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Abstract—The automated classification of olive varieties plays a
crucial role in Precision Agriculture, enabling optimized resource
allocation, improved irrigation strategies, and enhanced olive
oil quality. This study explores the integration of Hyperspectral
Imaging (HSI) and Deep Learning (DL) to classify olive varieties,
focusing on Picual. Utilizing drone-acquired hyperspectral data,
a Convolutional Neural Network (CNN) was employed to analyze
leaf reflectance and extract spectral-spatial features with high
accuracy. The Unmanned Aerial Vehicle (UAV)-based HSI system
captures high-resolution spectral data, allowing for the detection
of subtle differences in reflectance patterns that are imperceptible
to traditional sensors. The study demonstrates that the proposed
deep learning approach achieves an accuracy of approximately
90% in classifying olive varieties, significantly outperforming
traditional machine learning methods. These findings highlight
the potential of hyperspectral deep learning in agricultural
applications, paving the way for scalable, efficient, and sustainable
orchard management.
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I. INTRODUCTION

Olive cultivation (Olea europaea) is a fundamental compo-
nent of Mediterranean agriculture, contributing significantly
to global olive oil production. The identification of olive
varieties is crucial for optimizing agricultural management,
ensuring efficient irrigation, and enhancing oil quality. However,
traditional classification methods rely on manual expertise,
which is labor-intensive and impractical for large-scale olive
groves [1].

Spain, with the province of Jaén as its production heart, leads
the olive grove sector worldwide, being the largest producer
of olive oil and a benchmark for the quality and tradition of
this crop. In this province, Picual and Arbequina varieties are
the most prevalent, and it is a common practice to substitute
Picual trees with Arbequina due to the significant problem of
Verticillium wilt. This substitution results in a high prevalence
of mixed-variety groves, significantly affecting agricultural
management. Specifically, irrigation, pruning, fertilization, and
pest control strategies vary based on the type of variety. From a

cooperative perspective, cultivar identification is crucial; Picual
oil is characterized by an intense profile, high polyphenol
content, and a bitter, pungent flavor. The identification of this
variety is important to control the mixture with other varieties,
such as Arbequina. This justifies the projects that accurately
identify different tree specimens within groves.

This automatic species identification is now possible. HSI
has emerged as a powerful tool in Precision Agriculture,
enabling the detailed spectral analysis of plant species. Unlike
multispectral imaging, HSI captures narrow and continuous
spectral bands, allowing for the detection of subtle differences
in reflectance properties between varieties [2]. This technology
has been widely applied in tasks, such as vegetation monitor-
ing, disease detection, and yield estimation [2][3]. However,
conventional analysis techniques often struggle with the high-
dimensional nature of hyperspectral data.

To address these challenges, Artificial Intelligence (AI)
and Deep Learning (DL) methods have been increasingly
integrated with HSI for agricultural applications. Deep learning
techniques, particularly CNNs, have demonstrated significant
improvements in classification accuracy for various crops,
including wheat, rice, and maize [4]. CNNs effectively extract
spectral-spatial features from hyperspectral data, reducing the
need for manual feature engineering and improving classifica-
tion efficiency [5].

Recent studies have highlighted the advantages of DL over
traditional machine learning approaches in handling complex
hyperspectral datasets [2]. Traditional models, such as k-Nearest
Neighbors (k-NN) and Support Vector Machines (SVMs),
often struggle with the curse of dimensionality and require
extensive preprocessing. In contrast, CNNs automatically
learn hierarchical feature representations, enabling superior
performance in hyperspectral classification tasks [6].

Despite these advancements, limited research has been
conducted on the application of deep learning for Olive
Variety Classification. The spectral differences between olive
varieties, such as Arbequina and Picual, are often subtle,
making traditional classification approaches less effective [3].
Leveraging UAV-based hyperspectral imaging combined with
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CNNs offers a promising solution for automating and scaling
olive variety identification [4].

This study aims to develop a deep learning-based approach
for Olive Variety Classification using drone-acquired hyper-
spectral imagery. By applying CNN architectures optimized
for hyperspectral data, this research seeks to improve classifi-
cation accuracy and provide a scalable solution for Precision
Agriculture.

Section 2 provides an overview of related work and describes
the methodology used, including data acquisition and prepro-
cessing. Section 3 reports the experimental results, focusing on
model training and performance evaluation. Section 4 discusses
and interprets the findings. Finally, Section 5 presents the
conclusions and outlines potential directions for future research.

II. RELATED WORK | METHODS

The research took place in Mengíbar, Jaén, on land owned
by the Andalusian Institute of Agricultural and Fisheries
Research and Training (IFAPA) at the Venta del Llano Center.
This agricultural research facility operates under the research
instituteian Regional Government and is dedicated to research
and development in the agricultural sector, with a focus on
olive cultivation [7]. The center is located in Jaén, which
provides convenient access to a variety of olive plantations
for conducting field studies and experiments. The study was
carried out on a plot of land that offers optimal conditions for
examining different olive varieties in a real-world agricultural
setting.

The research area consists of rows of olive trees planted
specifically for experimental purposes, allowing for the as-
sessment of various olive cultivars. The experimental design
includes 14 rows, each with around 24 trees. Within each row,
groups of four trees from the same variety are planted, followed
by a shift to a different variety. The row selected for the study
can be seen in Figure 1, seeing that there are 8 Picual olive
trees and the rest of other varieties.

Figure 1. Row selected for the study.

Most of the other varieties are hybrids under investigation
and are not widely cultivated. The random arrangement of
these varieties within each block ensures comprehensive data
collection and reduces bias. This structure enables IFAPA to
gather important insights into the adaptability, productivity,
and characteristics of different olive cultivars in the specific
environmental conditions of Jaén.

A. Hyperspectral data capture and preparation

This study utilized a UAV equipped with a NanoHyperspec
camera and Light Detection and Ranging (LiDAR) sensor to
acquire hyperspectral imagery of olive trees. Flight parameters

were optimized for high-quality data capture, including a 30-
meter altitude, 5 m/s speed, and specific overlap percentages
to ensure comprehensive coverage. The hyperspectral data,
capturing 270 spectral bands from 400 to 1000 nm, was
processed using Headwall SpectralView™ software, involving
reflectance calibration and geometric correction using a high-
resolution DEM (Digital Elevation Model) generated from
LiDAR data. This process resulted in a dataset of 24 olive
trees, showcasing spectral variations after applying necessary
corrections.

Subsequent steps focused on refining the hyperspectral data
for accurate classification. Tree canopy segmentation was
performed using the Enhanced Vegetation Index (EVI) and
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) clustering to delineate individual trees, creating a
vector mask with unique identifiers and variety classifications.
To further improve data quality, noisy pixels, particularly
those affected by shadows, were removed through a filtering
process based on Near Infrared (NIR) reflectance and standard
deviation. This filtering ensured that only spectrally stable
pixels were used for analysis, enhancing the consistency and
reliability of the data for subsequent classification methods. The
effectiveness of these filtering techniques was demonstrated
through visual comparisons and spectral signature analyses,
ultimately leading to a refined dataset suitable for precise olive
tree characterization.

B. Train, test and validation subsets

This section outlines the methodology for creating the
training, testing, and validation subsets for Picual vs. non-
Picual (PI - NO PI) classification. The data comes from
the IFAPA farm, where the fourth row was selected for data
extraction.

After segmentation, all the Picual olive trees were selected,
totalling 264. Similarly, another 264 of the other varieties were
randomly selected so that both sets were balanced, as can be
clearly seen in Table I. For the training set, approximately
80% of the above-mentioned set (180 olive trees for picual
and 186 for Non-Picual) were chosen. On the other hand, for
the validation set, the remaining 20% were chosen (49 and 43
respectively), reserving 35 of each class for a subsequent test
of the model generated (see Table I).

TABLE I
DESCRIPTION AND DISTRIBUTION OF PICUAL DATASET.

Dataset Train Data Validation Data Test Data Total
PI 180 49 35 264
NO PI 186 43 35 264

This partitioning ensures that the models are trained on
diverse and representative samples, improving reliability, gen-
eralizability, and reducing bias, while the separate validation
set helps prevent overfitting.
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C. Justification for the Use of Deep Learning and Neural
Networks

Deep learning models, such as Multi-Layer Perceptrons
(MLP) and CNNs, are particularly well-suited for handling
the intricate nature of hyperspectral data. These models excel
in identifying and learning hierarchical patterns directly from
the data, allowing them to adapt to the complex relationships
found in the numerous spectral bands of hyperspectral images.
This capability is crucial when classifying olive varieties, as it
enables the model to discover subtle, non-linear distinctions
that might otherwise be overlooked.

Additionally, deep learning models offer the advantage of
automated feature extraction, simplifying the overall process
by eliminating the need for manual intervention in selecting
key features. This not only streamlines the workflow but
also ensures that the model can capture essential information
more effectively. Combined with their ability to manage high-
dimensional data, deep learning models are well-equipped to
improve classification accuracy and address the challenges
posed by the intricate structure of hyperspectral datasets.

D. CNN architecture

As mentioned above, CNNs are highly suited for this study
due to the nature of hyperspectral data and the complexity of
Olive Variety Classification. A one-dimensional (1D) CNN
model was developed specifically for the classification of
Picual variety, using hyperspectral data. The model architecture
consists of four convolutional layers, two max-pooling layers,
a fully connected layer with dropout, and an output layer for
binary classification. The structure of the model is illustrated
in Figure 2. The input consists of the dataset depicted in
Table I. The first convolutional layer (in dark blue) applies
the Exponential Linear Unit (ELU) activation function, which
improves learning and normalizes feature maps by introducing
non-linearity [8]. These layers, shown in dark blue, vary in the
number of filters, and their kernels scan the hyperspectral
sequence to extract relevant features. Filters help capture
important patterns from the data, while the kernel size remains
consistent across all convolutional layers.

Following the convolutional layers, a MaxPooling layer
(shown in light blue) reduces the dimensionality of the feature
maps, using a pool size of 3. This step enhances the model’s
efficiency by focusing on the most prominent features, reducing
computational complexity, and preventing overfitting. After
every two convolutional layers, MaxPooling layers further
reduce the dimensionality, allowing the model to retain key
spectral features critical for classification.

Once the convolutional layers have extracted the necessary
features, the feature maps are flattened into a one-dimensional
vector and passed to a fully connected layer. This dense layer
captures complex relationships between the features, applying
the ReLU activation function to enhance learning by setting
negative values to zero, which helps avoid issues like vanishing
gradients. A dropout layer is then added to mitigate overfitting,
and the final output layer uses a sigmoid function to classify
the sample as either Picual or Non-Picual.

E. Computational Environment

The calculations in this study were carried out using the
Anaconda distribution with Python 3.9, together with the
NumPy, Pandas, TensorFlow and Scikit-learn libraries. For
Bayesian optimisation, the BayesianOptimization library was
used. All calculations were run on a personal computer with
the following specifications: Intel(R) Core(TM) i9-12900K
12th generation 3.20 GHz processor and 64 GB of RAM. The
operating system used was 64-bit on an x64-based architecture.

III. RESULTS

By employing UAV-based hyperspectral imaging, this study
removes the necessity for manual sampling, allowing for real-
time, high-throughput classification. This represents a major
leap forward in Precision Agriculture, enhancing the scalability
and efficiency of identifying olive varieties.

In this section, the hyperparameters of the CNN model
used for classifying olive varieties are further optimized. A
combination of manual tuning and Bayesian optimization was
utilized to determine the most effective configurations for the
Picual variety classification.

A. Refining the Classification

This section details the process of adjusting the hyper-
parameters of the CNN for the classification of olive tree
varieties. Different configurations were explored to optimise
the performance of the model, resulting in specific parameters
for Picual variety.

Initially, hyperparameters were manually tested to improve
model performance, but this approach proved to be time-
consuming and inefficient. As a result, Bayesian optimization
was chosen to streamline the process and systematically explore
the hyperparameter space. Bayesian optimization employs a
probabilistic surrogate model to approximate the objective
function—in this case, classification accuracy. It iteratively
refines its search by leveraging information from previous trials,
making it particularly useful when computational resources are
limited or evaluations are costly, as was the case in this study.

The optimized values, detailed in Table II, include the filters
applied to the convolutional layers, the kernel size for the ELU
layers, and the number of neurons in the dense layer. These
parameters were fine-tuned through Bayesian optimization to
enhance model performance.

TABLE II
RANGE OF CNN HYPERPARAMETERS USED FOR OPTIMIZATION IN THIS

STUDY.

Hyperparameters Range
Filter 1 [10,20]
Filter 2 [25,35]
Filter 3 [60,75]
Filter 4 [110,130]
Kernel size [2,5]
Dense Neurons [32,70]

After applying Bayesian optimisation, the optimal values for
the hyperparameters are shown in Table III. In addition, we
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Figure 2. Neural Network CNN.

add the Pool Size, Epochs and Patience which were adjusted
manually.

TABLE III
RANGE OF CNN HYPERPARAMETERS USED FOR PICUAL.

Picual
Hyperparameters Value
Filter 1 14
Filter 2 29
Filter 3 60
Filter 4 111
Kernel size 4
Dense Neurons 59
Pool Size 3
Batch Size 32
Epochs 50
Patience 10

B. Output of CNN

The application of CNNs for the classification of olive
tree varieties has produced significant results, showcasing the
capability of deep learning techniques to efficiently process
hyperspectral data. By leveraging UAV-based hyperspectral
imaging, this study eliminates the need for manual sampling,
enabling real-time, high-throughput classification. This repre-
sents a major advancement in Precision Agriculture, making
the identification of olive varieties more scalable and efficient.
The models were evaluated based on their performance in
classifying Picual (PI) and non-Picual (NO PI) varieties.

In addition to metrics, such as accuracy, recall, and F1-
score, confusion matrices were generated to visualize the
model’s performance for each class, illustrating true positives,
false positives, true negatives, and false negatives. During
training, epoch plots were generated, showing the reduction
in the loss function and the increase in accuracy over time,
allowing for an assessment of model convergence and the
detection of potential overfitting.

The CNN model for the Picual variety demonstrated robust
performance:
• Loss: 0.4201
• Accuracy: 0.8804

Table IV presents the classification report for the Picual
variety. The precision of the model shows that, when it predicts
an olive tree as Picual, it is correct 84% of the time, while
predictions of Non-Picual olive trees are correct 94% of the
time. The recall metric reveals that the model accurately
identifies 96% of all actual Picual olive trees and 79% of
the Non-Picual ones.

The F1-Score, which provides a balance between precision
and recall, is 0.90 for the Picual class and 0.86 for the Non-
Picual class. Overall, the model achieved an accuracy of 88%
in classifying the 92 test olive trees. The macro average of
the metrics (precision, recall, and F1-score) represents an
unweighted average across all classes, while the weighted
average accounts for the number of samples per class, ensuring
a more representative performance evaluation.

TABLE IV
CLASSIFICATION REPORT FOR PICUAL VARIETY.

Class Precision Recall F1-Score
Picual 0.84 0.96 0.90
No Picual 0.94 0.79 0.86
Accuracy 0.88
Macro Avg 0.89 0.87 0.88
Weighted Avg 0.89 0.88 0.88

The results of this can also be seen in the graph in Figure 3.

The epoch chart in Figure 4 visualizes how the CNN model
improves its performance during training for the classification
of the Picual variety. In this graph, the horizontal axis
represents the training epochs, while the vertical axis shows the
loss and accuracy. The confusion matrix for the Picual variety
shown in Figure 5 presents the performance of the CNN model
in distinguishing between Picual and Non-Picual (NON-PI)
olive trees.

The generalisability of the model was assessed using a new
set of 70 trees, equally divided between Picual and Non-Picual
varieties. The results are shown in Table V and demonstrate
the model’s ability to maintain a high level of accuracy on
unseen data.
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Figure 3. Comparison of Recall, Accuracy, and F-score between Picual and
Non-Picual.

Figure 4. Model Accuracy Across Epochs.

IV. DISCUSSION AND EVALUATION

After presenting the results obtained from the neural network
for the datasets, this section provides an interpretation of those
outcomes. The overall performance of the CNN model applied
to the Picual variety yields promising results in terms of
classification, as detailed in Table IV. The model’s loss value
of 0.4201 is relatively low, indicating that the network makes
few errors on average when classifying the Picual variety.
Although this loss value is slightly higher than might be ideal,
it still reflects the model’s effective learning.

In terms of accuracy, the model achieves 88.04%, meaning
it correctly classifies Picual trees in the majority of cases. This
level of accuracy is a solid indication of the model’s capability,
correctly identifying Picual trees 88% of the time. Regarding
recall for Picual (see Table IV), the model demonstrates an
impressive 96%, meaning it successfully identifies 96% of

Figure 5. Confusion Matrix CNN.

TABLE V
CLASSIFICATION REPORT FOR NEW PICUAL DATA.

Class Precision Recall F1-Score
Picual 0.78 0.91 0.84
No Picual 0.90 0.74 0.81
Accuracy 0.83 (70 instances)
Macro Avg 0.84 0.83 0.83
Weighted Avg 0.84 0.83 0.83

all Picual trees in the dataset. This high recall indicates the
model’s strong sensitivity to the Picual variety, minimizing
the number of Picual trees it misses. In contrast, the recall
for Non-Picual trees is 79%, suggesting the model correctly
identifies 79% of Non-Picual trees. Although lower, this value
is still reasonable for distinguishing between these classes.

The F1 score, which balances precision and recall, reaches
0.90 for Picual and 0.86 for Non-Picual, as shown in Table
IV. These high values confirm the model’s strong performance
across both classes, with slightly better performance for the
Picual class. The epoch chart in Figure 4 illustrates the
evolution of the model’s performance during training. The
gradual decrease in loss and the increase in accuracy with each
epoch reflect the model’s improvement over time. The curves
stabilize towards the end of the training process, suggesting
that the model has converged and is ready to generalize to new
data.

The confusion matrix (Figure 5) offers further insight into
the model’s classification performance. Higher values along the
diagonal indicate the model’s success in correctly classifying
most of the samples, while the lower off-diagonal values
point to fewer misclassifications, reflecting a high level of
classification reliability. To further validate the model, a new
dataset of 70 trees, equally split between Picual and Non-
Picual classes, was used. The model (see Table V) achieved
an overall accuracy of 83% in this validation set, with a class-
specific accuracy of 78% for Picual and 90% for Non-Picual.
These results confirm the model’s ability to generalize, although
with slightly lower performance compared to the test set. The
recall for Picual in the validation is 91%, while for Non-
Picual it is 74%, indicating that the model is more adept at
identifying Picual trees than Non-Picual ones. The F1 scores
are 0.84 for Picual and 0.81 for non-Picual, demonstrating
robust performance, particularly for the Picual variety.
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V. CONCLUSION AND FUTURE WORK

This study confirms that UAV-based HSI, combined with
DL, represents a highly effective solution for automated Olive
Variety Classification. The CNN-based approach demonstrated
strong performance in classifying the Picual variety with
high accuracy and reliability. Nevertheless, further refinements
could improve the model’s robustness, including expanding the
dataset to incorporate additional olive varieties and exploring
how this UAV-based system adapts under various environ-
mental conditions, such as changes in lighting and seasons.
Addressing these factors would enhance the scalability and
real-world application of this Precision Agriculture system.
Unlike traditional multispectral methods, HSI enables precise
differentiation of cultivars based on subtle spectral reflectance
variations, significantly reducing the reliance on labor-intensive
manual sampling. These findings reinforce the potential of
AI-driven remote sensing for improving efficiency in Precision
Agriculture.

The process addressed for the processing of the hyperspectral
imagery includes reflectance calibration, geometric correction,
and individual tree segmentation, using techniques, such as the
Enhanced Vegetation Index (EVI) and the DBSCAN clustering
algorithm. In addition, spectral filtering was applied to remove
pixels with low reflectance, reducing noise from shaded areas
in the canopy and improving the accuracy of the analysis.
Then, the use of 1D CNN proved to be suitable for processing
spectral data, with an architecture consisting of convolutional
layers, max-pooling, and a fully connected layer, allowing
the automatic extraction of relevant features from the data.
Optimization of the CNN hyperparameters was crucial to obtain
accurate results, with Bayesian optimization being used for the
Picual variety.

For the Picual variety, the CNN model showed solid
performance with an accuracy of 88.04% and a loss of
0.4201 in the test set, also with good generalization to unseen
data. Further validation on a fresh dataset showed a slightly
lower performance with an accuracy of 83%. The findings
confirm that deep learning models, particularly CNNs, excel in
extracting hierarchical spectral features from hyperspectral data,
achieving significantly higher accuracy than traditional machine
learning methods. Approaches, such as k-NN, Naïve Bayes, and
Decision Trees struggle to handle the high-dimensional nature
of hyperspectral imaging, reinforcing the superiority of data-
driven feature extraction techniques in agricultural classification
tasks.

Overall, the study concludes that the combination of hy-
perspectral imaging with deep learning is an effective tool
for automated olive variety identification, which can improve
agricultural practices and increase the competitiveness of olive
products.

The experiments were conducted at only a single farm, so
the robustness of the method should be checked on other
farms as well. This limitation highlights the need to validate
the proposed approach across different locations to ensure

its general applicability. Also, it is suitable to verify whether
the approach can be applied over longer periods and under
various environmental conditions. Future research will focus
on addressing the challenge of model generalization in diverse
environmental conditions and crop varieties, ensuring robust
performance in diverse agricultural landscapes. The evaluation
of alternative CNN architectures, including 2D and 3D models
tailored to specific data structures, will be explored. Expanding
the scope to include a broader spectrum of olive varieties
and integrating complementary sensor data, such as LiDAR,
will improve classification accuracy and comprehensiveness.
The ultimate goal would be to automatically catalog the
majority species in a region using a single UAV flight. These
advancements collectively aim to refine Precision Agriculture
practices, promoting sustainable and efficient crop management.
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