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Abstract— Quadcopters are four rotor Vertical Take-Off and 
Landing (VTOL) Unmanned Aerial Vehicle (UAV) with agile 
manoeuvring ability, small form factor and light weight – 
which makes it possible to carry on small platforms.  
Quadcopters are also used in urban environment for similar 
reasons – especially the ability to carry on small payloads, 
instead of using helicopters on larger vehicle which are not 
possible in these dense places. In this paper, we present a new 
approach for autonomous landing a quadcopter in 3D urban 
environment, where the first stage is based on free obstacle 
environment and maximal visibility for the drone in the palled 
landing spot. Our approach is based on computer-vision 
algorithms using markers identification as input for the 
decision by Stochastic Gradient Descent (SGD) classifier with 
Neural Network decision making module. We use OpenCV 
with its built-in ArUco module to analyse the camera images 
and recognize platform/markers, then we use Sci-Kit Learn 
implementation of SGD classifier to predict landing optimum 
angle and compare results to manually decide by simple 
calculations. Our research includes real-time experiments 
using Parrot Bebop2 quadcopter and the Parrot Sphinx 
Simulator. 

Keywords-Swarm; Visibility; 3D; Urban environment; 
autonomous landing. 

I. INTRODUCTION AND RELATED WORK

A Quadcopter is a specific type of a UAV, with four 
rotors and Vertical takeoff and Landing (VTOL) capability, 
its agility, light weight and size makes it a perfect companion 
to smaller boats from sail-boats to even kayak, rather than 
classic helicopters that accompany bigger ships or fixed-
wings airplanes on extremely large aircraft carriers. 

In the many uses of UAV (Unmanned Aerial Vehicle) a 
pilot uses real-time telemetry to take-off, fly and land the 
craft with continuous communication between ground station 
and the UAV on-board computer. Making these tasks 
Autonomous, will allow UAVs to perform missions without 
continuous communication, and thus prevent hijack or 
damage by hackers, be more stealth for surveillance and 
have unlimited distance from GS (bound to energy 
limitation). 

Autonomous landing of a UAV is a problem on the focus 
of many studies [5] [6] [7] and landing on marine vessel 

makes this problem even more complex due to sea level 
motion that also occur when target platform is at stand-still. 

The object of this research is to produce a safe landing 
mechanism for a quadcopter in 3D urban environment, in 
order to allow it to perform fully autonomous missions 
carried out at sea. Also, this mechanism could be used in 
pilot guided missions, as guideline suggestions to the pilot 
with how/when it is safe to land. 

We assume the target position is known and Ground 
Station sets “home” position in the drone to be target’s GPS 
position. Then the Bebop2 built-in “Return Home” function 
will bring it to the target, with up to a few meters off. 

The proposed mechanism will perform the following tasks 
to achieve a "safe landing" decision: First, we need to 
visually search for and recognize the platform target and find 
the docking area. Once the target is found, the drone should 
set course and fly to target to be exactly above. Then, we 
detect and analyze the position of the landing surface and its 
plane angle relative to the camera. And finally, we will send 
the data to each of two implementations of the decision 
algorithms: 1. Using a supervised machine-learning classifier 
(pre-loaded with data), The machine input requires a quick 
pre-processing to set the data into a fixed structure vector, to 
resemble fitted data in the classifier. 2. Calculating directly 
from the data returned from the ArUco detection functions. 
The drone will then land safely on the boat, by sending a 
“land” command on time. 

The problem of autonomous landing an UAV was on the 
focus of many studies as the survey review state-of-the art 
methods of vision-based autonomous landing, for a wide 
range of UAV classes from fixed-wing to multi-rotors and 
from large-scale aircrafts to miniatures. The main motivation 
for dealing with autonomous landing is the difficulty in 
performing a successful landing even with a pilot controlling 
the UAV. As it seems by statistics showed in [4], most of the 
accidents related to Remotely Piloted Aircraft Systems 
(RPAS) occur when the pilot tries to land the UAV. 

Extensive research has been done on the subject to 
explore the various situations, technologies and methods to 
engage this problem. The work performed on previous 
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studies, reviewed later in this section, is a great starting point 
for this project, as it is purely academic and relays on series 
of already existent technologies and tools, such as OpenCV 
[3], Sci-kit learn and the Parrot Ground SDK [1]. 

Figure 1: Proposed autonomous landing mechanism 

In the following sections, we first introduce an overview 
of 3D models and extended the 3D visible volumes analysis. 
In the next section, we present the autonomous navigation 
process based on our fast visibility analysis with training 
data and classifier as can be seen in Figure 1. Later on, we 
present the simulation based on our 3D visible volumes 
analysis. 

II. AUTONOMOUS NAVIGATION PROCESS

The basic step starting this process related to obstacle 
avoidance and visible area described in the next sections. 
Following that, we divide the autonomous navigation 
mission into two separate problems. The first part deals with 
navigating UAV from an arbitrary position far from target, as 
far field. Second part related to navigating to the target in the 
near field where the target is visible. 

In the first scenario, which is when the mission objectives 
are reached and the drone needs to get to the target vessel for 
landing, we can use the built-in functionality of the drone to 
“Return Home” by setting it “Home” position to the target’s 
known GPS position. 

Bebop2 “Return Home” function works in a way that it 
will lift the drone to 20m above ground relative to take-off 
position, then fly directly to GPS position of “Home” and 
descend to 2m. Notice that if the drone is starting at height of 
more than 20m it will not descend to 20m, but rather keep its 
height until final descend near “Home”. 

The “Return Home” accuracy brings the drone to “Home” 
sometimes with offset of a few meters. This is good enough 
to get us to the second problem of navigation with visual 
distance to the target, until the drone will be directly above 
target and ready for landing. 

Once the drone is at “Home” position, it will rotate and 
with each full rotation the tilt angle will increase to look 
further below, and if after rotating and tilting to the 
maximum of -90 degrees to the horizon, i.e. directly down, it 
will try again at higher altitude (1m up) to maybe see further 
away.  

After getting a visual identification the drone will set 
course, keeping the target in the middle of the screen, and 
moving forward to it, tilting the camera during the 
movements until the landing pad is directly below. 

According to that, landing pad located in the middle of the 
image and camera tilt is maximum. 

Then the drone will lower altitude to ~50cm while 
keeping the landing pad centered underneath, and in that 
height the data from the AR tags will be converted to a 
vector of predefined structure to feed a classifier trained to 
detect optimum landing angle/position. Once the classifier 
gives “Safe” signal – a “Land” command will issue to the 
drone to perform immediately. 

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS

    In this section, we present an analytic analysis of the 
visibility boundaries of planes, cylinders and spheres for the 
predicted scene presented in the previous sub-section, which 
leads to an approximated visibility. For the plane surface, 
fast and efficient visibility analysis was already presented in 
[29]. 
In this part, we extend the previous visibility analysis 
concept [29] and include cylinders as continuous curves 
parameterization . 

Cylinder parameterization can be described in (1): 

,         (1) 

We define the visibility problem in a 3D environment for 
more complex objects as: 

     (2) 

where 3D model parameterization is , and the 

viewpoint is given as . Extending the 3D cubic 

parameterization, we also consider the case of the cylinder. 
Integrating (1) to (2) yields: 

                        (3) 

(4) 

As can be noted, these equations are not related to Z axis, 
and the visibility boundary points are the same for each x-y
cylinder profile, as seen in (3), (4).
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The visibility statement leads to complex equation, which 
does not appear to be a simple computational task. This 
equation can be efficiently solved by finding where the 
equation changes its sign and crosses zero value; we used 
analytic solution to speed up computation time and to avoid 
numeric approximations. We generate two values of  
generating two silhouette points in a very short time 
computation. Based on an analytic solution to the cylinder 
case, a fast and exact analytic solution can be found for the 
visibility problem from a viewpoint. 
   We define the solution presented in (4) as x-y-z 
coordinates values for the cylinder case as Cylinder 
Boundary Points (CBP). CBP, defined in (5), are the set of 
visible silhouette points for a 3D cylinder, as presented in 
Figure 2: 

(5) 

                    (a)                                         (b)  

Figure 2: Cylinder Boundary Points (CBP) using Analytic Solution marked 
as blue points, Viewpoint Marked in Red: (a) 3D View (Visible Boundaries 

Marked with Red Arrows); (b) Topside View. 

In the same way, sphere parameterization can be described 
as formulated in (6): 

               (6) 

We define the visibility problem in a 3D environment for 
this object in (7): 

     (7) 

where the 3D model parameterization is , and the 

viewpoint is given as . Integrating (6) to (7) 

yields: 

(8)
Where r is defined from sphere parameter, and 

arechanges from visibility point along Z axis, 

as described in (8). The visibility boundary points for a 
sphere, together with the analytic solutions for planes and 
cylinders, allow us to compute fast and efficient visibility in 
a predicted scene from local point cloud data, which are 
updated in the next state. 

This extended visibility analysis concept, integrated with 
a well-known predicted filter and extraction method, can be 
implemented in real time applications with point clouds 
data. 

IV. VISIBILITY-BASED DRONE AUTONOMOUS LANDING

The landing pad designed as a plate with five markers – 
one in the center and four others on each corner: 

Figure 3: Landing pad with fiducial markers 

Every ArUco marker has an ID as described in Figure 3, 
which can be determined when the marker gets detected, 
and by that we can easily center the drone location above 
the landing pad even if only one or two markers are in view. 

This landing pad has markers with ID values of: [18, 28, 
17, 25, 4] selected randomly, but once selected they are very 
important to the implementation since  the training data 
linked to the classifiers used as will be discussed later. 

The proposed system takes each frame, and resolve all 
markers, then create a data vector of fixed length with all 
the necessary information of the markers. 

Data format for each marker can be described as: [ID, rx, 
ry, rz, tx, ty, tz],  

Where �
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� is the rotation vector of a single marker and 

�

��
��
��

� is the translation vector of that marker. This format 

repeats five times in each vector, where a tag ID has a fixed 
position for each tag. When a marker could not be found on 
a frame, the tag ID and all values of that marker will be set 
to zero. Then send this vector to a classifier which will 
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simply return strings telling us if the drone is centered above 
the landing pad or a correction movement is required. 
Possible answers are in the set: “CENTER”, 
“DOWNWARD”, “FORWARD”, “RIGHT”, “LEFT”. 

For the Navigation we added more ArUCO tags 
surrounding this pad, in three sizes, so that they will be 
visible from varying distances along the navigation and 
descend process of the mechanism. 

We used eight large tags, each surrounded by four 
medium tags and in between another five small tags as seen 
in Figure 4. The landing pad is printed on A4 page. And 
each of the eight patterns described here is also on an A4 
pages. 

Figure 4: Navigation Assisting Tag Board Design 

A. Training Data and Classifiers 

In order to train the classifier, we used OpenGL as can be 
seen in Figure 5 to simulate the landing pad in a precisely 
controlled position and viewing angles. By that, we created 
a labeled data set, then use this precisely labeled data to fit 
in a variety of classifiers and test for accuracy. Following 
that, we tested several classifiers and selected the best 
performance for the purpose of the landing mechanism 
proposed. 

Figure 5 - OpenGL Simulation for Training Data 

The simulated platform rotating in roll, pitch and yaw - 
controlled by passing parameters, allowing me to tag every 
rendered frame as either safe for landing or not without 
visual computation (pre-label the data). 

The simulator gets parameters from command line for 
setting some axis angle to run on a limited range, while 
rolling over all possible values of angles and positions, so 
the workload could be divided to parallel processes and 
even run on different machines. 

After a few days running on several computers in 
parallel, the simulators generated a total of 15,193,091 

vectors dataset, that could be used as training dataset for 
different models of classifiers. 

Sci-Kit Learn package implements SVM with a fit 
function that takes labeled data as input in two variables: Y 
vector of y labels in a single column and X array of x 
vectors – each x vector is a line vector corresponds to the 
appropriate y in Y. 

SVM does not allow incremental learning, i.e., it needs 
all data at once. This was quit an issue with the data size we 
tried to fit – fifteen million vectors. However, Sci-Kit Learn 
offers other types of classifiers, although all of them do not 
perform actual incremental learning (they do need all data at 
once), nonetheless, they do implement a partial fit function 
that can take each round a small portion of the data, and 
update the classifier’s support vectors. 

For each classifier, we tried different parameters, and 
different sizes of the dataset by selecting randomly a 
fraction of the data. Then, test the model (using 25% of the 
data for test) to check it prediction accuracy. 

TABLE I.  CLASSIFIERS ACCURACY COMPARISSION 

Classifier Type Best accuracy 
SGD, epsilon insensitive 57.341% 
SGD, hinge 75.716% 
SGD, huber 59.841% 
SGD, log 73.658% 
SGD, modified huber 73.362% 
SGD, squared eps. insensitive  59.6% 
SGD, squared hinge 73.857% 
SGD, squared loss 57.171% 
Perceptron 74.579% 
Bernoulli NB 62.317% 
Passive Aggressive Classifier 74.455% 

The result in Table I show that even the best classifier got 
only approximately 75% success in recall. This is 
insufficient for a safety mechanism even with filters added 
to the process of a final “safe” decision. 

To further increase accuracy, we thought it would be 
more effective to use more than one classifier, in a voting 
manner, to decide together on the data. At first, we 
suggested a voting scheme that takes 10-15 of the best 
classifiers and check if more than 50% of them agree on a 
"safe" result, take that as the answer, we checked that over 
the data and results did not increase accuracy at all. Then we 
thought maybe a classifier of classifiers outputs could 
extract some new information in a smarter manner than a 
simple voting, and will help increase accuracy. We created a 
new dataset of the same size, only this time the vector 
consisted of zero for safe and one for unsafe result of a 
classifier over fifteen of the best classifiers (72%-75% 
accuracy) and trained this dataset on all types of classifiers 
with different parameters as before. This time, all classifiers 
listed above got around 76% accuracy, where the best 
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classifier reached 76.8% accuracy. Approximately 2% 
improvement.  

Finally, looking closely on live videos of the ArUco 
markers detections, we noticed that the axis drawn on the 
detected markers tend to shift rapidly usually around more 
“safe” angles, so we tried to manually correct the data, and 
remove some of the spiking data that is tagged as safe – i.e. 
the simulator created it as a safe angle, but detection errors 
made it as a vector that should rather be tagged as unsafe. 

All data marked as safe, with “Z” axis angle in all 
detected markers, re-tag as unsafe, if a certain threshold is 
passed.  

Before rectifying the dataset consisted of about 50% safe 
labels. This method reduced the number of “safe” tagged 
vector to about 20% of the data. 

Fitting this new retagged dataset to all models as before, 
and testing again for accuracy, results improvements shown 
in details reported in Table II. The results improved 
drastically. 

Best classifier selected for the mechanism is SGD 
(Stochastic Gradient Descend) with loss parameter set to 
logarithmic. This classifier showed 86% percent accuracy, 
which could be used with some filtering to suppress false 
alarm rate even more. 

V. SIMULATIONS

The quadcopter we used in this research is a Parrot 
Bebop2 drone. It is a GPS drone with full HD 1080p wide-
angle video camera with 3-axis digital stabilization, that can 
also take 14MB still pictures.  

Bebop2 has GPS guided Return Home feature, strong 6” 
propellers, long rage communication (with WiFi extender or 
Skycontroller remote), which makes it suitable for a windy 
outdoors flight. 

The Bebop2 drone uses seven different sensors 
simultaneously to keep it stable and produce an extremely 
stabilized video even when the drone makes tiny maneuvers 
to keep itself in place, the apparent view to the user looks 
like the drone is in fixed position as if it was hanging on a 
crane. Also, there are no moving parts when we pan/tilt the 
camera, it is done entirely by changing the relevant pane in 
the full fisheye image. 

Parrot Ground SDK includes software development suite 
that provides a tool for developers to communicate and 
control with Parrot drones that uses AR.SDK3 framework, 
e.g., Mambo, Bebop, Disco, and Anafi. It also includes a 
simulator platform called Sphinx, built on Gazebo platform, 
with Parrot drones not just as models but with full featured 
firmwares that are similar to the ones on the equivalent 
physical drones. This allows developers to fully test and 
debug their programs with real firmware feedback from a 
drone in mid-flight without the risk of injury or damages to 
equipment. 

Ground SDK also provides a python wrapper called 
Olympe, to easily control drone objects. We preferred a 
third-party implementation named pyparrot, which is better 

documented and fully open-sourced, so it would be easier to 
add or change functionality to my needs. 

A. ArUco Markers  

The first problem we had to deal with, involves detection 
and identification of the landing pad. Afterword, we had to 
gather all planar information to pass to the decision 
mechanism for processing. 

In order to simplify detection and get a fast and robust 
identification and planar information of the target, we used 
AR-tags on a specially designed landing pad. Specifically, 
the use of off-the-shelf open source ArUCO seem to be a 
simple solution (other implementations of AR-tags e.g. 
APRIL-TAGS may be suitable as well). 

Implementation of ArUco marker detection exists in 
open-source library OpenCV, available for c/c++ and 
python. In order to get the marker real-world coordinates, 
we need the projection matrix of the camera and the 
distortion coefficients vector. To get these parameters a 
calibration is needed to be done once, then it could be 
loaded through a configuration file. The calibration process 
also available in OpenCV documentation, using a printed 
checkboard of known dimensions, and about twenty shots in 
different orientations and locations across the screen. 

We incorporate different marker sizes to be able to detect 
markers in different distances from the target landing pad 
and follow the tags. ArUco Markers also have tag ID 
encoded in them so we even know which tag we are seeing 
and thus what size it is or where it is located on the board. 

TABLE II.  IMPROVEMENTS IN ACCURACY OF CLASSIFIERS

B. Implementation 

To get control over a Bebop2 Drone, we found two 
python wrappers that we could use, and tested both of them. 
The first  one comes with a Parrot Ground-SDK suite which 
includes the Sphinx Simulator, called Olympe. The Second 

Classifier type 
Best 

accuracy 
Before 

correction 
Improve

ment 
SGD, epsilon 

insensitive 
83.450% 57.341% 26.11% 

SGD, hinge 85.062% 75.716% 9.35% 
SGD, huber 81.876% 59.841% 22.04% 
SGD, log 86.175% 73.658% 12.52% 

SGD,  
modified huber 

86.131% 73.362% 12.77% 

SGD, squared 
eps. Insensitive 

82.019% 59.6% 22.42% 

SGD,  
squared hinge 

85.891% 73.857% 12.03% 

SGD, squared 
loss 

82.942% 57.171% 25.77% 

Perceptron 85.470% 74.579% 10.89% 
Bernoulli NB 81.664% 62.317% 19.35% 

Passive 
Aggressive 
Classifier 

84.041% 74.455% 9.59% 
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wrapper pyparrot, originally developed for the Parrot 
Mambo, but now capable of controlling most of the newer 
generation Parrot drones. 

We decided to work with pyparrot due to two main 
reasons: 1. Olympe used a closed virtual environment that 
made it harder to install additional packages using pip. 2. 
pyparrot is an open source, making it easy to adapt and 
change to my needs, it also suggests two types of video 
handling class: the first one uses FFMPEG and the other 
opens SDP file with VLC on a separate thread. Both 
methods were slow and missed critical frames especially in 
SEARCH mode, when the camera rotates to find the target. 
Sometimes the video smeared so badly we could barely 
recognize the landing pad even when we knew where it was 
there. 

We changed the video handler to run on a separate thread 
(like the VLC option on pyparrot) only that in my 
implementation we used standard OpenCV capturing 
module VideoCapture to open SDP file (contains IP, port, 
codec) for streaming coming from the drone or sphinx 
(depends on DRONE_IP parameter in the code), and 
another separate thread for the automation state machine 
that runs the different stages of this autonomous mission 
control and landing mechanism. 

For proof of concept, all experiments were simulated in 
Gazebo based Sphinx simulator without moving wave 
simulations, or any automated changes in landing-pad 
angles or position. The changes were made manually by 
rotating the pad during simulation when the drone was 
waiting to get a safe signal from either classifier or 
calculations.  

The experiment also did not simulate the use of “Return 
Home” functionality and assumed to start near target at 
about five meters in a random position. The drone starts to 
search around to get a visual of the landing pad, then fly to 
set exactly above while looking directly down (-90 degrees 
below horizon). Drone initiate slow descend while keeping 
target still in the middle of the frame, until reaches height of 
less than 50cm. In this stage, decision mechanism under test 
should trigger “safe” when ArUco markers of the pad will 
be in a position that is regarded flat enough to be considered 
as safe. 

 In a preliminary experiment, we found that the classifier 
that we trained, could not get to a “safe” decision even when 
the landing pad was flat without any movements. Same 
classifier was tested with images from web-cam input seems 
to work fine, this could be issue caused by miscalibration of 
the camera. These inaccuracies cause ArUco functions that 
heavily relay on camera calibration, to produce different 
range of data relative to what the classifier was trained with 
(data from an OpenGL graphics drawn landing pad). This 
method should be further explored in future work. 

Simplified manual calculation that work directly on data 
from ArUco functions output, could also be easily 
recalibrated and adjustable to fit with data ranges of mis-
calibrated data. Finally, running full scenario of the 

experiment with landing pad on unsafe initial position got 
the drone flying above it and waiting, then manually flatten 
the landing pad, made the decision mechanism to trigger 
“safe” and send a landing command to the drone, which 
landed in the desired spot.  

VI. CONCLUSION AND FUTURE WORK

    In this work we introduced a mechanism for autonomous 
landing a quadcopter in. The work focused to assist in the 
final stage of an autonomous mission, when drone returned 
to home, but still needs to find exact position of landing on 
the target and dealing with sea-level motion of the target. 
  In this study we developed a training simulator to create 
large data set of visual input, produced by OpenGL graphics 
in a controllable manner. Also, we compared different types 
of trained classifiers to find best match to our particular 
data, and competed best classifier vs. direct observation   
   In conclusion, the ArUco functions produce enough 
information regarding marker positions to be used manually 
and get a satisfying result for that manner. It is fast and 
robust and easily read to get a quick answer to whether it is 
safe or not, and the use of a classifier is not necessary. 

REFERENCES

[1] Parrot Inc., “developer.parrot.com,” 2020. [Online]. 
Available: 
https://developer.parrot.com/docs/olympe/userguide.html. 

[2] A. McGovern, “pyparrot github repository,” JAN 2020. 
[Online] https://github.com/amymcgovern/pyparrot. 

[3] OpenCV, Open Source Computer Vision Library, 2015. 

[4] K. Williams, “A Summary of Unmanned Aircraft 
Accident/Incident Data: Human Factors Implications,” The 
Federal Aviation Admistrator Oklahoma City, 2004. 

[5] A. F. Cobo and F. C. Benıtez, “Approach for Autonomous 
Landing on Moving Platforms based on computer vision,” 
The International Journal of Computer Vision, vol 4, 2016. 

[6] L. Daewon, R. Tyler and K. H. Jin, “Autonomous landing of a 
VTOL UAV on a moving platform using image-based visual 
servoing,” IEEE International Conference on Robotics and 
Automation, pp. 971-976, 2012. 

[7] T. Merz, S. Duranti and G. Conte, “Autonomous Landing Of 
An Unmanned Helicopter Based On Vision And Inertial 
Sensing,” Experimental Robotics IX, pp. 343--352, 2006. 

72Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-079-7

GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

https://developer.parrot.com/docs/olympe/userguide.html
https://github.com/amymcgovern/pyparrot

