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Abstract—Geospatial inference is crucial for various spatial pre-
diction tasks, where the choice of modeling approach significantly
impacts both inference performance and computational efficiency.
Traditional geospatial statistical models, such as Geographically
Weighted Regression (GWR) and Kriging, explicitly account for
spatial dependence, but often come with high computational costs.
In this study, we argue that treating coordinates as standard input
features can yield competitive inference performance while signif-
icantly reducing computational costs when selecting a predictive
model with an appropriate level of complexity. To support this,
we compare geospatial statistical models with various machine
learning approaches, including linear methods, tree ensemble
methods, hybrid kernel-based methods that incorporate explicit
geospatial learning, and a recent state-of-the-art tabular deep
learning model—TabPFN—to assess their effectiveness in spatial
prediction tasks (to the best of our knowledge, this is the first
study to investigate the performance of TabPFN in the geospatial
domain using explicit coordinate inputs). Our results demonstrate
that when coordinates are sufficiently informative, tree-based
ensemble models and tabular deep learning can implicitly capture
spatial dependence without requiring explicit geospatial modeling,
achieving superior performance whilst maintaining a reasonable
computational cost.

Keywords-geospatial regression; ensembles modeling; spatial
statistics; comparative performance.

I. INTRODUCTION

Spatial inference plays an increasingly critical role across
various industries, including environmental science [1][2],
urban planning [3], and disaster management [4][5], where
predicting unobserved values at specific locations is essential.

Over the years, researchers have developed two primary
approaches towards modeling spatial inference. Explicit ap-
proaches rely on the principle that geographically closer
observations tend to be more similar. Traditional methods,
such as Kriging [6][7] and Geographically Weighted Regression
(GWR) [8], incorporate this principle through variograms or
distance-decay weighting, offering both interpretability and
predictive power which have been widely adopted for spatial
interpolation and regression tasks.

Alternatively, Machine Learning (ML) models have emerged
as powerful tools for handling large and complex datasets.
These models treat coordinates as standard input features, allow-
ing them to capture spatial dependence implicitly. Among them,
tree-based ensembles—such as random forests and gradient
boosting machines—excel at modeling nonlinear relationships
and variable interactions. By incorporating spatial features
into their predictive framework, they achieve competitive
performance without the need for explicit geospatial modeling.

A hybrid approach has also gained traction, combining the
interpretability of spatial models with the predictive power
of machine learning. Techniques that integrate Kriging with
ML-based kernels have demonstrated promising results by
leveraging both domains’ strengths [9][10].

The advancement of Tabular Deep Learning (TDL) fur-
ther expands spatial inference possibilities. Whilst typically
confronted with challenges, such as the need for extensive
hyperparameter tuning and risk of overfitting, especially on
small datasets, pre-trained models have appeared which aim to
offer a robust alternative. For instance, the recently developed
Prior-Data Fitted Network (PFN) Transformer [11], designed
for tabular data, is pre-trained offline, enabling supervised
learning on small datasets without additional hyperparameters
tuning.

While traditional geospatial statistical models provide a
rigorous framework for modeling geospatial dependence, they
often struggle to balance predictive performance and computa-
tional efficiency, particularly with large datasets or nonlinear
relationships. Conversely, TDL and ML—especially tree-based
ensemble models—offer strong predictive performance with
reasonable training and tuning costs as these models avoid
constructing the geospatial distance function explicitly in a
large scale.

Therefore, in this study, we reflect on the way traditional
geospatial statistics leverage the distance matrix to model
geospatial dependence and argue for the efficiency of consid-
ering the coordinates as just standard input features for spatial
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inference tasks. We do so by presenting a comprehensive
comparison of geospatial statistical models (e.g., Kriging
and GWR), machine learning models (with a focus on tree
ensembles), hybrid kernel-based models, and a state-of-the-art
tabular deep learning model, i.e., TabPFN. Summarized, this
work presents the following key contributions:
• We conduct a comparative experiment across statistical,

ML, hybrid and TDL methods, with an emphasis on tree
ensembles and TabPFN, to assess predictive performance
and training efficiency;

• We analyze the practical considerations of training and tuning
these models in real-world geospatial applications;

• We reflect on risks of putting a large emphasis on explicit
spatial dependence usage, especially when coordinate infor-
mation is sufficiently informative or strong ML models are
available;

• The source code and datasets used in our work are publicly
available on our GitHub page [12].
This paper is structured as follows: Section II provides a

detailed explanation of related methodologies used in the field
of geospatial reference. Section III introduces the experimental
setup, covering the datasets, models, hyperparameter grids, and
evaluation metrics used in the comparison. Section IV presents
the results and discusses the effectiveness of all methods. The
conclusion and future work are provided in Section V.

II. METHODOLOGY REVIEW

This section clarifies the mechanisms underlying geospatial
statistical models, ML, hybrid models and TabPFN, i.e., the
techniques we will compare in this work, as well as their
distinct ways to incorporate spatial dependence principles. By
examining the mechanisms of these approaches, we aim to
establish a foundation for comparing their performance and
applicability in geospatial inference tasks.

A. Spatial Dependence-Based Models

Kriging and GWR are the most representative models in
this group. Although they both rely heavily on the principle of
spatial dependence, where observations close to each other are
more similar than those farther apart, the emphasis of spatial
relationships modeling of these two models are slightly varied.

1) Kriging: The main goal of Kriging is to quantify spatial
autocorrelation to model and estimate the target values by
using a variogram based on the assumption of jointly Gaussian
distribution of the data, and then computes optimal weights for
predictions by solving a system of linear equations, ensuring
that predictions are best linear unbiased estimates.

The Kriging [13] predictor can be defined as:

Ẑ(s0) =

n∑
i=1

λiZ(si),

where:
• Z(si): Observed value at location si,
• λi: Weight assigned to Z(si), determined by spatial correla-

tion.

• n: Number of observed locations.
The spatial correlation between locations is modeled using

a variogram [14] which is defined as:

γ(h) =
1

2
Var[Z(s)− Z(s+ h)],

where:
• h: Distance between two locations,
• γ(h): Semi-variance at lag h.

By using the variogram, we can calculate the covariance
matrix to solve the Kriging system,

C(si, sj)Λ = C(si, s0)

where Λ indicates the weight assigned to known nodes for the
interpolation of an unknown node s0.

Based on the definition above, Kriging provides an estimate
of prediction uncertainty that is defined as:

σ2
Kriging(s0) = C(s0, s0)−

n∑
i=1

λiC(si, s0)− µ.

2) GWR: Compared with Kriging focusing on spatial auto-
correlation and estimating the proximity similarity, GWR [15] is
more based on the assumption of spatial heterogeneity. Though
GWR also utilizes the distance matrix as weights to model the
spatial variation, it fits a separate regression model locally at
each location, weighting observations based on their proximity
using a kernel function (e.g., Gaussian or bisquare), which
allows for spatial variation in relationships between dependent
and independent variables.

Essentially, the GWR can be defined as a linear combination:

yi = β0(si) +

p∑
k=1

βk(si)xki + ϵi,

where:
• yi: Dependent variable at location si,
• β0(si) and βk(si): Intercept and coefficient (for the k-th

independent variable) at location si,
• xki: Independent variable at location si,
• ϵi: Random error term at location si,
• p: Number of independent variables.

The regression coefficients β(si) are estimated by solving
the weighted least squares problem, which is expressed as

β(si) =
(
X⊤W(si)X

)−1
X⊤W(si)y,

where W(si) represents the diagonal weight matrix of the
weights assigned to the location which is close to the point of
interest.

To estimate the weight matrix, two kernel functions are
commonly used, including:
• Gaussian kernel:

wij = exp

(
−
d2ij
2b2

)
,
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• Bisquare kernel:

wij =


(
1−

(
dij

b

)2)2

if dij ≤ b,

0 if dij > b,

where:
• dij : Distance between locations si and sj ,
• b: Bandwidth parameter controlling the spatial extent of the

weights.
Classical GWR models the local geospatial variation under

the assumption of the same spatial scale, while a modification of
GWR, namely Multiscale Geographically Weighted Regression
(MGWR) [16], provides a more flexible and scalable framework
by allowing different processes to operate at different spatial
scales.

Although Kriging and GWR are widely used for spatial
inference tasks, the application scenarios are slightly different.
Kriging is more applied in spatial interpolation, such as esti-
mating soil properties [17], pollutant concentrations [18][19],
or precipitation levels [20], while GWR is more commonly
applied in spatial regression scenarios, such as modeling house
prices [21], socioeconomic factors [22], or environmental
influences [23], where relationships vary spatially.

B. Machine Learning Models

Machine learning methods provide a data-driven approach to
modeling, focusing on capturing patterns and relationships
within the data without explicit assumptions about spatial
dependence.

Typically, given a dataset {X,Y } consisting of instances
{xi, yi} from a certain distribution P (Y |X), the goal is to
learn a function f that maps input features x ∈ Rd to an
output y ∈ R. The general objective is:

f̂ = argmin
f

1

n

n∑
i=1

ℓ(yi, f(xi)),

where:
• ℓ(yi, f(xi)): Loss function measuring the error between

predicted f(xi) and actual yi,
• n: Number of training instances.

To minimize the loss function (e.g., mean squared error
for regression or cross-entropy for classification), a wide
range of optimization algorithms, such as gradient descent
and tree-based heuristics are developed to capture complex
linear or nonlinear relationships between features. Specifically,
tree ensemble models often outperform simpler models on
structured data by building a series of decision trees and
updating iteratively to minimize the loss,

fm(x) = fm−1(x) + γmhm(x),

where:
• fm(x): Prediction at iteration m,
• hm(x): Weak learner (e.g., a shallow decision tree),
• γm: Step size for the weak learner.

Unlike the spatial dependence-based models which integrate
the geospatial information explicitly, machine learning models
theoretically are available for all kinds of tabular data inference
tasks, but can be applied to the geospatial field easily by
engineering the geographical features (e.g., raw coordinates,
distance to landmarks, elevation, or land use types) and
including location information (i.e., coordinates in most cases).

C. Hybrid Kernel-Based Models

Recent advances have sought to explore hybrid approaches
to boost the strengths of handling of spatial dependence.

The most straightforward trail is to consider Kriging as an
extension of GWR, but train these two components separately.
Following this basic hybrid idea, Geographically Weighted
Regression Kriging (GWRK) [24] was developed and its
efficiency proven on datasets from different domains [25][26].

Another possible combination is merging Kriging with ML
models. By using Kriging as the base model and ML models
as either internal learners for residuals [27] or as a super
learner [9], this hybrid approach helps mitigate the limitations
of both model types, allowing effectively incorporating spatial
relationships while enhancing predictive performance.

Moreover, the variogram function in Kriging or a local
linear function are not the only choices to model geospatial
dependence. E.g., Gaussian Processes (GPs) can also model
spatial dependencies explicitly through kernel functions and
by weighting proximal observations spatially. The Gaussian
kernel is defined as:

k(si, sj) = exp

(
−∥si − sj∥2

2ℓ2

)
,

where:
• k(si, sj): Covariance between points si and sj ,
• ℓ: Length scale parameter, determining how quickly the

correlation decays with distance,
• ∥si − sj∥: Euclidean distance between points si and sj .

In theory, by embedding spatial correlation into machine
learning workflows, these kernel-based methods enhance pre-
dictive performance while retaining the capacity to model
non-linearities and complex interactions.

D. TabPFN

TabPFN is a single Transformer pre-trained to approxi-
mate probabilistic inference using a designed prior based on
Bayesian Neural Networks. It is built on Prior-Data Fitted
Networks (PFNs) [28], which can directly sample from and
approximate the Posterior Predictive Distribution (PPD). Unlike
conventional neural networks and tree ensembles that rely
on fixed structures, such as neural layers or constrained
tree depth, TabPFN [11] incorporates not only a Bayesian
Neural Network-based prior [29][30] but also Structural Causal
Models [31][32] to capture complex feature dependencies and
analyze underlying causal mechanisms, particularly in tabular
data. It has demonstrated superior inference performance across
various datasets spanning different domains. As a pre-trained
Transformer, TabPFN embeds all input features as tokens and
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processes them through a feed-forward mechanism, treating
coordinates as standard input features alongside others.

In summary, these three types of models leverage geospatial
dependence in two distinct ways: either by directly integrating
geographic information as a distance matrix to model interac-
tions between the target point and its proximal neighbors or by
engineering proximity as hard features, incorporating location
information as standard features while ignoring autocorrelation
among points. Although a vast body of literature applies these
methods to tackle various real-world challenges, researchers
rarely discuss the advantages and efficiency of explicitly using
spatial dependence. Models like Kriging and GWR often
entail high computational costs and are susceptible to singular
distance matrices, which can render the Kriging system or
covariance matrix unsolvable.

In contrast, ML and TDL models mitigate computational cost
and solvability concerns, as they do not require solving linear
systems based on distance matrices. Instead, they directly model
the mapping function from tabular features and approximate
the prior distribution of the given dataset, which is particularly
efficient with larger datasets.

To uncover the most efficient approach for different geospa-
tial inference tasks, we conducted an extensive experiment
evaluating various models in terms of predictive performance
and computational cost. We hope this study provides new
insights into modeling geospatial variables and selecting
practical models for real-world applications, especially under
the presence of stronger ML models, as well as very recent
TDL approaches.

III. EXPERIMENTAL SETUP

In this section, we describe an exhaustive experiment to
compare a wide range of ML models with other well-known
geospatial predictive modeling techniques, covering a collection
of real-life datasets.

A. Datasets

There are two primary types of public datasets used in
this work to evaluate the performance of geospatial statistical
models and machine learning models, i.e., property datasets
obtained from Kaggle and biology related datasets from the R
package Spatstat.data.

All these datasets contain at least coordinates (either geo-
graphical or geometric coordinates), but not all of them have
additional features, such as hedonic features of property data.
To validate the capability of various models on capturing
geospatial information and the utility of geospatial dependence,
we divide the dataset further into two categories that consist
of coordinates-only and full-feature datasets. Each dataset
was cleaned to remove duplicate values and was re-scaled
so features fall in a range of 0 to 1. We partitioned each
dataset into a training set (70%), a validation set (10%) and a
test set (20%). Note that when a timestamp was available (such
as for real estate datasets), we perform the train-validation-test
split in a temporal manner (i.e., chronologically).

Moreover, we carefully process the coordinates to ensure
reliable geospatial inference. First, all coordinates are converted
into a Cartesian coordinate system according to the dataset’s
geographical location, ensuring unified features to each model,
and avoiding potential spherical distortions on statistic models
which are based on distance matrices. Specifically, for GWR
and Kriging, we keep the Cartesian coordinates unscaled to
maintain consistent Euclidean distance calculations. For ML
and TDL models, we scale the coordinates similarly to the
other input features.

B. Models

As shown in Table I, we select a diverse set of models that
cover different methodological categories to comprehensively
evaluate the effectiveness of geospatial statistical models, ML
and TDL approaches. The selected models are categorized into
machine learning, TDL, kernel-based methods, and geospatial
statistical models.

Machine learning models include Linear Regression
with Ridge regularization [33], Support Vector Machine
(SVM) [34][35][36]) and tree ensemble methods (Random
Forest (RMF) [37], XGBoost [38], LightGBM (LGBM) [39],
and CatBoost [40]). Strictly speaking, the kernel-based models
covering Gaussian Processes [41], Tweedie Regression [42],
and the hybrid Kriging-LGBM approach could also be placed
under the ML group. But since they combine machine learning
and geospatial statistics, we categorize them separately. The
hybrid model—Kriging-LGBM [27], is the most representative
in this group. It uses a LightGBM regressor as an internal
kernel and then gathers and processes geospatial information
with Kriging on target residuals. Moreover, a recent state-of-
the-art tabular deep learning model—TabPFN—is also included
in this experiment. To the best of our knowledge, this is the
first study to investigate the performance of TabPFN in the
geospatial domain using explicit coordinate inputs. Finally, we
include the most classical geospatial statistical models, i.e.,
GWR [15], and Regression Kriging [43][44][45].

Each model’s hyperparameters are tuned according to the
grid values listed in the table, to ensure a fair and com-
prehensive evaluation across different modeling approaches.
Hyperparameters for all models were systematically tuned
on the validation set using root mean square error (RMSE).
The best parameter combination was then used to test on the
completely unseen test set to report the evaluation results.
All models share the same data partitions. Note that TabPFN
claims to be able to reach competitive results without any
hyperparameter tuning, so for this pre-trained model, no tuning
was performed.

C. Comparative Setup

To clarify the extent of importance of coordinates in various
inference tasks and assess the efficiency of different models in
terms of leveraging spatial locations, we evaluate the model
performance under two main dataset configurations: one using
only spatial coordinates, and the other one incorporating both
coordinates and additional features when available.

51Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-269-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

GEOProcessing 2025 : The Seventeenth International Conference on Advanced Geographic Information Systems, Applications, and Services



TABLE I
OVERVIEW OF MODELS AND THEIR HYPERPARAMETERS USED IN THE COMPARISON.

Category Type Model Hyperparameters

Machine Learning

Linear
Ridge LR α: [0.1, 0.2, ..., 0.9]
SVM C: [1, 11, ..., 101]

ϵ: [0.1, 0.2, ..., 0.9]

Tree Ensemble

RandomForest min_samples_split: [2, 3, 5]
min_samples_leaf: [3, 5, 10]

XGBoost learning_rate: [0.1, 0.01, 0.005]
reg_alpha: [0.0, 0.1, ..., 1.0]
reg_lambda: [0.0, 0.1, ..., 1.0]

LGBM learning_rate: [0.1, 0.01, 0.005]
reg_alpha: [0.0, 0.1, ..., 1.0]
reg_lambda: [0.0, 0.1, ..., 1.0]

CatBoost iterations: [100, 200]
learning_rate: [0.001, 0.005, 0.01, 0.05, 0.1]
l2_leaf_reg: [0.1, 0.5, 1, 5]

Kernel Based
Gaussian Gaussian Process kernel: C(1.0) * RBF( length_scale_bounds=(1e-2, 1e2))

alpha: [0.1, 0.2, ..., 0.9]
Power Tweedie power: [0, 1, 1.2, 1.5, 1.8, 2, 3]

alpha: [0.0, 0.1, ..., 0.9] + [2, 5, 8, 10]
ML Kernel Kriging LGBM Kriging params: nlags = [30, 60, 90, 120]

variogram_model: [“gaussian”, “linear”]
Lightgbm params: reg_alpha: [0.0, 0.5, 1.0]

reg_lambda: [0.0, 0.5, 1.0]
learning_rate: [0.1, 0.01, 0.005]

Geospatial Statistics
Geospatial Heterogeneity GWR best bandwidth for kernel
Geospatial Autocorrelation Kriging nlags: [30, 60, 90, 120]

variogram_model: [“gaussian”, “linear”]

Deep Learning Tabular DL TabPFN —

The primary evaluation metric to quantify the predictive
performance of each model is the Root Mean Squared Error
(RMSE). Additionally, we assess the computational efficiency
by measuring the training time per model per run during
the hyperparameter tuning. This dual assessment allows us
to analyze the trade-offs between model performance and
computational cost, providing insights into the practicality
of each approach in geospatial prediction tasks.

The experiment is conducted on an Intel Core i9-13900 (13th
Gen) CPU with 64 GB of RAM and an NVIDIA RTX A5000
GPU.

IV. DISCUSSION

All the results are shown in Table II and Table III. Since
Regression Kriging only accepts coordinates as input, its
predictive results remain the same for both datasets, with and
without hedonic features.

Interestingly, we find that TabPFN consistently achieves
the lowest RMSE across both datasets with hedonic features

and without (coordinates only). In particular, on datasets
with hedonic features, TabPFN outperforms all other models
virtually all cases, which serves as one of the first illustrations
of the competitive power of this recent approach in the domain
of geospatial inference.

Tree ensemble models, especially LightGBM, XGBoost, and
CatBoost, rank second. Although they do not surpass TabPFN,
their performance is still clearly better than geospatial statistical
models. In contrast, linear models, including Ridge Regression
and SVM, consistently yield the worst predictions among all
models, indicating that ML models can sufficiently capturing
geospatial dependencies without having to deal with coordinates
in a specific manner, as long as the chosen ML model is strong
enough.

Notably, Gaussian Processes, Kriging, and the Kriging
LGBM Regressor, which explicitly utilize geospatial infor-
mation, also demonstrate strong performance on a few datasets
where only coordinates were included. However, they do
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TABLE II
COMPARISON OF MODEL PERFORMANCE (RMSE) ACROSS DIFFERENT DATASETS WITH ONLY COORDINATE FEATURES.

Data Ridge LR SVM GWR Kriging Kriging LGBM Gaussian P Tweedie RMF LGBM XGBoost CatBoost TabPFN
anemones 0.1756 0.1870 0.1841 0.1826 0.1826 0.1804 0.1755 0.1753 0.1747 0.1779 0.1766 0.1810
beijing 0.1833 0.1342 0.1390 0.1284 0.1284 0.1380 0.1833 0.1296 0.1279 0.1279 0.1273 0.1272
bronzefilter 0.1736 0.2364 0.2133 0.1835 0.1835 0.1754 0.1622 0.1553 0.1623 0.1615 0.1795 0.1535
dubai 0.1941 0.1584 0.1668 0.1373 0.1373 0.1539 0.1911 0.1384 0.1448 0.1413 0.1404 0.1391
london 0.0885 0.0717 0.0676 0.0641 0.0641 0.0704 0.0885 0.0643 0.0650 0.0652 0.0667 0.0653
longleaf 0.3114 0.2978 0.2546 0.2750 0.2750 0.2923 0.2531 0.2641 0.2798 0.2639 0.3037 0.2451
melbourne 0.0944 0.0708 0.0751 0.0603 0.0602 0.0652 0.0922 0.0608 0.0610 0.0599 0.0599 0.0588
newyork 0.1104 0.1018 0.0955 0.0964 0.0964 0.0981 0.1104 0.0928 0.0931 0.0930 0.0939 0.0925
paris 0.0216 0.0615 0.0208 0.0213 0.0213 0.0217 0.0216 0.0205 0.0203 0.0203 0.0203 0.0202
perth 0.0555 0.0444 0.0350 0.0348 0.0348 0.0384 0.0548 0.0339 0.0340 0.0341 0.0344 0.0340
seattle 0.1448 0.1181 0.1147 0.1101 0.1101 0.1154 0.1448 0.1092 0.1096 0.1095 0.1103 0.1100
spruces 0.2038 0.2361 0.1984 0.2284 0.2284 0.1889 0.1942 0.2204 0.1889 0.2004 0.1911 0.1928
waka 0.1240 0.1398 0.1237 0.1295 0.1295 0.1233 0.1235 0.1293 0.1235 0.1234 0.1232 0.1230

TABLE III
COMPARISON OF MODEL PERFORMANCE (RMSE) ACROSS DIFFERENT DATASETS WITH COORDINATE AND ADDITIONAL FEATURES.

Data Ridge LR SVM GWR Kriging Kriging LGBM Gaussian P Tweedie RMF LGBM XGBoost CatBoost TabPFN
beijing 0.1718 0.1378 0.1329 0.1284 0.1285 0.1608 0.1693 0.1031 0.1003 0.1045 0.1036 0.1008
dubai 0.1801 0.1982 0.1852 0.1373 0.1303 0.1982 0.1905 0.1194 0.1202 0.1201 0.1122 0.1038
london 0.0846 0.0757 0.0859 0.0641 0.0628 0.0776 0.0846 0.0589 0.0586 0.0588 0.0602 0.0562
melbourne 0.0803 0.0702 0.0673 0.0603 0.0389 0.0687 0.0581 0.0326 0.0296 0.0313 0.0291 0.0263
newyork 0.0863 0.0759 0.0721 0.0822 0.0726 0.0751 0.1002 0.0565 0.0562 0.0560 0.0561 0.0532
paris 0.0213 0.0246 0.0206 0.0213 0.0213 0.0217 0.0214 0.0202 0.0202 0.0201 0.0201 0.0201
perth 0.0494 0.0460 0.0355 0.0348 0.0324 0.0375 0.0489 0.0270 0.0277 0.0274 0.0282 0.0275
seattle 0.1252 0.1100 0.0966 0.1101 0.0981 0.1134 0.1253 0.0838 0.0820 0.0836 0.0831 0.0790

Figure 1. All features: visualizations of training time (s) per hyperparameter
run across different models in log scale.

encounter challenges in terms of incorporating additional
features, limiting their effectiveness in such cases.

Figure 1 and Figure 2 evaluate model performance from a
more practical perspective. Due to computational constraints,
models that require less time for training and tuning are
more advantageous for real-world applications. It is evident
that models which are heavily reliant on spatial dependence
(i.e., Gaussian Processes, Kriging, and GWR) experience

Figure 2. Coordinates features: visualizations of average training time (s) per
hyperparameter run across different models in log scale.

exponentially increasing training and tuning times as the dataset
size grows.

TabPFN, on the other hand, requires significantly less time
due to its pre-trained nature. Given its superior predictive
performance, TabPFN offers a balance between predictive
power and efficiency. Similarly, tree ensemble models incur
lower computational costs compared to statistical models,
thanks to their optimized tree structures, which enable faster
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training while maintaining competitive predictive performance.
Our experimental results highlight the utility of geospatial

dependence in predictive modeling. Tabular deep learning,
i.e., TabPFN and tree ensemble methods demonstrate strong
predictive performance using only coordinates, as well as when
additional features are included, in many cases outperforming
traditional geospatial statistical models like GWR and Kriging.
This suggests that explicit spatial modeling is not always
necessary, especially when models are strong enough to
implicitly capture spatial dependencies from coordinate features.
Moreover, by treating coordinates as standard input features
rather than relying on computationally intensive geospatial
models, we can significantly reduce training and inference costs
while maintaining competitive regression performance, which
is particularly valuable for large-scale geospatial applications.

V. CONCLUSIONS

The primary goal of this work was to explore the balance
between expressiveness, efficiency, and predictive power among
different modeling approaches, including geospatial statistical
models, machine learning models, kernel-based models, and tab-
ular deep learning. Traditionally, geospatial inference research
explicitly models spatial dependence by leveraging distance
matrices. However, we argue that overemphasizing explicit
spatial learning is not always necessary, as it neither guarantees
superior predictive performance nor ensures computational
efficiency compared to more effective approaches, such as
tabular deep learning and tree ensemble models.

To further support our argument, we conducted a com-
parative experiment evaluating the predictive capabilities and
computational costs of geospatial statistical models, machine
learning models, kernel-based models, and tabular deep learning
on datasets containing only coordinates, as well as datasets
with additional features. The results demonstrate that TabPFN
achieves an optimal balance between expressiveness, efficiency,
and predictive power, making it the most effective choice
for geospatial regression tasks in this study. These findings
prompt a reconsideration of the learning paradigm in geospatial
inference. Instead of relying on variograms or local functions
based on distance metrics—which impose a heavy computa-
tional burden—incorporating coordinates as standard features
in tabular deep learning or tree ensemble models may provide
a more efficient and predictive alternative.

Although we have included several publicly available
datasets, certain limitations should be acknowledged. A more
exhaustive study should incorporate a wider range of datasets
and modeling techniques from diverse fields beyond real estate,
while also considering regions with varying population densities
rather than focusing solely on highly urbanized areas. This
would provide a broader and more generalizable evaluation.
Additionally, future research could explore additional hybrid
models, such as MGWR and GWRK, as well as expand the
hyperparameter tuning grid to further optimize on performance.
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