further investigation.

Future research directions include:
• Intelligent Query Selection: Develop models to automati-

cally choose between DPS, DBS, or DNN based on dataset
characteristics and query parameters.

• Scalability Analysis: Evaluate DPS performance with
datasets exceeding 10 million objects and identify optimiza-
tion opportunities.

• Dynamic Environments: Adapt DPS for scenarios with
frequently changing data, such as real-time traffic or mobile
sensor networks.

• Extended Domains: Explore applications beyond spatial
queries, including similarity searches in high-dimensional
spaces.
These directions will help establish the practical scope and

limitations of the DPS approach.

REFERENCES

[1] K. C. K. Lee, W. C. Lee, and H. V. Leong, “Nearest Surrounder
Queries”, in Proceedings of the 22nd International Conference
on Data Engineering (ICDE), Atlanta, GA, USA: IEEE, Apr.
2006, pp. 85–85. DOI: 10.1109/ICDE.2006.104.

[2] X. Guo, B. Zheng, Y. Ishikawa, and Y. Gao, “Direction-based
surrounder queries for mobile recommendations”, The VLDB
Journal, vol. 20, no. 5, pp. 743–766, 2011. DOI: 10.1007/
s00778-011-0241-y.

[3] X. Guo and X. Yang, “Direction-aware nearest neighbor query”,
IEEE Access, vol. 7, pp. 30 285–30 301, 2019. DOI: 10.1109/
ACCESS.2019.2902130.

[4] H. Zhang et al., “Group Visible Nearest Surrounder Query in
Obstacle Space”, in Proceedings of the 2019 IEEE International
Conference on Computer Science and Educational Informati-
zation (CSEI), Guangzhou, China: IEEE, 2019, pp. 345–350.
DOI: 10.1109/CSEI47661.2019.8939019.

[5] J. Chung, H. J. Jang, K. H. Jung, and S. Y. Jung, “Nearest
surrounder searching in mobile computing environments”,
International Journal of Communication Systems, vol. 26, no. 6,
pp. 770–791, 2013. DOI: 10.1002/dac.2409.

[6] S. Nutanong, E. Tanin, and R. Zhang, “Visible Nearest Neighbor
Queries”, in Proceedings of the 11th International Conference
on Database Systems for Advanced Applications (DASFAA),
Bangkok, Thailand: Springer, 2007, pp. 876–883. DOI: 10 .
1007/978-3-540-71703-4_73.

68Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

https://doi.org/10.1109/ICDE.2006.104
https://doi.org/10.1007/s00778-011-0241-y
https://doi.org/10.1007/s00778-011-0241-y
https://doi.org/10.1109/ACCESS.2019.2902130
https://doi.org/10.1109/ACCESS.2019.2902130
https://doi.org/10.1109/CSEI47661.2019.8939019
https://doi.org/10.1002/dac.2409
https://doi.org/10.1007/978-3-540-71703-4_73
https://doi.org/10.1007/978-3-540-71703-4_73

[7] A. C. Carniel, “Spatial Information Retrieval in Digital
Ecosystems: A Comprehensive Survey”, in Proceedings of
the 12th International Conference on Management of Digital
EcoSystems (MEDES ’20), New York, NY, USA: ACM, 2020,
pp. 10–17. DOI: 10.1145/3415958.3433038.

[8] A. C. Carniel, “Defining and designing spatial queries: the
role of spatial relationships”, Geo-spatial Information Science,
vol. 26, no. 1, pp. 1–25, 2023. DOI: 10.1080/10095020.2022.
2163924.

[9] P. Katiyar, T. Vu, S. Migliorini, A. Belussi, and A. Eldawy,
“SpiderWeb: A Spatial Data Generator on the Web”, in
Proceedings of the 28th International Conference on Advances
in Geographic Information Systems (SIGSPATIAL ’20), Seattle,
WA, USA: ACM, Nov. 2020, pp. 465–468. DOI: 10.1145/
3397536.3422351.

[10] OpenStreetMap contributors, Planet dump retrieved from
https://planet.osm.org, https://www.openstreetmap.org, 2017.

69Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

https://doi.org/10.1145/3415958.3433038
https://doi.org/10.1080/10095020.2022.2163924
https://doi.org/10.1080/10095020.2022.2163924
https://doi.org/10.1145/3397536.3422351
https://doi.org/10.1145/3397536.3422351
https://www.openstreetmap.org

	Introduction
	Related Work
	Direction Proximity Search
	Partitioning
	Processing
	Refinement

	Experimental Evaluation
	Datasets
	Experimental Design
	Experimental Setup
	Performance Analysis

	Results Discussion
	Conclusion and Future Work

