GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

A Workflow for Map Creation in Autonomous Vehicle Simulations

Zubair Islam, Ahmaad Ansari, George Daoud, and Mohamed El-Darieby
Faculty of Engineering and Applied Science
Ontario Tech University
Oshawa, Canada
e-mail: {zubair.islam | ahmaad.ansari | george.daoud | Mohamed.El-Darieby}@ontariotechu.net

Abstract—The fast development of technology and artificial
intelligence has significantly advanced Autonomous Vehicle (AV)
research, emphasizing the need for extensive simulation testing.
Accurate and adaptable maps are critical in AV development,
serving as the foundation for localization, path planning, and
scenario testing. However, creating simulation-ready maps is
often difficult and resource-intensive, especially with simulators
like CARLA (CAR Learning to Act). Many existing workflows
require significant computational resources or rely on specific
simulators, limiting flexibility for developers. This paper presents
a custom workflow to streamline map creation for AV develop-
ment, demonstrated through the generation of a 3D map of a
parking lot at Ontario Tech University. Future work will focus
on incorporating SLAM technologies, optimizing the workflow
for broader simulator compatibility, and exploring more flexible
handling of latitude and longitude values to enhance map
generation accuracy.

Keywords-Autonomous Valet Parking (AVP); Simulation Testing;
Autoware; Point Cloud Data (PCD); Lanelet2

I. INTRODUCTION

With rapid technological advancement, the design and de-
velopment of Autonomous Vehicles (AVs) has become increas-
ingly common. AVs provide many benefits, such as increased
safety, reduced traffic congestion, improved fuel efficiency, and
enhanced mobility for individuals who are unable to drive.
However, there are many challenges, such as high develop-
ment costs, lack of detailed regulations, and ethical concerns
for decision-making procedures. To address these challenges,
research must be conducted on all aspects of an AV, such as
path planning, object detection, object avoidance, localization,
simulation testing, sensor fusion, and machine learning. Au-
toware [1], an open-source software stack for AVs, provides
these functionalities out of the box. For this study, it was
selected as the primary software platform due to its widespread
adoption in AV research and its robust support for localization
and simulation testing. Autoware simplifies development and
facilitates integration with simulation platforms. This area of
research is especially important for simulation testing due
to the accessibility and safety of digitally simulated AVs,
allowing for the validation and verification of autonomous
systems in a controlled environment without the risks and costs
of real-world testing.

To enable the use of AVs in real-life scenarios, they must
first be tested extensively in a simulated environment. A key
component of these simulations is high-definition (HD) maps,
which provide detailed, centimeter-level accuracy for road
layouts, lane markings, and traffic infrastructure. HD maps
are essential for localization, perception, and planning, as they

allow AVs to understand their position and navigate accurately.
The simulated environment can be run in an existing 3D simu-
lation engine, built to support the development and integration
of these simulations. Current 3D game engines such as Unity,
Unreal Engine, and Godot allow for the creation of highly
detailed and interactive virtual environments, which are im-
portant for testing the behaviors of AVs. These game engines
are utilized to simulate the real world, such as the physics,
traffic, pedestrians, and the AV along with its hardware and
functionalities. In addition, the maps created for simulation are
not only used for virtual testing but also serve as a foundation
for real-world deployment. By ensuring accuracy in simulation
maps, developers can generate HD maps that are later used by
AVs to navigate real-life roads, allowing a seamless transition
from testing to deployment.

Currently, there are a few simulators that utilize these game
engines. These include Godot, which uses the Godot Engine,
AWSIM [2], which uses the Unity Engine, and CARLA,
[3] which uses the Unreal Engine. These simulators are
built to support user interaction for testing scenarios between
AVs and the real world. They are packaged and distributed
as easy-to-setup and ready-to-use software designed to aid
developers. While these simulators offer customization options
to test user-defined environments, the process of developing
and integrating new features can be challenging, potentially
requiring significant effort to understand and adapt to the tools
and workflows specific to each platform. Among these options,
AWSIM was selected for this project due to its user-friendly
interface and native compatibility with Autoware [4], enabling
efficient testing and development of AV algorithms. AWSIM
supports the project’s objectives by enabling detailed testing
of localization and vehicle interactions in a controlled and
customizable environment.

In this paper, a custom workflow is presented that simplifies
the creation of maps that are compatible with AWSIM. Section
2 provides the motivation behind the study. Section 3 reviews
related work in HD map generation and simulation-based
AV testing. Section 4 details the methodology, describing the
tools used, their functionalities, and their integration into the
proposed workflow. Section 5 presents the results of imple-
menting the workflow. Section 6 discusses the performance,
limitations, and practical advantages of the approach. Finally,
Section 7 concludes the paper and outlines directions for future
work. While this workflow is tailored for AWSIM, it has the
flexibility to be adapted for other simulators, although this
potential is not explored in this paper.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

56

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

II. MOTIVATION

At the time of development, AWSIM and Autoware offered
only a single simulation map, which represented a large city
environment. However, this map lacked an important feature,
which was a parking lot. Parking lots are essential for testing
real-world AV deployment in low-speed, complex environ-
ments where interactions with nearby vehicles are common.

This limitation highlighted the need for a custom parking
lot environment. Although documentation existed for creating
custom environments in AWSIM, it was difficult to interpret
and follow. Through this process, one key requirement was
clear, which was that creating a custom environment requires
a Lanelet2 OSM file, a PCD (Point Cloud Data) file, and a 3D
mesh file. Due to the complexity of the existing documenta-
tion, an alternative solution was needed to streamline the map
creation process.

Through extensive research and troubleshooting, a custom
workflow was developed that utilized multiple tools with
different functionalities to generate the required files. By using
an OpenStreetMap (OSM) [5] file and following a series of
steps in the workflow, the required files can be exported from
the workflow. This allows for the use of a custom environment
inside Autoware and AWSIM, enabling simulation testing for
any outdoor area available on OSM. OSM was selected as
a starting point because it is open-source and has very wide
geographic coverage of maps across the globe.

III. RELATED WORK

During the development of the workflow, a literature review
revealed no prior research specifically addressing map creation
using AWSIM. As a result, the workflow was constructed
incrementally through extensive Google searches and itera-
tive problem-solving. Each step built upon the previous one,
beginning with the extraction of an OSM file, followed by
generating a 3D mesh, converting the mesh into a point cloud,
and continuing through the necessary processing steps. To
emphasize the significance of this workflow and its practical
applications, several related studies are discussed below.

In researching methods for creating simulation environ-
ments for Autoware and AWSIM, literature was found de-
scribing workflows based on different simulation platforms,
primarily CARLA and LGSVL. These works often used earlier
versions of Autoware or relied on a deprecated simulator, such
as LGSVL, making them less applicable to modern systems
such as AWSIM.

Feng, Ye, and Angeloudis [6] proposed a pipeline for
Autoware that transforms OSM data into maps compatible
with both CARLA and LGSVL. Their workflow begins by
converting an OSM file from OpenStreetMap into a 3D
model using Blender, a 3D graphics software. This model is
then exported in FBX format. Simultaneously, the OSM file
is converted into OpenDRIVE format, resulting in both an
OpenDRIVE file and a FBX file required by both simulators.
Next, a PCD file is generated using CARLA’s PCD recording
function, which simulates an AV equipped with a LiDAR
sensor that navigates through the environment and captures the

PCD data. Finally, the OpenDRIVE file is used to generate a
Lanelet2 vector map, enabling integration with Autoware.

Santonato [7] presents a similar pipeline, though focused
solely on CARLA. The process begins by generating an OSM
file and converting it into OpenDRIVE format. A plugin
called StreetMap for Unreal Engine is then used to render
the streets and buildings and to generate the 3D environment.
The OpenDRIVE and 3D files are then imported into CARLA
to create the simulation map. Lastly, they generate the PCD
and Lanelet2 vector map files to be used for Autoware. As
in the work by Feng, Ye, and Angeloudis, CARLA is used to
record and generate the PCD file, while the OpenDRIVE file
is used to create a Lanelet2 vector map.

Both Feng, Ye, and Angeloudis, and Santonato developed
workflows capable of creating 3D maps from OSM files.
However, their approaches rely on CARLA to generate PCD
files. Feng, Ye, and Angeloudis used LGSVL as their primary
simulator, which is now deprecated, but depended on CARLA
for generating compatible files. Santonato on the other hand,
used CARLA as their main simulator, which streamlined the
process by keeping all file generation within a single platform.
In contrast, the workflow presented in this paper is independent
of any specific simulator for file generation. Instead, it utilizes
lightweight, open-source tools that are easy to install and do
not require running a simulator to produce the necessary files.
This flexibility reduces computational overhead and simplifies
deployment, particularly for researchers working outside the
CARLA ecosystem.

Beyond simulator-based workflows, recent research has
explored high-definition (HD) map generation using real-world
sensor data. Li et al. [8] introduced HDMapNet, a deep
learning-based framework for generating semantic HD maps
online using inputs from cameras and/or LiDAR. Jeong et
al. [9] presented a detailed tutorial for HD map generation
using physical vehicles equipped with LiDAR, GNSS, and
cameras, involving manual annotation, sensor calibration, and
integration with a now-deprecated version of Autoware based
on the ROS 1 framework. While both approaches produce
high-accuracy maps suitable for deployment, they require
significant hardware, real-world data collection, and complex
processing pipelines. In contrast, the workflow proposed in
this paper is designed specifically for simulation use. It op-
erates entirely offline using publicly available OpenStreetMap
data and a set of lightweight, open-source tools to generate
Autoware-compatible maps. This makes it especially valuable
for early-stage development, academic research, and rapid pro-
totyping within simulation environments like AWSIM, where
real-world precision is not critical and accessibility is a key
concern.

IV. METHODOLOGY

The workflow is made up of four steps and is shown in
Figure 1. The process goes from manually selecting the desired
location and inputting that file into an Automated Mapping
Docker Container [10], shown in Figure 2, which builds

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

57

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

the location file into a 3D mesh and extracts the simulated
pointcloud.

Map Creation Workflow

Lanelet2 File

Lanelet2 File

PCD File
OBJ, MTL, PNG Files

PCD File

Lanelet2 File

OSM File

Figure 1. Workflow of map creation.

Automated Mapping (Docker)

OBJ, MTL, PNG Files PCD File
OSM File PCD File

OBJ, MTL, PNG Files

Figure 2. Workflow of automated mapping Docker container.

After the Automated Mapping Pipeline, the lanes of traffic
or parking lots must be manually defined. After this, all the
necessary files are generated and can be used for integration
with Autoware and AWSIM. Each step requires different tools,
each providing different functionalities. The tools will be
discussed below and how they were used to develop a map
environment for Ontario Tech University’s SIRC parking lot.

A. Functionalities and Usage

1) OpenStreetMap (OSM) Selection

OpenStreetMap [5] is a resource for getting geospatial
data of the world. It allows users to select a certain
location to create an environment for. Using this tool, the
desired location can be extracted as an OSM file (.osm).
This OSM file contains many elements that define the
geography and features of the selected location, such as
nodes, ways, relations, and tags.

This tool is provided as a website. Using this website,
the campus location can be found using its address,
providing an aerial view. Using the select tool, the
SIRC parking lot can be selected as shown in Figure 3,
and exported as an OSM file, containing the geospatial
information of this location.

Automated Mapping Pipeline Docker Container
This Docker container uses OSM2World [11] to first
generate the 3D model of the map. Next, it uses Cloud-
Compare to generate the Point Cloud Data file, and lastly
uses the Point Cloud Library to further process the Point
Cloud Data file.

a) OSM2World Conversion
OSM2World is a conversion tool that generates a
3D mesh based on the provided OSM file. It creates
a three-dimensional model that closely represents
the actual location. The model consists of three
different file formats:

2)

nnnnnnn

Licence

Figure 3. Exporting an OSM file from OpenStreetMap.

i) OBJ File (.obj): This file contains information
about the geometry of 3D objects. Each object
is defined by polygon faces, normals, curves,
texture maps, and surfaces.

Material Library File (.mtl): This file defines
each of the materials in the 3D model, including
their color, texture, and reflection properties.
Portable Network Graphic Files (.png): Mul-
tiple PNG files are generated to store texture
images for the 3D models. These files work
with the MTL files to generate textures for the
3D surfaces.

iii)

osmzwera Vewer

Figure 4. 3D model created in the OSM2World GUI.

b)

OSM2World comes preinstalled in the container
and generates a 3D model shown in Figure 4, using
the OSM file created earlier through its command
line interface. The files are generated as one OBJ
file, one MTL file, and a folder of multiple PNG
files, containing pictures of the building texture,
stop signs, grass, and roads.

CloudCompare Point Cloud Extraction
CloudCompare [12] is a 3D point cloud and tri-
angular mesh processing software. This software
is used in the container to import the 3D mesh,
and export the point cloud (.pcd). This is done
by first importing the 3D mesh and using the
sample points feature, which calculates various

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

58

Copyright (c) IARIA, 2025.

dense points based on the surfaces of the mesh to
generate a point cloud. This point cloud contains
the set of data points in a 3D coordinate system
that represent the shape of the 3D mesh.

Figure 5. 3D model and point cloud shown in the CloudCompare GUI.

This software comes preinstalled inside the Docker
container, and is then used through its CLI in-
terface to import the 3D mesh obj file generated
from OSM2World and generate a point cloud of
the mesh. The 3D mesh file and point cloud are
shown on the left and right of Figure 5 respectively.
This point cloud is a single file, represented as a
PCD file.
¢) Point Cloud Library (PCL) Processing

Point Cloud Library (PCL) [13] is an open source
project used for point cloud processing. This li-
brary contains various features on processing point
clouds, such as viewing it in a 3D space, removing
outliers, connecting point clouds, creating surfaces,
and many more. In this pipeline, PCL is used
to fix the orientation of the point cloud from a
frontal view to a top-down aerial view. It then
converts the point cloud file from ASCII format
to binary format. This concludes the processing
of the point cloud file, making it ready for use
with Autoware. This file must then be renamed to
pointcloud_map.pcd, due to Autoware nam-
ing conventions.

Figure 6. Orientations of point cloud before and after processing.

This library is used inside the Docker container,
which already has the library installed. The
library contains three useful functions. The first
is pcl_viewer, which helps to view the point
cloud and its initial orientation. Upon viewing it,
the orientation will be seen as an initial frontal
view. This must be changed so that the initial view
is a top-down view. Therefore, the next command

ISBN: 978-1-68558-269-2

3)

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

used is pcl_transform_point_cloud to
transform the view to a top-down view. The
initial view and transformed view are shown on
the left and right in Figure 6 respectively. After
this step, the last thing to do is to uncompress
the file to binary format, using the command
pcl_convert_pcd_ascii_binary. With
these steps, the PCD file processing is completed.

Vector Map Builder

Vector Map Builder [14] is a tool provided by Tier
IV, which is used for creating a Lanelet2 vector map,
a specialized format for AV simulations. Although the
resulting file uses the .osm extension, it is distinct from
typical OpenStreetMap data. Lanelet2 files define road
networks, lanes, and other road features essential for AV
simulations. This Lanelet2 OSM file allows Autoware
to run simulations on the predefined lanes. The tool
has a feature to import a point cloud file, which can
then be used to manually define lanes, parking lots,
and parking spaces. These features can be customized
as needed, but they are generally designed to conform
with real-world features. After defining these features,
the resulting Lanelet2 map can be exported as an OSM
file.

Figure 7. Lanelets and parking spaces created in VectorMapBuilder.

4)

The tool can be accessed through the website, and can
be used to import the point cloud file. After the import,
features such as lanes and parking spots can be drawn. In
the case of the SIRC parking lot, the lanes and parking
spots were drawn as accurately as possible, shown in
Figure 7. After completion, a lanelet2_map.osm
file can be exported.

Python Script for OSM Manipulation A python script,
remove_lat_lon.py, provided in [8], was created
to nullify all latitude and longitude fields from the
Lanelet2 OSM file. This is necessary for functionality
with the Autoware software. If the lat/long coordinates
are not NULL, the lanes will malfunction and stretch
into infinity in Autoware.

This script is used in the Linux terminal, by invoking its
command and giving it the lanelet2_map.osm file

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

59

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

as input. The script then sets all lat/long fields to NULL
and outputs the updated Lanelet2 OSM file.

B. Integration

The workflow generates three essential files: a Lanelet2
OSM file, a PCD file, and 3D mesh files (OBJ, MTL, and
PNG). To ensure compatibility with Autoware, the Lanelet2
OSM file must be named lanelet2_map.osm, and the
PCD file should be named pointcloud_map.pcd. These
files can then be imported into Autoware and AWSIM, as
detailed below:

1) Autoware

Autoware requires the Lanelet2 OSM file, and the PCD
file. It is then launched with a specific ROS2 launch
command with the map path argument pointing to the
two files.

Figure 8. Lanelet2 map and point cloud imported into Autoware.

Figure 8 shows the correct loading of the two files.
2) AWSIM

AWSIM requires the 3D mesh and Lanelet2 OSM file to
be imported in. The 3D mesh then needs some additional
steps done to start working. Some scripts have to be
added which define the 3D mesh as Mesh Colliders,
so that they can be interacted with in the simulation.
The 3D mesh file also has to have the read/write field
enabled. Lastly, the Lanelet2 OSM file is loaded and
aligned with the simulation environment to synchronize
with Autoware. Figure 9 shows the correct loading of
the 3D files and the Lanelet2 map.

V. RESULTS

After importing all the files of the newly created map, both
Autoware and AWSIM are able to load the SIRC parking
lot environment. To get both synced, AWSIM is run first,
and then Autoware afterwards. In AWSIM, the ego vehicle
is correctly spawned and activated inside the environment,
with all its sensors functioning correctly. In Autoware, the ego
vehicle is correctly localized to the position of the ego vehicle
by receiving the location from AWSIM. The initialization of
AWSIM and Autoware are shown in Figure 10.

After setting a goal pose inside a parking spot for the
vehicle, which is shown in Figure 11, and activating the

Figure 9. Lanelet2 map and 3D model imported into AWSIM.

Figure 10. Initial startup of AWSIM and Autoware.

autonomous mode, both vehicles in AWSIM and Autoware ac-
curately mimic each other and reach the destination correctly,
which are shown in Figure 12.

The successful completion of route planning and parking
demonstrates the map’s effective integration into both simula-
tion platforms, highlighting its accuracy and the ego vehicle’s
proper localization and navigation in AWSIM and Autoware.
These results show the workflow’s capability to support real-
world applications and test AVP systems in simulation envi-
ronments.

VI. DISCUSSION

With this workflow, testing can be done in any outdoor
environment that is available on OpenStreetMap. AWSIM has
the ability to generate pedestrians and traffic, and also relays
all this information back to Autoware. In any scenario, whether
it is simple driving, or parking, Autoware can be used to test
them. In order to deploy Autoware in real life, an alternative
must be used for generating the PCD and Lanelet2 maps.
This is because the 3D model generated by OSM2World
is not perfect. The buildings are not true to reality. For
example, the SIRC parking lot contains a soccer dome, and in
OSM2World, this dome is represented as a simple rectangular
building. However, in the case of real-life deployment, SLAM
technologies can be used to generate the perfect and accurate
point cloud.

Although the 3D models generated by OSM2World have
limitations in geometric accuracy, the workflow remains highly
practical compared to other HD map generation methods
such as HDMapNet or CARLA-based pipelines. Unlike those
approaches, which rely on real-world sensor data and manual
annotation, this workflow generates all required map com-

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

60

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services

a
a
o

Figure 11. Goal pose selected and route calculated.

Figure 12. Car reaches the destination in AWSIM and Autoware.

ponents offline using only open-source tools and OSM data.
This makes it especially suitable for simulation use, offering
accessibility and ease of deployment in low-resource environ-
ments. Although formal evaluation metrics such as runtime or
accuracy comparisons are not presented, the workflow’s suc-
cessful integration with AWSIM and Autoware demonstrates
its effectiveness for early-stage research and prototyping.

VII. CONCLUSION

In this paper, a custom workflow was presented, which
was designed to simplify the creation of maps for use with
AWSIM. While primarily developed by AWSIM, this work-
flow can potentially be adapted for use with other simulators,
though this aspect was not explored in detail. The workflow
was developed within the context of an AVP project using
Autoware, addressing a critical gap in the availability of
simulation-ready environments for testing AV technologies.

Accurate and adaptable maps are essential for AV develop-
ment. However, creating such maps can often be difficult and
resource-intensive. Many existing workflows rely on signifi-
cant computational resources or are tied to specific simulators,
limiting their flexibility for developers. Moreover, documenta-
tion for creating custom maps can often be difficult to follow,
complicating the process of integrating real-world locations
into simulations. This workflow addresses these challenges
by using lightweight tools to generate 3D mesh files, point
cloud data files, and Lanelet2 files from OSM data, making it
applicable to any location available on OSM.

HD maps are vital for testing AVs in simulated envi-
ronments before real world deployment. These maps offer
centimeter-level accuracy for road layouts, lane markings,
and traffic infrastructure, supporting localization, perception,

and planning tasks. The workflow demonstrated in this paper
enables the creation of HD maps for use in 3D simulation en-
gines, including AWSIM, which is compatible with Autoware.
The simulated maps are not only valuable for virtual testing
but also serve as the foundation for real-world deployment,
ensuring a seamless transition from simulation to real-world
navigation.

The methodology outlined in this paper, ranging from
extracting data from OpenStreetMap to processing it through
Docker containers for map generation, was used to create a
functional 3D map of Ontario Tech University’s SIRC parking
lot. This map was successfully tested in both Autoware and
AWSIM simulations, demonstrating the workflow’s potential
for use in a variety of real-world environments available on
OpenStreetMap. Future work will focus on improving model
accuracy, incorporating SLAM technologies, and optimizing
the workflow for broader simulator compatibility. Additionally,
exploring more flexible handling of latitude and longitude
values could allow for better control over the nullification
process and further enhance map generation accuracy.

ACKNOWLEDGMENT

We would like to extend our gratitude to our friends
and team members, Waddah Saleh and Abdullah Waseem,
for their encouragement and support throughout the project.
Additionally, we would like to thank our research group for
their continuous guidance and valuable insights during the
course of this work.

REFERENCES

[1] tier4, “Tierd/AWSIM: Open source simulator for self-driving vehicles,”
GitHub, https://github.com/tierd/ AWSIM (accessed 2025-02-15).

[2] C. Team, “Carla,” CARLA Simulator, https://carla.org/ (accessed 2025-
02-15).

[3] “Home Page,” Autoware, https://autoware.org/ (accessed 2025-02-15).

[4] “CombinationWithAutoware,” CombinationWithAutoware -
AWSIM document, https://tier4.github.io/ AWSIM/Introduction/
CombinationWithAutoware/ (accessed 2025-02-15).

[5] OpenStreetMap, https://www.openstreetmap.org/ (accessed 2025-02-15).

[6] Y. Feng, Q. Ye, and P. Angeloudis, “Rapid procedural generation of
real world environments for Autonomous Vehicle Testing,” OpenReview,
https://openreview.net/forum?id=qoyUO-XFFd (accessed 2025-02-15).

[7]1 S.F. Santonato, “A complete end-to-end simulation flow for autonomous
driving frameworks,” Webthesis, https://webthesis.biblio.polito.it/16703/
(accessed 2025-02-15).

[8] Q.Li, Y. Wang, Y. Wang, and H. Zhao, “HDMapNet: An online HD map
construction and evaluation framework,” 2022 International Conference
on Robotics and Automation (ICRA), pp. 4628-4634, https://doi.org/10.
1109/icra46639.2022.9812383 (accessed 2025-02-15).

[9] J. Jeong, J. Y. Yoon, H. Lee, H. Darweesh, and W. Sung, “Tutorial on

high-definition map generation for automated driving in Urban Environ-

ments,” Sensors, https://doi.org/10.3390/s22187056 (accessed 2025-02-

15).

“OSM to Pointcloud and Lanelet Conver-

sion Process,” GitHub, https://github.com/zubxxr/

OSM-to-Pointcloud-and-Lanelet-Conversion-Process (accessed 2025-

02-15).

T. Knerr, “OSM2World create 3D models from OpenStreetMap,”

OSM2World, https://osm2world.org/ (accessed 2025-02-15).

“Presentation,” CloudCompare, https://www.cloudcompare.org/

presentation.html (accessed 2025-02-15).

“About,” Point Cloud Library, https://pointclouds.org/about/ (accessed

2025-02-15).

Vector Map Builder, https://tools.tier4.jp/vector_map_builder_112/ (ac-

cessed 2025-02-15).

(10]

[11]
[12]
[13]

[14]

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-269-2

61

https://github.com/tier4/AWSIM
https://carla.org/
https://autoware.org/
https://tier4.github.io/AWSIM/Introduction/CombinationWithAutoware/
https://tier4.github.io/AWSIM/Introduction/CombinationWithAutoware/
https://www.openstreetmap.org/
https://openreview.net/forum?id=qoyUO-XFFd
https://webthesis.biblio.polito.it/16703/
https://doi.org/10.1109/icra46639.2022.9812383
https://doi.org/10.1109/icra46639.2022.9812383
https://doi.org/10.3390/s22187056
https://github.com/zubxxr/OSM-to-Pointcloud-and-Lanelet-Conversion-Process
https://github.com/zubxxr/OSM-to-Pointcloud-and-Lanelet-Conversion-Process
https://osm2world.org/
https://www.cloudcompare.org/presentation.html
https://www.cloudcompare.org/presentation.html
https://pointclouds.org/about/
https://tools.tier4.jp/vector_map_builder_ll2/

	Introduction
	Motivation
	Related Work
	Methodology
	Functionalities and Usage
	Integration

	Results
	Discussion
	Conclusion
	References

