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Abstract—This project aims to develop an Artificial Intel-
ligence (AI)-based system for early crop yield prediction in
vineyards. The objective is to provide farmers with a reliable tool
that allows them to optimize resource planning, reduce risks, and
enhance crop sustainability. The methodology integrates multi-
source and multi-scale data, including historical yield informa-
tion, multispectral satellite images, and climatic variables, such as
temperature, humidity and precipitation, obtained from MODIS
and ERAS, from Copernicus services. It employs advanced Al
techniques, such as image processing and regression models. A
key phase is validating and adjusting the model using high-
resolution data captured by drones. The expected impact is
outstanding accuracy in harvest prediction, which will lead
to a significant reduction in uncertainty, greater operational
efficiency, and improved grape quality, transforming viticulture
into a more predictive and sustainable discipline.
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I. INTRODUCTION

The early estimation of crop yields for a specific crop is
essential for all actors involved, including farmers, intermedi-
aries, insurance companies, administrations and, of course, the
consumer himself. Since time immemorial, good or bad har-
vests have brought both prosperity and famine to populations
and thus determined their livelihoods and subsistence. Today,
they still generate major imbalances in the economies of many
families and areas of the planet, mainly because there are
still no effective tools to make accurate forecasts sufficiently
in advance. In this field, the most significant advances are
determined by Information and Communication Technologies
(ICT) at the service of Precision Agriculture (PA). This field
also includes Remote Sensing for capturing images of the
terrain and their advanced processing using Machine Learning
techniques to forecast possible problems, such as diseases, and
above all those related to crop yields [1] and [2].

It is the focus of most of the scientific community’s efforts
to try to identify the variables that mainly determine the be-
haviour of harvests. Undoubtedly, one of the most determining
factors is climate [3], [4]. Although the wine sector has a
somewhat more stable production than other traditional crops,
such as olives, weather conditions are the main reason for the
variability between the harvests of 2013 (7,500 tonnes) and
2017 (5,400 tonnes) at regional level [5]. Another important
aspect related to climate is the quality of the grapes and,
therefore, of the resulting wines [6], .

In order to be able to determine future behaviour, it is
usually necessary to know what happened in the past. In the
case of crop prediction, it is important to make this correlation
between climatological variables and harvest results. The use
of satellite data offers great advantages for working with
medium and large-scale territories, such as municipalities,
provinces or other types of geographical demarcations. How-
ever, their greatest capacity is to provide data with a certain
frequency, providing historical data [7], [8]. Although they do
not provide the same resolution as sensors attached to drones,
they can cover large areas of land and provide data from
the past that can also be correlated with data from previous
harvests. In addition, different satellites provide images of
different types: optical, multispectral, hyperspectral, thermal
or LiDAR (Light Detection and Ranging), which are widely
used in precision agriculture.

Most of the works developed for harvest forecasting differ
in methodology depending on the type of crop. The impor-
tance of its forecasting in the field of wine production is
pointed out in some works to determine the desired quantity
and quality of grapes, which is crucial for winemakers [9],
[10], [11]. However, the methodology of data capture, data
cleaning and pre-processing can be considered a common task.
Although each crop needs to adjust a different model based
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on its specific characteristics, a common methodology can be
established for many crop types. In each case, the importance
of data collection at different times of the year both at the
climatological level and using specific vegetation indices for
each case is considered.

Crop yield prediction is definitely one of the challeng-
ing problems in precision agriculture; however, as Xu et
al. [12] point out, it is not a trivial task. Nowadays, crop
yield prediction models can reasonably estimate actual values,
but better performance in yield prediction is still desirable
[6]. Numerous authors have emphasised the importance of
quantitative crop yield prediction for years, considering it as a
valuable tool to support farmers [13]. The close relationships
between pollen emission and fruit production are extensively
studied in this research. However, final fruit production is
influenced by various climatic and agronomic conditions both
in the pre-flowering period and in the period between flowering
and harvest, such as water deficit, temperature extremes and
phytopathological problems.

The structure of the paper has 4 sections: Section I is
the Introduction where the crucial importance of early yield
estimation in vineyards is highlighted for all actors in the
sector. Section II, Methodology, proposes the implementation
of a geospatial vineyard yield prediction system using Al and
remote sensing, by integrating multi-source and multi-scale
data. Section III describes the expected results and, finally,
Section IV presents the incipient conclusions of this work.

II. METHODOLOGY

The implementation of a vintage prediction system for
vineyards using Al and remote sensing involves the integration
of multi-source and multi-scale data, the design of a geospatial
database in the cloud and the creation of a predictive model
validated with field data. Success lies in efficient data man-
agement and analysis, accuracy of predictions and accessibility
for winegrowers, as shown in 1 . A phased implementation is
proposed.
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Figure 1. Methodology workflow.

A. System architecture planning and design

The first step will be to design a system architecture that
allows data to be managed, processed and analysed in an
efficient and scalable way. Three main sources of data will
be considered:

1) Public data:: Satellite imagery providing multispectral
information on vine cultivation.

2) Project-specific data:: High-resolution images, both

satellite and captured from drone-mounted sensors.

3) Meteorological data:: Real-time weather information
from local stations and historical bases, as well as products
derived from remote sensing.

A geospatial database will be designed to efficiently store
and manage geolocated information, and a cloud infrastructure
will be implemented to ensure remote access, scalability and
data security.

B. Data acquisition and processing

This phase includes the collection of the multi-source data
and the processing of the data. The different origin and nature
of the data requires a specific treatment of the data, both to
be integrated homogeneously in the database without affecting
the coherence of the data and to generate the derived products
necessary for the implementation of the predictive model itself.

C. Implementation of the geospatial database

The geospatial database will be used to store and manage
spatial data, allowing complex queries based on vineyard
locations and associated variables. In addition, geospatial visu-
alisation tools will be integrated to provide users with a visual
representation of the data and to facilitate the interpretation of
the information. Furthermore, being cloud-based, the database
will be scalable, allowing new datasets to be incorporated as
more data is obtained, without affecting the performance of the
system. The cloud will also facilitate collaboration by allowing
multiple users to access the system from different locations,
which is essential when working with a technology transfer
project involving multiple stakeholders.

D. Design and implementation of the predictive system in the
cloud

The next step is the design and implementation of the
predictive system in the cloud. This system will use advanced
Machine Learning (ML) techniques capable of integrating
diverse data sources and learning complex patterns that allow
early estimation of the harvest. Once the model is trained,
it will be implemented on Oracle’s cloud platform. This
cloud platform should also be accessible from mobile devices,
facilitating remote access for users, so that it can also serve
as a means of capturing data on harvest quantity (in the first
instance) and other information on farming practices to feed
back and retrain the predictive system.
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E. Design and development of graphical interface for system
use

Using Oracle Application Express, a system will be devel-
oped that will allow authorised users to visualise the harvest
prediction and allow them to analyse the actual harvest and
prediction data. This will allow non-expert users and from
home to access and use the machine learning models, allowing
to interpret and apply predictions in an intuitive and efficient
way.

F. Validation and adjustment of the model with drone data

A fundamental part of the implementation of the system is
the validation of the predictions generated by the predictive
model. For this purpose, data collected directly with drones
in the vineyards will be used as a reference point to verify
the accuracy of the system’s predictions from satellite images.
The drone data, due to its high resolution and ability to
capture fine details of the vineyard, will allow validation of
the harvest predictions and adjustment of the model as needed.
In order to ensured statistically robust validation it shall be
adopted a sufficient number of sampling points covering a
representative range of conditions within the study vineyards.
Also, the timing of data collection will be directly related to
the vegetative cycle of the vineyard.

This validation process is iterative and will progressively
improve the accuracy of the system as more drone data is
collected and more experience is gained with the system.

G. Scalability and maintenance of the system

Once the predictive system has been validated and fine-
tuned, the focus will be on ensuring its long-term scalability
and maintainability. As technology and data will continue to
evolve, the system must be flexible and able to adapt to new
data sources and predictive algorithms. The cloud platform
must have tools that allow for continuous updating of the
model, incorporation of new data, and enhancement of the
system without interrupting service to users. This also includes
the implementation of a monitoring system to ensure optimal
performance of the infrastructure, detect possible errors and
ensure the accuracy of the system.

H. Knowledge transfer and training

Training programmes will be designed to teach winegrowers
how to use the platform, interpret forecasts and make informed
harvesting decisions. This training will be crucial to ensure
technology adoption and maximise the impact of the system
on improving productivity in the vineyards.

III. PRELIMINARY RESULTS AND EXPECTATIONS

In a machine learning study focused on early grape harvest
prediction, results are anticipated that will transform vineyard
management. The primary goal is to achieve outstanding ac-
curacy in harvest date prediction, minimising the discrepancy
between model estimate and reality. Regression algorithms,
trained on historical data, climatological data and multispec-
tral images, are expected to reveal complex and non-linear

patterns, overcoming the limitations of traditional methods.
This accuracy would translate into more efficient harvest
planning, allowing growers to optimise resource allocation and
coordinate labour in advance.

The model is expected to reveal the relative importance of
the variables analysed, from climatic fluctuations to vegetation
indices captured by satellites and drones. This information will
allow winegrowers to better understand the influence of var-
ious factors on their vineyards, adapting to the particularities
of each vintage and mitigating the effects of climate change.

Rigorous validation of the model is crucial to ensure its
robustness and applicability in different scenarios. The integra-
tion of drone data, with its high spatial resolution, is expected
to complement satellite information, refining predictions and
allowing accurate assessment at the plot scale. In terms of
metrics, high R? values, close to 1, and low RMSE (Root
Mean Square Error) and MAE (Mean Absolute Error) values
are aspired, reflecting the high accuracy and low error of the
predictions.

IV. CONCLUSIONS

The implementation of machine learning models for early
grape harvest prediction represents a significant advance in
precision viticulture. The expected results, based on the
integration of multi-source data and regression algorithms,
promise not only to improve the accuracy of predictions, but
also to deepen our understanding of the factors influencing
grapevine phenology. The ability to accurately anticipate har-
vest yields months in advance will allow grape growers to opti-
mise the planning of their activities, from resource allocation
to grape quality management. In addition, the identification
of the most influential variables, such as climatic conditions
and vegetation indices, will provide valuable information for
informed decision-making.

Ultimately, this approach has the potential to transform
viticulture into a more predictive and sustainable discipline.
Rigorous validation of the models, using high-resolution drone
and satellite data, will ensure their robustness and applicability
in different contexts. Quantification of model performance
through metrics, such as R?, RMSE and MAE will provide
an objective basis for assessing their accuracy and reliability.
The implementation of these models is expected to lead to a
significant reduction of uncertainty in wine crop management,
resulting in increased efficiency and improved grape quality. In
addition, the ability to capture and analyse complex patterns
in the data will allow researchers and viticulturists to gain
new insights into grapevine physiology and its response to
environmental conditions.
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