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Abstract—Distinguishing olive varieties is essential for optimiz-
ing orchard management and oil quality. Hyper-Spectral Imaging
(HSI) captures subtle spectral differences in leaf reflectance,
surpassing conventional sensors. This study explores the use of
drone-acquired HSI to differentiate Arbequina and Picual olives,
two predominant varieties. The high spectral resolution of HSI
enables precise varietal mapping, supporting more efficient and
sustainable agriculture.
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I. INTRODUCTION

The identification of olive varieties is essential for optimizing
orchard management, irrigation strategies, and oil quality con-
trol. Traditionally, this process has relied on expert knowledge,
morphological analysis, or genetic testing, which are time-
consuming, costly, and impractical for large-scale plantations.
A more efficient alternative is Hyper-Spectral Imaging (HSI),
which captures the spectral reflectance of plants across a
wide range of wavelengths, allowing for precise differentiation
between varieties.

HSI has proven to be highly effective in agricultural applica-
tions due to its ability to detect subtle biochemical and structural
differences in plant tissues. Unlike multispectral imaging, which
captures only a limited number of spectral bands, hyperspectral
sensors provide continuous spectral information, enabling a
more detailed analysis of plant characteristics. In the case of
olive cultivation, this technology offers a non-invasive method
for distinguishing between varieties based on their unique
spectral signatures.

In this study, we investigate the potential of Unmanned Aerial
Vehicle (UAV)-mounted hyperspectral sensors to classify olive
varieties in a high-throughput manner. We focus on Arbequina
and Picual, two of the most widely cultivated varieties in
southern Spain, which exhibit distinct agronomic and oil
composition traits. By analyzing spectral differences in leaf
reflectance, we aim to demonstrate the feasibility of HSI for
precise varietal mapping, which can support more efficient and
sustainable orchard management practices.

In Section 2, we present related work and describe the
methods employed, including a brief review of similar studies

and the workflow followed for data processing. Section 3
discusses the results obtained after applying the proposed
classification methods for olive variety differentiation. Section
4 provides an evaluation and discussion of the results, while
Section 5 concludes the study and outlines potential directions
for future research.

II. RELATED WORK | METHODS

HSI has become a key technology in precision agriculture,
providing a non-destructive and high-resolution method for
crop monitoring and analysis [1]. Unlike multispectral imaging,
it captures reflectance across numerous narrow spectral bands,
detecting subtle differences often missed by traditional sensors
[2]. Applications include soil erosion analysis, plant health
assessment, and water stress monitoring [3], as well as inventory
management, irrigation control, disease detection, and yield
estimation in olive cultivation [4], contributing to sustainable
practices by optimizing resources and reducing environmental
impact [5].

HSI’s detailed chemical and physical information makes it
particularly effective for distinguishing crop varieties [6]. It has
been used to identify crop types like wheat, maize, and rice
[7] [8], and even different varieties within the same crop, such
as wheat [9] and rice [10]. In olive cultivation, beyond variety
identification, HSI has supported disease detection, maturity
assessment, and yield estimation [11] [12].

Given the diversity of olive varieties, HSI-based classification
is a growing research field. By capturing differences in pigment
concentration, moisture, and cellular structure, hyperspectral
sensors can distinguish varieties, although challenges remain
due to spectral similarities and external factors. Recent studies
have shown the feasibility of variety identification using
lightweight models throughout the season [13] [14].

Gomes et al. [15] demonstrated that hyperspectral reflectance
effectively differentiates olive varieties, emphasizing its value
for sustainable orchard management. Unlike manual spectral
acquisition, our approach uses UAV-mounted sensors for
automated, large-scale mapping without laboratory sampling.
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However, UAV-based HSI faces challenges such as the
influence of shadows on vegetation indices [16] and the need for
improved hyperspectral mosaicking methods [17]. Addressing
these issues is crucial to fully exploit HSI for olive variety
identification and precision agriculture.

Figure 1 shows the general workflow followed by the
methodology.

Figure 1. Methodology workflow.

The study was conducted in Mengíbar, Jaén, at the IFAPA
Venta del Llano Center, a research facility focused on agricul-
tural development, particularly olive cultivation. Its location is
shown in Figure 2. The experimental plot consists of 14 rows
of olive trees, each with approximately 24 trees, organized
into blocks of four trees per variety. Among these, 21 different
olive varieties are tested, including ‘Arbequina’ and ‘Picual’
as reference cultivars. The randomized distribution ensures
representative data collection, aiding research on adaptability,
productivity, and phenotypic characteristics.

Figure 2. Geogrphic location for the study area.

A UAV equipped with a NanoHyperspec camera (Headwall)
and a Light Detection And Ranging (LiDAR) sensor captured
hyperspectral data across 270 spectral bands (400–1000 nm) at a
2 cm Ground Sample Distance (GSD). The flight was conducted
at 30 meters AGL with a speed of 5 m/s, ensuring high data
quality. Overlapping flight paths (1% longitudinal, 40% lateral)

minimized gaps, while terrain adjustments maintained accuracy.
Headwall SpectralView™ software processed the hyperspectral
data, applying radiometric and geometric corrections using a
Digital Elevation Model (DEM) derived from LiDAR data.
The reflectance calibration was based on dark and white
reference measurements. Figure 3 shows the processes required
to properly correct the data taken with the hyperspectral sensor.

Figure 3. Spectral and geometric corrections applied to the hiperspectral data.

Once the hyperspectral data is properly adjusted, it is
necessary to differenciate invidual olive trees, applying a
tree canopy segmentation. Individual tree segmentation was
essential for precise spectral analysis. Using the Enhanced
Vegetation Index (EVI), vegetation was isolated, minimizing
shadow effects. EVI was selected due to its effectiveness in
distinguishing vegetation while minimizing shadow influence.
The index’s smoothing term (L) reduces soil background effects,
which is particularly useful in olive orchards. By utilizing
specific spectral bands (Near-Infrared (NIR), red, and blue),
EVI is particularly well-suited for analyzing hyperspectral
image data, where these bands are clearly defined [18].

The equation is as follows:

EVI = G · NIR − Red
NIR + C1 · Red − C2 · Blue + L

, (1)

where:
• G: Gain factor, with a default value of 2.5
• C1 y C2: Atmospheric correction coefficients, with default

values of 6.0 and 7.5, respectively.
• L: Smoothing term, with a default value of 1.0.

Once the pixels of interest are selected, the segmentation is
refined by delineating olive trees more precisely using several
geospatial processing techniques and clustering methods. The
key method for this segmentation is the use of the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm for grouping geometries into individual trees [19].
This process generates a vector mask with unique identifiers
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and variety classifications. The final segmentation was manually
refined in the software Quantum Geographic Information
System (QGIS) to ensure accuracy [20]. Figure 4 shows the
steps taken to properly segment trees canopies.

Figure 4. Segmentation process.

Once the olive canopy is identified, selecting relevant
hyperspectral pixels is critical for improving classification
accuracy. A two-step filtering process is applied: first, low-
reflectance pixels, mainly from shadowed areas, are removed
based on NIR reflectance thresholds; second, spectral stability
is ensured by filtering out pixels with high variability across
bands.

In the first step, pixels are assessed by their NIR reflectance,
retaining only those exceeding a predefined threshold to exclude
shadow-affected areas. The second step refines pixel selection
by evaluating spectral variability. Two statistical parameters
are computed for each band:
• Spectral Relevance Threshold: pixels are considered rele-

vant if its reflectance value exceeds a dynamically calculated
threshold:

thresholdmean[band] = µ[band] + 0.5 · σ[band]

• Low Dispersion Criterion: to ensure that selected pixels
belong to bands with limited variability, an additional
constraint is applied:

σ[band] < 0.75 · σ

where σ represents the global mean standard deviation
across all bands. This condition excludes spectral bands
with excessive variability, which may be less reliable for
analysis.
Pixels meeting both criteria are retained, resulting in a

binary mask that refines the dataset by eliminating spectral
inconsistencies. As shown in Figure 5, these filters are applied

to each tree to exclude pixels affected by shadows or extreme
spectral responses, ensuring a more accurate and representative
analysis.

Figure 5. Before and after applying low reflectance filtering in the NIR
and standard deviation. (a) Unfiltered view of Olive 401 and the reflectance
response of randomly selected pixels. (b) View of Olive 401 after filtering and
the reflectance response of randomly selected pixels.

To compare different olive trees and determine whether they
exhibit similar spectral behaviour, a classification system based
on spectral ranges was developed. This method operates at
both the pixel and tree levels, calculating the percentage of
pixels within each predefined range for each tree. To optimize
computational efficiency, spectral bands were selectively sam-
pled: one out of every ten bands, and one out of every five in
the NIR region, where vegetation reflectance is most sensitive
to variations. This resulted in a total selection of 27 bands.

Figure 6. Comparison of any spectral response with the created ranges. Each
spectral signature falls within a different range for each of the selected spectral
bands.
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The classification approach is based on a reference spectral
signature constructed from the mean spectral response of all
analysed olive trees. From this baseline, upper and lower
thresholds are defined using the 90th and 10th percentiles,
respectively. This ensures the exclusion of extreme pixel values
that might distort classification results. Each pixel’s spectral
signature is compared against the baseline across the selected
bands, classifying it into six ranges. Figure 6 illustrates a sample
spectral reflectance response compared to the predefined ranges,
indicating the corresponding range for each selected band. This
information is then used to classify all pixels within the canopy
of each tree.

TABLE I
VALUES BY ID_OLIVE AND THEIR RESPECTIVE RANGES.

ID_OLIVE Variety Range 10 20 30 ... 217

401 36-41 Max range (Range 3 to 10.0) 19.86 18.29 18.92 ... 3.10
401 36-41 Range 3 / Range 2 9.60 7.93 9.56 ... 4.44
401 36-41 Range 2 / Range 1 13.31 10.50 10.14 ... 8.91
401 36-41 Range 1 / Mean 16.25 16.19 15.32 ... 14.06
401 36-41 Mean / Range -1 15.07 16.11 15.14 ... 16.82
401 36-41 Range -1 / Range -2 12.12 13.34 14.71 ... 17.41
401 36-41 Range -2 / Range -3 7.65 10.36 10.17 ... 15.01
401 36-41 Min range (0.0 to Range -3) 6.13 7.29 6.04 ... 20.27

The classification results are organized in a matrix where
the x-axis represents the 27 spectral bands and the y-axis the
defined ranges. Each cell shows the percentage of pixels falling
within each range for a given band. For example, if all pixels
of a band fall into range 2, it will account for 100% of the
pixels, with the rest at 0%.

This classification enables the analysis of the pixel dis-
tribution across ranges for each tree, allowing comparative
assessments of spectral behaviour between different olive trees
and varieties. Results are systematically stored and analysed,
providing a quantitative basis for evaluating varietal differences.
As shown in Table I, the percentage distribution across ranges
is displayed for each selected band, ensuring that the total per
band sums to 100.

III. RESULTS

Following the implementation of the classification method
for the hyperspectral image, numerical results were obtained,
providing insights into the distribution of pixels within each
olive tree across different predefined spectral ranges. By
analyzing these proportions, comparisons were made between
olive trees of similar and different varieties to identify potential
differences in their spectral behaviour.

Given the complexity of interpreting numerical differences
directly, graphical representations were employed. As shown in
Figure 7, pixel proportions per spectral band were visualized
for each created range, using olive tree 401 as an example.
The graph is divided into six sections, each corresponding to a
different range, illustrating the distribution of pixel proportions
across spectral bands. A clear trend is observed, where most
pixels are concentrated in intermediate ranges.

This graphical representation was extended to all 24 olive
trees in the study row, with every four trees belonging to the
same variety. The objective was to determine whether trees
of the same variety exhibited similar trends in their spectral
distributions. Figure 8 displays all graphical representations,
where each set of four graphs corresponds to a specific variety.

Upon analysing the spectral distributions of the 24 olive
trees, clear patterns emerged within each variety. Notably,
Arbequina and Picual varieties exhibited consistent spectral
trends, with similar curve shapes and peak amplitudes among
trees of the same variety. These findings suggest that spectral
characteristics, influenced by the biophysical and biochemical
properties of the trees, are closely related to variety, reinforcing
the idea that genetic and physiological factors impact spectral
behaviour.

According to IFAPA farm organizers, the studied varieties
originate from the same maternal lineage, implying genetic
similarity. However, differences were observed between two
groups of Picual trees, indicating variability despite belonging
to the same variety. This discrepancy may be attributed to
the fact that these groups do not share the same mother
plant, potentially resulting in distinct genomes that explain the
spectral differences. Consequently, trees within each subgroup

Figure 7. Graphical representation of the proportion of pixels in each range for a random olive tree.
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Figure 8. Representation of proportion graphs for each olive tree (24 in total).

are expected to be more similar to each other than to those in
the other subgroup.

Additionally, minor variations were noted within each variety,
likely influenced by external factors such as lighting conditions
or localized environmental differences. These variations were
more pronounced in the 36-41 variety, where certain spectral
peaks displayed greater fluctuation. Despite these variations,
the overall pattern remained consistent, reinforcing the potential
of HSI as a reliable tool for olive variety differentiation, as is
shown in Figure 8.

Figure 9. Heatmap of Euclidean distances between olive trees based on
extracted features (mean, standard deviation, maximum, minimum, skewness,
and kurtosis). Lighter colors (yellow) indicate smaller distances (higher
similarity), and darker colors (red) indicate larger distances (lower similarity).
Olive trees are labeled with their ID and variety (e.g., "401 (36-41)").

To further explore the similarities and differences among
olive trees, a heatmap of pairwise Euclidean distances in a
normalized feature space was generated, as is shown in Figure

9. Features including the mean, standard deviation, maximum,
minimum, skewness, and kurtosis were extracted from the
spectral data for each olive tree and standardized. The olive
trees are compared to each other, generating this heat map,
which visualizes these distances, with lighter colors (yellow)
indicating higher similarity and darker colors (red) indicating
greater dissimilarity. For instance, olive trees of the same
variety, such as 403 and 404 (both "36-41"), show small
distances, while trees from different varieties, such as 403 ("36-
41") and 405 ("AR"), exhibit larger distances. A Random Forest
classifier validated these features, achieving an accuracy of 1.0
across 5-fold cross-validation, confirming their effectiveness in
distinguishing olive varieties. It is visible as well how the first
four olives with variety PI (Picual) shown similarities with the
last four olives of the same variety.

This analysis highlights the significance of Hyper-Spectral
Imaging in varietal classification, as intra-varietal similarities
were found to be substantial despite minor fluctuations. These
findings support the use of spectral analysis for the classification
and management of olive varieties in agricultural settings.

IV. DISCUSSION | EVALUATION

This study demonstrates the effectiveness of UAV-based
Hyper-Spectral Imaging (HSI) for differentiating olive varieties
based on spectral characteristics. The successful classification
of Arbequina and Picual varieties highlights the potential of
spectral analysis as a non-invasive tool for varietal identifica-
tion.

Critical to this success were spectral filtering and advanced
segmentation techniques, which minimized noise by removing
shadow-affected pixels and applying spectral stability criteria.
However, environmental factors such as illumination variability,
atmospheric conditions, and leaf age remain challenges that
can introduce inconsistencies.

Overall, the evaluation of the results obtained is positive.
Not only was the spectral similarity between olive trees of
the same variety intuited in the graphs shown in Figure 8, but
the comparison of olive trees using the Euclidean distance
calculation clearly shows the similarity between these varieties,
clearly visualized in the matrix in Figure 9, taking into account
the specific failures that are difficult to distinguish due to the
environmental factors described above.

It can therefore be confirmed that UAV-based HSI offers
valuable advantages for precision agriculture by enabling large-
scale varietal monitoring, supporting more efficient orchard
management, and promoting sustainable olive production.

V. CONCLUSION AND FUTURE WORK

This work establishes UAV-based hyperspectral imaging as
a scalable and effective method for olive variety classifica-
tion, offering a promising alternative to traditional sampling
approaches. Despite its success, environmental variability and
computational demands must be addressed to fully unlock its
potential.

Future research should focus on enhancing model robustness
against external factors through advanced machine learning
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techniques, particularly deep learning models capable of
capturing subtle spectral patterns. Improving computational
efficiency using dimensionality reduction methods, such as
autoencoders or a Principal Component Analysis (PCA), will
be key to enabling real-time or near-real-time analysis.

Additionally, the fusion of hyperspectral data with other
sensing modalities, like LiDAR or thermal imaging, presents a
promising path for improving the differentiation of similar
cultivars. Advances in these areas will drive the broader
adoption of HSI in agriculture, fostering more precise, efficient,
and sustainable orchard management.
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