
Autonomous Drone Landing in 3D Urban Environment
Using Real-Time Visibility Analysis

Oren Gal and Yerach Doytsher
Mapping and Geo-information Engineering
Technion - Israel Institute of Technology

Haifa, Israel
e-mails: {orengal,doytsher}@technion.ac.il

Abstract— Quadcopters are four rotor Vertical Take-Off and
Landing (VTOL) Unmanned Aerial Vehicle (UAV) with agile
manoeuvring ability, small form factor and light weight –
which makes it possible to carry on small platforms.
Quadcopters are also used in urban environment for similar
reasons – especially the ability to carry on small payloads,
instead of using helicopters on larger vehicle which are not
possible in these dense places. In this paper, we present a new
approach for autonomous landing a quadcopter in 3D urban
environment, where the first stage is based on free obstacle
environment and maximal visibility for the drone in the palled
landing spot. Our approach is based on computer-vision
algorithms using markers identification as input for the
decision by Stochastic Gradient Descent (SGD) classifier with
Neural Network decision making module. We use OpenCV
with its built-in ArUco module to analyse the camera images
and recognize platform/markers, then we use Sci-Kit Learn
implementation of SGD classifier to predict landing optimum
angle and compare results to manually decide by simple
calculations. Our research includes real-time experiments
using Parrot Bebop2 quadcopter and the Parrot Sphinx
Simulator.

Keywords-Swarm; Visibility; 3D; Urban environment;
autonomous landing.

I. INTRODUCTION AND RELATED WORK

A Quadcopter is a specific type of a UAV, with four
rotors and Vertical takeoff and Landing (VTOL) capability,
its agility, light weight and size makes it a perfect companion
to smaller boats from sail-boats to even kayak, rather than
classic helicopters that accompany bigger ships or fixed-
wings airplanes on extremely large aircraft carriers.

In the many uses of UAV (Unmanned Aerial Vehicle) a
pilot uses real-time telemetry to take-off, fly and land the
craft with continuous communication between ground station
and the UAV on-board computer. Making these tasks
Autonomous, will allow UAVs to perform missions without
continuous communication, and thus prevent hijack or
damage by hackers, be more stealth for surveillance and
have unlimited distance from GS (bound to energy
limitation).

Autonomous landing of a UAV is a problem on the focus
of many studies [5] [6] [7] and landing on marine vessel

makes this problem even more complex due to sea level
motion that also occur when target platform is at stand-still.

The object of this research is to produce a safe landing
mechanism for a quadcopter in 3D urban environment, in
order to allow it to perform fully autonomous missions
carried out at sea. Also, this mechanism could be used in
pilot guided missions, as guideline suggestions to the pilot
with how/when it is safe to land.

We assume the target position is known and Ground
Station sets “home” position in the drone to be target’s GPS
position. Then the Bebop2 built-in “Return Home” function
will bring it to the target, with up to a few meters off.

The proposed mechanism will perform the following tasks
to achieve a "safe landing" decision: First, we need to
visually search for and recognize the platform target and find
the docking area. Once the target is found, the drone should
set course and fly to target to be exactly above. Then, we
detect and analyze the position of the landing surface and its
plane angle relative to the camera. And finally, we will send
the data to each of two implementations of the decision
algorithms: 1. Using a supervised machine-learning classifier
(pre-loaded with data), The machine input requires a quick
pre-processing to set the data into a fixed structure vector, to
resemble fitted data in the classifier. 2. Calculating directly
from the data returned from the ArUco detection functions.
The drone will then land safely on the boat, by sending a
“land” command on time.

The problem of autonomous landing an UAV was on the
focus of many studies as the survey review state-of-the art
methods of vision-based autonomous landing, for a wide
range of UAV classes from fixed-wing to multi-rotors and
from large-scale aircrafts to miniatures. The main motivation
for dealing with autonomous landing is the difficulty in
performing a successful landing even with a pilot controlling
the UAV. As it seems by statistics showed in [4], most of the
accidents related to Remotely Piloted Aircraft Systems
(RPAS) occur when the pilot tries to land the UAV.

Extensive research has been done on the subject to
explore the various situations, technologies and methods to
engage this problem. The work performed on previous

67Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

studies, reviewed later in this section, is a great starting point
for this project, as it is purely academic and relays on series
of already existent technologies and tools, such as OpenCV
[3], Sci-kit learn and the Parrot Ground SDK [1].

Figure 1: Proposed autonomous landing mechanism

In the following sections, we first introduce an overview
of 3D models and extended the 3D visible volumes analysis.
In the next section, we present the autonomous navigation
process based on our fast visibility analysis with training
data and classifier as can be seen in Figure 1. Later on, we
present the simulation based on our 3D visible volumes
analysis.

II. AUTONOMOUS NAVIGATION PROCESS

The basic step starting this process related to obstacle
avoidance and visible area described in the next sections.
Following that, we divide the autonomous navigation
mission into two separate problems. The first part deals with
navigating UAV from an arbitrary position far from target, as
far field. Second part related to navigating to the target in the
near field where the target is visible.

In the first scenario, which is when the mission objectives
are reached and the drone needs to get to the target vessel for
landing, we can use the built-in functionality of the drone to
“Return Home” by setting it “Home” position to the target’s
known GPS position.

Bebop2 “Return Home” function works in a way that it
will lift the drone to 20m above ground relative to take-off
position, then fly directly to GPS position of “Home” and
descend to 2m. Notice that if the drone is starting at height of
more than 20m it will not descend to 20m, but rather keep its
height until final descend near “Home”.

The “Return Home” accuracy brings the drone to “Home”
sometimes with offset of a few meters. This is good enough
to get us to the second problem of navigation with visual
distance to the target, until the drone will be directly above
target and ready for landing.

Once the drone is at “Home” position, it will rotate and
with each full rotation the tilt angle will increase to look
further below, and if after rotating and tilting to the
maximum of -90 degrees to the horizon, i.e. directly down, it
will try again at higher altitude (1m up) to maybe see further
away.

After getting a visual identification the drone will set
course, keeping the target in the middle of the screen, and
moving forward to it, tilting the camera during the
movements until the landing pad is directly below.

According to that, landing pad located in the middle of the
image and camera tilt is maximum.

Then the drone will lower altitude to ~50cm while
keeping the landing pad centered underneath, and in that
height the data from the AR tags will be converted to a
vector of predefined structure to feed a classifier trained to
detect optimum landing angle/position. Once the classifier
gives “Safe” signal – a “Land” command will issue to the
drone to perform immediately.

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS

 In this section, we present an analytic analysis of the
visibility boundaries of planes, cylinders and spheres for the
predicted scene presented in the previous sub-section, which
leads to an approximated visibility. For the plane surface,
fast and efficient visibility analysis was already presented in
[29].
In this part, we extend the previous visibility analysis
concept [29] and include cylinders as continuous curves
parameterization .

Cylinder parameterization can be described in (1):

, (1)

We define the visibility problem in a 3D environment for
more complex objects as:

 (2)

where 3D model parameterization is , and the

viewpoint is given as . Extending the 3D cubic

parameterization, we also consider the case of the cylinder.
Integrating (1) to (2) yields:

 (3)

(4)

As can be noted, these equations are not related to Z axis,
and the visibility boundary points are the same for each x-y
cylinder profile, as seen in (3), (4).

Search Platform Fly To Target
Identify Landing

Area

Descend Close
To Target

Analyze Plane
Angular Position

Decide:

If Safe - Land

ln (, ,)c dC x y z

ln

sin()

(, ,) cos()C d

r const

r

C x y z r

c







 
 

  
 
  _ max

0 2

1

0 peds

c c

c h

  

 

 

co s co s 0 0 0'(,) ((,) (, ,)) 0
n t n tz zC x y C x y V x y z  

(,)z constC x y 

0 0 0(, ,)V x y z

sincos

sin cos 0

0

x

y

z

r Vr

r r V

c V



 

  
  

     
      

68Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

The visibility statement leads to complex equation, which
does not appear to be a simple computational task. This
equation can be efficiently solved by finding where the
equation changes its sign and crosses zero value; we used
analytic solution to speed up computation time and to avoid
numeric approximations. We generate two values of
generating two silhouette points in a very short time
computation. Based on an analytic solution to the cylinder
case, a fast and exact analytic solution can be found for the
visibility problem from a viewpoint.
 We define the solution presented in (4) as x-y-z
coordinates values for the cylinder case as Cylinder
Boundary Points (CBP). CBP, defined in (5), are the set of
visible silhouette points for a 3D cylinder, as presented in
Figure 2:

(5)

 (a) (b)

Figure 2: Cylinder Boundary Points (CBP) using Analytic Solution marked
as blue points, Viewpoint Marked in Red: (a) 3D View (Visible Boundaries

Marked with Red Arrows); (b) Topside View.

In the same way, sphere parameterization can be described
as formulated in (6):

 (6)

We define the visibility problem in a 3D environment for
this object in (7):

 (7)

where the 3D model parameterization is , and the

viewpoint is given as . Integrating (6) to (7)

yields:

(8)
Where r is defined from sphere parameter, and

arechanges from visibility point along Z axis,

as described in (8). The visibility boundary points for a
sphere, together with the analytic solutions for planes and
cylinders, allow us to compute fast and efficient visibility in
a predicted scene from local point cloud data, which are
updated in the next state.

This extended visibility analysis concept, integrated with
a well-known predicted filter and extraction method, can be
implemented in real time applications with point clouds
data.

IV. VISIBILITY-BASED DRONE AUTONOMOUS LANDING

The landing pad designed as a plate with five markers –
one in the center and four others on each corner:

Figure 3: Landing pad with fiducial markers

Every ArUco marker has an ID as described in Figure 3,
which can be determined when the marker gets detected,
and by that we can easily center the drone location above
the landing pad even if only one or two markers are in view.

This landing pad has markers with ID values of: [18, 28,
17, 25, 4] selected randomly, but once selected they are very
important to the implementation since the training data
linked to the classifiers used as will be discussed later.

The proposed system takes each frame, and resolve all
markers, then create a data vector of fixed length with all
the necessary information of the markers.

Data format for each marker can be described as: [ID, rx,
ry, rz, tx, ty, tz],

Where �

��
��
��
� is the rotation vector of a single marker and

�

��
��
��

� is the translation vector of that marker. This format

repeats five times in each vector, where a tag ID has a fixed
position for each tag. When a marker could not be found on
a frame, the tag ID and all values of that marker will be set
to zero. Then send this vector to a classifier which will



_

_ _ _

1 1 1

1.. 2 0 0 0

, ,
(, ,)

, ,PBP bound

PBP bound PBP bound PBP bound

i N
N N N

x y z
CBP x y z

x y z 

 
  
  

sin cos

(, ,) sin sin

cos

0

0 2

Sphere

r const

r

C x y z r

r

 

 



 

 



 
 

  
 
 

 

 

0 0 0'(, ,) ((, ,) (, ,)) 0C x y z C x y z V x y z  

(, ,)C x y z

0 0 0(, ,)V x y z

0 0 0(, ,)V x y z

69Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

simply return strings telling us if the drone is centered above
the landing pad or a correction movement is required.
Possible answers are in the set: “CENTER”,
“DOWNWARD”, “FORWARD”, “RIGHT”, “LEFT”.

For the Navigation we added more ArUCO tags
surrounding this pad, in three sizes, so that they will be
visible from varying distances along the navigation and
descend process of the mechanism.

We used eight large tags, each surrounded by four
medium tags and in between another five small tags as seen
in Figure 4. The landing pad is printed on A4 page. And
each of the eight patterns described here is also on an A4
pages.

Figure 4: Navigation Assisting Tag Board Design

A. Training Data and Classifiers

In order to train the classifier, we used OpenGL as can be
seen in Figure 5 to simulate the landing pad in a precisely
controlled position and viewing angles. By that, we created
a labeled data set, then use this precisely labeled data to fit
in a variety of classifiers and test for accuracy. Following
that, we tested several classifiers and selected the best
performance for the purpose of the landing mechanism
proposed.

Figure 5 - OpenGL Simulation for Training Data

The simulated platform rotating in roll, pitch and yaw -
controlled by passing parameters, allowing me to tag every
rendered frame as either safe for landing or not without
visual computation (pre-label the data).

The simulator gets parameters from command line for
setting some axis angle to run on a limited range, while
rolling over all possible values of angles and positions, so
the workload could be divided to parallel processes and
even run on different machines.

After a few days running on several computers in
parallel, the simulators generated a total of 15,193,091

vectors dataset, that could be used as training dataset for
different models of classifiers.

Sci-Kit Learn package implements SVM with a fit
function that takes labeled data as input in two variables: Y
vector of y labels in a single column and X array of x
vectors – each x vector is a line vector corresponds to the
appropriate y in Y.

SVM does not allow incremental learning, i.e., it needs
all data at once. This was quit an issue with the data size we
tried to fit – fifteen million vectors. However, Sci-Kit Learn
offers other types of classifiers, although all of them do not
perform actual incremental learning (they do need all data at
once), nonetheless, they do implement a partial fit function
that can take each round a small portion of the data, and
update the classifier’s support vectors.

For each classifier, we tried different parameters, and
different sizes of the dataset by selecting randomly a
fraction of the data. Then, test the model (using 25% of the
data for test) to check it prediction accuracy.

TABLE I. CLASSIFIERS ACCURACY COMPARISSION

Classifier Type Best accuracy
SGD, epsilon insensitive 57.341%
SGD, hinge 75.716%
SGD, huber 59.841%
SGD, log 73.658%
SGD, modified huber 73.362%
SGD, squared eps. insensitive 59.6%
SGD, squared hinge 73.857%
SGD, squared loss 57.171%
Perceptron 74.579%
Bernoulli NB 62.317%
Passive Aggressive Classifier 74.455%

The result in Table I show that even the best classifier got
only approximately 75% success in recall. This is
insufficient for a safety mechanism even with filters added
to the process of a final “safe” decision.

To further increase accuracy, we thought it would be
more effective to use more than one classifier, in a voting
manner, to decide together on the data. At first, we
suggested a voting scheme that takes 10-15 of the best
classifiers and check if more than 50% of them agree on a
"safe" result, take that as the answer, we checked that over
the data and results did not increase accuracy at all. Then we
thought maybe a classifier of classifiers outputs could
extract some new information in a smarter manner than a
simple voting, and will help increase accuracy. We created a
new dataset of the same size, only this time the vector
consisted of zero for safe and one for unsafe result of a
classifier over fifteen of the best classifiers (72%-75%
accuracy) and trained this dataset on all types of classifiers
with different parameters as before. This time, all classifiers
listed above got around 76% accuracy, where the best

70Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

classifier reached 76.8% accuracy. Approximately 2%
improvement.

Finally, looking closely on live videos of the ArUco
markers detections, we noticed that the axis drawn on the
detected markers tend to shift rapidly usually around more
“safe” angles, so we tried to manually correct the data, and
remove some of the spiking data that is tagged as safe – i.e.
the simulator created it as a safe angle, but detection errors
made it as a vector that should rather be tagged as unsafe.

All data marked as safe, with “Z” axis angle in all
detected markers, re-tag as unsafe, if a certain threshold is
passed.

Before rectifying the dataset consisted of about 50% safe
labels. This method reduced the number of “safe” tagged
vector to about 20% of the data.

Fitting this new retagged dataset to all models as before,
and testing again for accuracy, results improvements shown
in details reported in Table II. The results improved
drastically.

Best classifier selected for the mechanism is SGD
(Stochastic Gradient Descend) with loss parameter set to
logarithmic. This classifier showed 86% percent accuracy,
which could be used with some filtering to suppress false
alarm rate even more.

V. SIMULATIONS

The quadcopter we used in this research is a Parrot
Bebop2 drone. It is a GPS drone with full HD 1080p wide-
angle video camera with 3-axis digital stabilization, that can
also take 14MB still pictures.

Bebop2 has GPS guided Return Home feature, strong 6”
propellers, long rage communication (with WiFi extender or
Skycontroller remote), which makes it suitable for a windy
outdoors flight.

The Bebop2 drone uses seven different sensors
simultaneously to keep it stable and produce an extremely
stabilized video even when the drone makes tiny maneuvers
to keep itself in place, the apparent view to the user looks
like the drone is in fixed position as if it was hanging on a
crane. Also, there are no moving parts when we pan/tilt the
camera, it is done entirely by changing the relevant pane in
the full fisheye image.

Parrot Ground SDK includes software development suite
that provides a tool for developers to communicate and
control with Parrot drones that uses AR.SDK3 framework,
e.g., Mambo, Bebop, Disco, and Anafi. It also includes a
simulator platform called Sphinx, built on Gazebo platform,
with Parrot drones not just as models but with full featured
firmwares that are similar to the ones on the equivalent
physical drones. This allows developers to fully test and
debug their programs with real firmware feedback from a
drone in mid-flight without the risk of injury or damages to
equipment.

Ground SDK also provides a python wrapper called
Olympe, to easily control drone objects. We preferred a
third-party implementation named pyparrot, which is better

documented and fully open-sourced, so it would be easier to
add or change functionality to my needs.

A. ArUco Markers

The first problem we had to deal with, involves detection
and identification of the landing pad. Afterword, we had to
gather all planar information to pass to the decision
mechanism for processing.

In order to simplify detection and get a fast and robust
identification and planar information of the target, we used
AR-tags on a specially designed landing pad. Specifically,
the use of off-the-shelf open source ArUCO seem to be a
simple solution (other implementations of AR-tags e.g.
APRIL-TAGS may be suitable as well).

Implementation of ArUco marker detection exists in
open-source library OpenCV, available for c/c++ and
python. In order to get the marker real-world coordinates,
we need the projection matrix of the camera and the
distortion coefficients vector. To get these parameters a
calibration is needed to be done once, then it could be
loaded through a configuration file. The calibration process
also available in OpenCV documentation, using a printed
checkboard of known dimensions, and about twenty shots in
different orientations and locations across the screen.

We incorporate different marker sizes to be able to detect
markers in different distances from the target landing pad
and follow the tags. ArUco Markers also have tag ID
encoded in them so we even know which tag we are seeing
and thus what size it is or where it is located on the board.

TABLE II. IMPROVEMENTS IN ACCURACY OF CLASSIFIERS

B. Implementation

To get control over a Bebop2 Drone, we found two
python wrappers that we could use, and tested both of them.
The first one comes with a Parrot Ground-SDK suite which
includes the Sphinx Simulator, called Olympe. The Second

Classifier type
Best

accuracy
Before

correction
Improve

ment
SGD, epsilon

insensitive
83.450% 57.341% 26.11%

SGD, hinge 85.062% 75.716% 9.35%
SGD, huber 81.876% 59.841% 22.04%
SGD, log 86.175% 73.658% 12.52%

SGD,
modified huber

86.131% 73.362% 12.77%

SGD, squared
eps. Insensitive

82.019% 59.6% 22.42%

SGD,
squared hinge

85.891% 73.857% 12.03%

SGD, squared
loss

82.942% 57.171% 25.77%

Perceptron 85.470% 74.579% 10.89%
Bernoulli NB 81.664% 62.317% 19.35%

Passive
Aggressive
Classifier

84.041% 74.455% 9.59%

71Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

wrapper pyparrot, originally developed for the Parrot
Mambo, but now capable of controlling most of the newer
generation Parrot drones.

We decided to work with pyparrot due to two main
reasons: 1. Olympe used a closed virtual environment that
made it harder to install additional packages using pip. 2.
pyparrot is an open source, making it easy to adapt and
change to my needs, it also suggests two types of video
handling class: the first one uses FFMPEG and the other
opens SDP file with VLC on a separate thread. Both
methods were slow and missed critical frames especially in
SEARCH mode, when the camera rotates to find the target.
Sometimes the video smeared so badly we could barely
recognize the landing pad even when we knew where it was
there.

We changed the video handler to run on a separate thread
(like the VLC option on pyparrot) only that in my
implementation we used standard OpenCV capturing
module VideoCapture to open SDP file (contains IP, port,
codec) for streaming coming from the drone or sphinx
(depends on DRONE_IP parameter in the code), and
another separate thread for the automation state machine
that runs the different stages of this autonomous mission
control and landing mechanism.

For proof of concept, all experiments were simulated in
Gazebo based Sphinx simulator without moving wave
simulations, or any automated changes in landing-pad
angles or position. The changes were made manually by
rotating the pad during simulation when the drone was
waiting to get a safe signal from either classifier or
calculations.

The experiment also did not simulate the use of “Return
Home” functionality and assumed to start near target at
about five meters in a random position. The drone starts to
search around to get a visual of the landing pad, then fly to
set exactly above while looking directly down (-90 degrees
below horizon). Drone initiate slow descend while keeping
target still in the middle of the frame, until reaches height of
less than 50cm. In this stage, decision mechanism under test
should trigger “safe” when ArUco markers of the pad will
be in a position that is regarded flat enough to be considered
as safe.

 In a preliminary experiment, we found that the classifier
that we trained, could not get to a “safe” decision even when
the landing pad was flat without any movements. Same
classifier was tested with images from web-cam input seems
to work fine, this could be issue caused by miscalibration of
the camera. These inaccuracies cause ArUco functions that
heavily relay on camera calibration, to produce different
range of data relative to what the classifier was trained with
(data from an OpenGL graphics drawn landing pad). This
method should be further explored in future work.

Simplified manual calculation that work directly on data
from ArUco functions output, could also be easily
recalibrated and adjustable to fit with data ranges of mis-
calibrated data. Finally, running full scenario of the

experiment with landing pad on unsafe initial position got
the drone flying above it and waiting, then manually flatten
the landing pad, made the decision mechanism to trigger
“safe” and send a landing command to the drone, which
landed in the desired spot.

VI. CONCLUSION AND FUTURE WORK

 In this work we introduced a mechanism for autonomous
landing a quadcopter in. The work focused to assist in the
final stage of an autonomous mission, when drone returned
to home, but still needs to find exact position of landing on
the target and dealing with sea-level motion of the target.
 In this study we developed a training simulator to create
large data set of visual input, produced by OpenGL graphics
in a controllable manner. Also, we compared different types
of trained classifiers to find best match to our particular
data, and competed best classifier vs. direct observation
 In conclusion, the ArUco functions produce enough
information regarding marker positions to be used manually
and get a satisfying result for that manner. It is fast and
robust and easily read to get a quick answer to whether it is
safe or not, and the use of a classifier is not necessary.

REFERENCES

[1] Parrot Inc., “developer.parrot.com,” 2020. [Online].
Available:
https://developer.parrot.com/docs/olympe/userguide.html.

[2] A. McGovern, “pyparrot github repository,” JAN 2020.
[Online] https://github.com/amymcgovern/pyparrot.

[3] OpenCV, Open Source Computer Vision Library, 2015.

[4] K. Williams, “A Summary of Unmanned Aircraft
Accident/Incident Data: Human Factors Implications,” The
Federal Aviation Admistrator Oklahoma City, 2004.

[5] A. F. Cobo and F. C. Benıtez, “Approach for Autonomous
Landing on Moving Platforms based on computer vision,”
The International Journal of Computer Vision, vol 4, 2016.

[6] L. Daewon, R. Tyler and K. H. Jin, “Autonomous landing of a
VTOL UAV on a moving platform using image-based visual
servoing,” IEEE International Conference on Robotics and
Automation, pp. 971-976, 2012.

[7] T. Merz, S. Duranti and G. Conte, “Autonomous Landing Of
An Unmanned Helicopter Based On Vision And Inertial
Sensing,” Experimental Robotics IX, pp. 343--352, 2006.

72Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

https://developer.parrot.com/docs/olympe/userguide.html
https://github.com/amymcgovern/pyparrot

