GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

NodeGIS: A Container-based Web GIS Application Development Tool

Mateus Queiroz Cunha
Information Systems Laboratory
Federal University of Campina Grande
Campina Grande, Brazil
email: mateusqueiroz@copin.ufcg.edu.br

Abstract—Nowadays, several tools which foster the develop-
ment of Web Geographical Information Systems (GIS) have
emerged, associated with the outspread of spatial information.
Although there are many solutions, most of them are complex,
requiring specific skills from users. Therefore, there exists a
demand for a solution that simplifies the process of develop-
ing and deploying Web GIS applications. This paper presents
NodeGIS, an open-source tool that provides a graphical interface
for developing Web GIS applications without code writing or
complex server configuration. NodeGIS enables the user to plot
vector maps, to perform overlay and customization operations,
zooming, panning, tooltip, and spatial and non-spatial queries.
NodeGIS uses a container-based and Representational State
Transfer (REST) architecture, thus facilitating the deployment
of Web GIS applications. NodeGIS can also be used to teach
GIS, requiring no software installation from students.

Keywords—GIS; Web GIS; containerization; REST.

I. INTRODUCTION

Along with the ubiquity of spatial information in current
applications, several commercial and free tools have emerged,
as well as Application Programming Interfaces (APIs) that
promote the development of Web Geographic Information
System (GIS) applications. Large companies in the GIS sector
have provided Web GIS solutions, such as Microsoft Location
Technologies - Azure Maps [1], Nokia Here SDK [2], Amazon
AWS Location API [3], Google Maps API [4], deck.gl [5],
Apple Maps API [6], mapbox [7], Uber API [8], ESRI ArcGIS
API [9], QGIS [10], MapServer [11], GeoServer [12], among
many other solutions. Also, many database management sys-
tems provide native support for spatial data, such as the
relational: PostgreSQL/PostGIS, MySQL, SQL Server, Oracle
and IBM DB2; NewSQL: SAP Hana, CockRoachDB and
SingleStore; and NoSQL: MongoDB, CouchDB, Cassandra,
among others.

Concerning desktop GIS, there are many commercial and
free solutions, such as QGIS and gvSIG [13]. However,
when we look at Web GIS solutions [14] there are numerous
solutions using map servers, spatial database servers and
frontends. These three tiers contain different complexity and
requirements, many times requiring specific skills from the
user in the different technologies [15]-[19]. A server-only
application that requires specialized frontend development to
consume and display data, a severe learning curve before
a user can create a useful application, and high prices for
commercial (and even educational) purposes are a few exam-
ples of encountered challenges. Among Web GIS well known

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

Claudio de Souza Baptista
Information Systems Laboratory
Federal University of Campina Grande
Campina Grande, Brazil
email: baptista@computacao.ufcg.edu.br

solutions, we mention GeoServer, MapServer, QGIS Server
[20], and ArcGIS Server. Therefore, there is a need for a tool
that simplifies the process of developing and publishing a Web
GIS application [21]. That is the main purpose of the NodeGIS
tool.

NodeGIS is an open-source tool that provides a graphical
interface for developing a Web GIS without the need to
develop code or configure servers. The NodeGIS application
deployment is done via Docker [22] containers using two
images, one for the frontend and the other one for the backend,
in addition to a PostgreSQL/PostGIS container, making the
application ready to use with geographic data.

Our contribution concerns to bring the low-effort experience
of developing desktop GIS applications to the Web environ-
ment. In addition, the NodeGIS tool may be used in the
teaching and learning process of geoprocessing techniques,
providing both the teacher and students with a tool that allows
them to graphically and interactively explore various GIS
resources, without needing to install software, using only a
browser with an internet connection.

In the remainder of this paper, Section II describes some
of the related work, followed by Section III, which presents
the architecture and main features of NodeGIS. Section IV
describes how to create a Web GIS using NodeGIS. Later,
Section V focuses on a user evaluation of the developed
solution. Final considerations are the subject of Section VL.

II. RELATED WORK

The evolution of Web Mapping applications in recent years
has highlighted the demand for geographic applications that
fulfill user requirements [23]. GIS applications have been
impacted by the technological advancements of the Web and
distributed systems, however, there is a technological gap
between Web-oriented information systems and existing GIS
solutions [24].

Recent research has focused on the importance of the user
interface when working with GIS applications [25]. There
are also research on GIS teaching dealing with the positive
impact of bringing a desktop GIS experience to a Web GIS
application [26][27]. This can also help non-expert users to be
able to create Web GIS applications for their respective areas
of expertise.

More recently, several Web GIS solutions have been pro-
posed specifically for a single domain, such as landslide and

92



GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

flood mapping [28], spatial accessibility of urban medical fa-
cilities [29], seismic vulnerability of old urban areas [30], ma-
rine spatial planning [31], and promotion of archaeological and
environmental tourism [32]. These research works addressed
domain-specific challenges associated with the complexity of
using GIS tools.

III. THE NODEGIS SOLUTION

Among the main features of NodeGIS, we highlight the
addition of vector layers, conventional and spatial queries;
customization of map layers; construction of thematic maps;
tooltip; interactive query on the map, where it is possible to
carry out complex spatial queries in an easy way through
the application’s interface, with no need for SQL knowl-
edge; search for features on the map; use of multiple spatial
databases; data tables, as well as filters and selections that can
be applied to the data and visualized on the map.

Figure 1 presents an example of a NodeGIS running ap-
plication that contemplates the following layers: map of the
municipalities, railways and highways of the Brazilian state
of Paraiba. In addition, Figure 1 also depicts a spatial query
with a buffer operation of the central railway in the state,
highlighted in green.

The architectural design of NodeGIS is based on a Rep-
resentational State Transfer (REST) architecture, segmented
into the frontend and backend, associated with one or more
spatial relational databases, as detailed in Figure 2. We detail
each architectural aspect of the NodeGIS tool in the following
subsections.

A. Frontend

The NodeGIS frontend consists of a React [33] application,
which uses an implementation of the Flux [34] frontend data
flow pattern with four main elements: the View, represented
by the React components that display the application data to
the user; the Store, responsible for obtaining, manipulating
and storing data in the application; the Dispatcher, responsible
for managing the data flow, distributing actions coming from

Figure 1. An application example deployed in NodeGIS.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

" docker

User

puajuouiy
puayoeg

Figure 2. NodeGIS architecture.

the View to their respective Store(s); and, finally, the Action,
which are functions that carry data to the Stores derived
from user actions. Figure 3 shows the details of the frontend
architecture and its components communication.

The main element of the frontend is the map, developed
using the Leaflet [35] library, which has a specific version
for React applications. All the data on the map comes from
their respective Store, which stores data obtained using HTTP
requests to the backend. The backend is responsible for
fetching geographic data from the database and converting it to
GeoJSON, a geospatial data format that uses JavaScript Object
Notation (JSON). The Leaflet library can read the data in a
layer on the map directly from GeoJSON format, not requiring
any adjustment or additional structuring of the geographic
data.

When users want to add a new vector layer to the map,
NodeGIS displays a list of all database tables containing
spatial data, as well as the names of the spatial columns for
each table. Users can also define the data displayed in the
tooltip of map features, layer styling, and the layer name on
the map using the frontend interface.

A JavaScript object represents each layer, which are stored

Frontend
View
M\s:el\ane_aus Map Database Connection
Leaflet Map Component Data Manipulation Configuration
Components Companent

w

(]
= |B

[}
[+] Q
—* W ——— =
Mob: Mob; @
] =
x o

Store (o]

w

Map Store Database Connection
Store
Figure 3. NodeGIS frontend architecture.
93



GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

in the Map Store. All layer objects follow a well-defined
pattern, having the following attributes:

o name: name given to the layer.

o key: database table that represents the layer.

o geometryColumn: data type of the geometry column used
in the layer, which can be Polygon, LineString or Point.

o styles: an object containing the layer’s static style defini-
tions (if the styleType attribute is equal to static).

o styleType: an attribute that defines the type of layer
styling, whether it is static (static) or thematic (choro-
pleth).

e displayColumns: list of objects containing columns that
will have their values displayed at the tooltip of the layer
features on the map.

o choroplethStyleDfinition: an object containing style def-
initions for thematic maps (if the styleType is equal to
choropleth).

e data: GeoJSON data returned by querying the database
and received as a response to the HTTP request made to
the backend.

Leaflet React builds each component using the data from
the Map Store, rendering each element on the map. The
component called MapContainer defines the external context
of the map used in the application and renders the other
components corresponding to each element added to the map.
Each rendered element uses the data attribute of a vector
layer object (described above), sending it to the GeoJSON
component. However, we used the CircleMarker component
for Point data to emphasize it and enable styling, given that
the default markers, displayed when using the GeoJSON com-
ponent, cannot be customized. That would cause confusion
when displaying multiple layers on the map.

Users can also perform spatial querying, an essential feature
for a Web GIS application. It can be done either as native SQL
queries or by selecting features on the map. The SQL spatial
query redirects the query entered manually by the user to the
backend and, later, to the database. As for the query which
uses feature selection on the map, it englobes the selection
of individual features or entire layers according to the chosen
spatial operation.

Spatial queries have their structure initially built on the
frontend, using a query definition object. Next, the backend
receives that object via an HTTP request. This query is then
built and subsequently sent to the database.

B. Backend

The NodeGIS backend consists of a web server capable
of responding to HTTP requests, following a REST standard,
using Nodel]S in association with the express framework.
As shown in Figure 4, the NodeGIS backend architecture is
composed of four segments:

¢ Routes: consists of an access layer that redirects HTTP

requests to their respective controllers.

o Controller: this layer deals with requests made to the API

and their responses based on the data coming from the
repository after processing.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

e Repositories: responsible for building spatial and general
queries made to the database.

e Database Clients: responsible for the connection to the
database(s).

In order to provide versatility and possibility of choice to
the user, NodeGIS has compatibility with different spatial
relational Database Management Systems (DBMS), namely:
PostgreSQL, MySQL, MariaDB, SQLite (with its SpatiaLite
extension) and CockroachDB. We implemented a specific
database client for each supported DBMS, extending the
existing NodeJS database client and enabling NodeGIS to deal
with any divergences in SQL implementations. In addition to
the external databases used with the application, the backend
has also an instance of SQLite running internally. This instance
assists in managing the application data, storing which layers
the users recorded in their visualization, and storing connection
data to the other databases used.

Most of the repositories defined in the backend redirect
API calls to the database using basic queries, except for the
queryRepository, that is responsible for building the spatial
query requests from the frontend. The supported spatial op-
erations are: union, difference, intersection, contains, crosses,
touches, disjunction, intersects, buffer, centroid, area, distance,
length and perimeter.

When building the spatial query, the frontend makes an
HTTP request to the backend containing a body in the format
shown in Figure 5. This object comprises the following
attributes: a data parameter of the spatial query; the second
data parameter of the spatial query; and operation, a string
representing the spatial operation to be applied. The second
property can be empty for queries that do not apply an
operation between different features (or sets of features). For
example, that is the case for operations such as buffer and
area.

In more detail, the first and second properties store the
tables used in the query as keys of the property object.
Each table key also stores properties, which are the data
and the geometryColumn. The data property holds a list of
unique identifiers of the table features, called Global Identifiers
(GIDs). The query uses features whose GID values are in the
list — an empty list means considering the entire table. The
geometryColumn property stores which spatial column of the

Backend
4|—V Routes

Controllers

1 A3
Database @

Clients. - Posgra S0

] B

pusjuoig
f

%th

Figure 4. Backend architecture details.

94



GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

table will be used in the spatial query.

For each of the spatial query parameters, a subquery is
built to obtain the requested data, being simply a union of
the requested features (if there are feature GIDs in the data
property) or the entire table (if the data property is empty).
Then, from the subqueries, the spatial function is applied
according to the string referenced in the operation property,
using the spatial columns of each subquery as parameters for
the spatial function.

At the end of the build process, the ST_AsGeoJSON func-
tion wraps the query to convert the geometry data into the
GeoJSON format, making it easier to manipulate, read and
represent the data on the map.

C. Containerization

In order to facilitate the Web GIS application deployment,
Docker images are available containing the required modules
to run the application (frontend and backend). The images are
publicly accessible on DockerHub [36].

To facilitate the execution of the Docker images into
containers, therefore, the application deployment, two scripts
were written in the root directory of the application GitHub
repository [37]. One of the scripts runs the application in a
local environment (run-application-local.sh), and the other in
a production environment with public access (run-application-
prod.sh). These scripts have already each container parameters
and environment variables correctly configured. However, a
script change is possible according to specific infrastructure
needs.

In order to provide a ready-to-use environment, we have
a third Docker image of a PostgreSQL database with Post-
GIS containing sample data. This containerized database is
configured as the default and added to the application startup
settings.

IV. CREATING A WEB GIS APPLICATION USING NODEGIS

NodeGIS aimed at providing an application startup that
reduces the impacts of integration between frontend, backend
and databases, as well as influences of the environment where
this application will be used (operating system, for example).

"first":
"paraiba": {
"data": [152, 161, 19],
"geometryColumn:": "geom"

"second":
"paraiba": {
"data": ,
"geometryColumn:": "geom"

.
"operation”: "contains”

Figure 5. JSON format sent to the backend when doing spatial queries.

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

Containerization is fundamental in this process. Hence, in-
stalling Docker is the only prerequisite for running NodeGIS.

A. Initial Configuration

As described in section III-C, shell scripts were made
available in the root directory of the application repository
to speed up the application initialization. The scripts are run-
application-local.sh (local environment) and run-application-
prod.sh (production environment). Both perform this configu-
ration, however, with different parameters and purposes.

When executing the desired script (e.g., using the “bash
run-application-local.sh” command), three Docker images on
the host machine will be used (and fetched from DockerHub,
if not existent locally): the frontend, the backend and the
PostgreSQL spatial database. Finally, the three containers will
be initialized with their respective parameters, showing an
output that contains the hash code of each initialized Docker
container and the access URL for the application.

The execution of the scripts is similar in both environments.
However, when NodeGIS runs with the production script, it
depends on the configuration of the host machine so that ex-
ternal users can access it. The environment must have a public
IP and ports 8080 and 8081 unlocked. The stop-application.sh
script is responsible for stopping NodeGIS execution, using the
names assigned to the containers in the execution script.

All script parameters may be modified according to the user
needs. An example of this scenario is when a user already has
a database containing spatial data, where the initialization of
the PostgreSQL container becomes optional, or when the ports
used in the production environment need to be changed.

With the application fully initialized, the user can use the
features of NodeGIS through the top menu. For example, the
feature to add vector layers to the map can be found in the
“Add” menu, followed by the “Vector Layer” option. Users
can select which database table to use and its spatial column.
In addition, users can customize the information displayed in
the features’ tooltip and the layer style.

B. Spatial Querying

Spatial queries are based on map feature selection and can
be accessed in the menu using the “Spatial Query” selector,
followed by the “From Selection” option. This feature allows
the user to select the desired operation and the parameters
needed to carry it out (features or layers). Users can execute
queries resulting in geometries, such as the buffer operation.
Note that users can change the style of the map feature for
better visualization. It is also possible to record the result of
spatial queries in new tables in the database, thus possibly
reusing them in new queries or saving them as the default
visualization of NodeGIS.

Hence, users can easily and quickly: initialize NodeGIS,
add vector layers to the map, perform spatial queries and
save visualizations generated from existing tables or queries
obtained from the NodeGIS.

95



GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

V. NODEGIS USER EVALUATION

In order to assess user experience with NodeGIS, we
interviewed twenty users using a questionnaire. All users
have some experience on information system development.
We adapted the Post-Study System Usability Questionnaire
(PSSUQ) [38] to have only relevant questions according to a
suitable NodeGIS scenario.

The final objective of applying this questionnaire is to obtain
metrics regarding the satisfaction of different users with the
NodeGIS tool. The questionnaire contains eight statements,
which users must classify according to their respective expe-
riences when using the tool. Here are the statements used:

1) T have some Geographic Information Systems (GIS)

knowledge/experience.

2) The system was simple to use.

3) The system has all the features and capabilities I ex-
pected.

4) 1 was able to complete tasks and scenarios quickly using
the system.

5) The system gave me error messages that clearly told me
how to solve the issues.

6) The information (such as online help, on-screen mes-
sages and other documentation) provided by the system
was clear.

7) The organization of information on the screen was clear.

8) I would recommend the system to others.

Each interviewee evaluated each statement with a score
from 1 to 7, where 1 means strongly disagree and 7 strongly
agree. When starting the evaluation process, users had access
to a descriptive video [39] containing the main features of
NodeGIS. In addition, two simple activities were passed on to
the interviewees: adding a vector layer to the map and per-
forming a spatial query with the added layer. Then, the use of
the tool was unrestricted and unsupervised. All users accessed
the same NodeGIS deployment and geographic database.

Observing Figure 6, which contains the result of Question
1, we can see that a little more than 50% of the interviewees
declared themselves knowledgeable of GIS techniques, which
provides us with a good balance of people who have already
had contact with other GIS tools and those who have not.

Figure 7 depicts the remainder of the evaluation results.
About 75% of the evaluations of each statement had a score
greater than or equal to 5, representing an excellent result. In
addition, score 7 was most common in the evaluations of each
statement. It also appeared tied to scores 6 or 5.

The high occurrence of scores close to 7 reflects the general
average of the evaluation obtained with the questionnaire,
which was 6.27 (disregarding the first statement, given that
it does not represent the user’s experience directly with
NodeGIS). The closer this general average is to 7, the greater
the user satisfaction when using NodeGIS.

VI. CONCLUSION

The development of Web GIS applications has increased
exponentially. This paper presents The NodeGIS Web GIS ap-
plication development tool that is based on Docker containers

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

Interviewees evaluations of the "I have some
Geographic Information Systems (GIS)
knowledge/experience” statement

Mumber of Interviewees

1 2 3 4 5 6 7

Intervewee Evaluation- 1 (stronlgy disaaree) to 7 (strongly agree)

Figure 6. Interviewees evaluation of the “I have some Geographic
Information Systems (GIS) knowledge/experience” statement.

NodeGIS Evaluation Questionnaire Answers

|
Statement 2
Statement 3 _
Statement 4
Statement 5 _
Statement 6
|
Statement 7

Statement &

|
0% 25% 50% 75% 100%

Interviewee Answer Proportion
B E?2 m3 4 5 5 W7

Figure 7. NodeGIS Evaluation Questionnaire Answers.

to simplify deployment. NodeGIS allows plotting vector maps,
overlay and layer customization, zooming, panning, tooltip,
performing queries on conventional attributes and various
spatial operations on data. NodeGIS also targets aid in teaching
GIS without requiring students to install any software.

A NodeGIS user can develop a web GIS application using
a simple configuration that requires no specific distributed
computation skills. Hence, users may focus on their target
domain instead of technical aspects. Even though the NodeGIS
tool is designed to be simple, expert users can still use their
skills to create unique and advanced spatial queries and use
different spatial database management systems.

One of the challenges encountered was the dynamic ren-
dering and data management of the vector layers in the

96



GEOProcessing 2023 : The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

frontend, which can result in a complex implementation when
dealing with “pure” JavaScript libraries. The React version of
the Leaflet library was essential to overcome this problem,
contributing to an implementation that is easy to maintain and
evolve.

In future work, we intend to aggregate new simple features
to the NodeGIS platform such as table editing, data exporta-
tion, and multimedia data association (e.g., associating images
and videos with map features). Furthermore, we also plan to
include new complex features such as 3D visualizations, point
cloud and raster support.

ACKNOWLEDGEMENT

The second author would like to thank the National Council
for Scientific and Technological Development (CNPq), Brazil,
for partially funding this research.

REFERENCES

[1] “Azure Maps - Geospatial Mapping APIs.” Microsoft Azure. https://
azure . microsoft.com/en - us/services/azure - maps/ (accessed Mar. 3,
2023).

[2] “Build apps with HERE Maps API and SDK Platform Access.” Here
Developer. https://developer.here.com/ (accessed Mar. 3, 2023).

[3] “Amazon Location Service.” Amazon Web Services. https://aws.amazon.
com/location/ (accessed Mar. 3, 2023).

[4] “Google Maps Platform.” Google Developers. https://developers.google.
com/maps (accessed Mar. 3, 2023).

[5] “deck.gl.” deck.gl. https://deck.gl/ (accessed Mar. 3, 2023).

[6] “Apple Maps.” Apple Developer. https://developer.apple.com/maps/
(accessed Mar. 3, 2023).

[7] “Maps, geocoding, and navigation APIs & SDKs.” Mapbox. https://
mapbox.com/ (accessed Mar. 3, 2023).

[8] “Developers.” Uber. https://developer.uber.com/ (accessed Mar. 3, 2023).

[9] “ArcGIS Developers.” ArcGIS. https://developers.arcgis.com/ (accessed

Mar. 3, 2023).

“Welcome to the QGIS project.” QGIS. https://www.qgis.org/ (accessed

Mar. 3, 2023).

“Welcome to MapServer.” MapServer documentation. https://mapserver.

org/ (accessed Mar. 3, 2023).

“GeoServer.” GeoServer. http://geoserver.org/ (accessed Mar. 3, 2023).

“gvSIG Desktop.” Portal gvSIG. http://www.gvsig.com/en/products/

gvsig-desktop (accessed Mar. 3, 2023).

D. Moretz, “Internet GIS,” in Encyclopedia of GIS, Springer Interna-

tional Publishing, 2016, pp. 1-7.

D. Yu and J. Yin, “Internet GIS and system dynamic modeling in urban

public safety and security studies: A conceptual framework,” in Lecture

Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp. 207—

216.

A. Milosavikevic, “An application framework for rapid development for

web based GIS : Ginis Web,” in Geospatial Services and Applications

for the Internet, Springer US, 2008, pp. 48-71.

A. Paiva, E. da Silva, F. Leite, and C. de Souza Baptista, “A multires-

olution approach for internet GIS applications,” in Proceedings. 15th

International Workshop on Database and Expert Systems Applications,

2004., 1IEEE, 2004, pp. 809-813.

F. Yin and M. Feng, “A webgis framework for vector geospatial data

sharing based on open source projects,” in Proceedings. The 2009

International Symposium on Web Information Systems and Applications

(WISA 2009), Academy Publisher, 2009, pp. 124-127.

E. Nash, P. Korduan, S. Abele, and G. Hobona, “Design requirements

for an ajax and web-service based generic internet GIS client,” in //th

AGILE International Conference on Geographic Information Science,

University of Girona, Spain, 2008, pp. 1-6.

“QGIS Server GuideManual.” QGIS Documentation. https://docs.qgis.

org/3.22/en/docs/server_manual/ (accessed Mar. 3, 2023).

T. E. Chow, “The potential of maps APIs for internet GIS applications,”

Transactions in GIS, vol. 12, no. 2, pp. 179-191, Apr. 2008.

“Docker: Accelerated, Containerized Application Development.”

Docker. https://www.docker.com/ (accessed Mar. 3, 2023).

[10]
[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Copyright (c) IARIA, 2023. ISBN: 978-1-68558-079-7

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

(34]
[35]

[36]

(371

(38]

[39]

B. Veenendaal, M. A. Brovelli, and S. Li, “Review of web mapping:
Eras, trends and directions,” ISPRS International Journal of Geo-
Information, vol. 6, no. 10, p. 317, Oct. 2017.

A. Rowland, E. Folmer, and W. Beek, “Towards self-service
GIS—combining the best of the semantic web and web GIS,” ISPRS
International Journal of Geo-Information, vol. 9, no. 12, p. 753, Dec.
2020.

R. Unrau, A. Kudekar, and C. Kray, “Interaction pattern analysis for
scpWebGIS/scp usability evaluation,” Transactions in GIS, vol. 26, no. 8,
pp. 3374-3388, Nov. 2022.

C. Mah, D. Hong, V. Chen, and E. Stefanakis, “First-year engineering
students’ research experience in web mapping,” Cartographica: The
International Journal for Geographic Information and Geovisualization,
vol. 55, no. 1, pp. 53-62, Mar. 2020.

X. Xiang and Y. Liu, “Exploring and enhancing spatial thinking skills:
Learning differences of university students within a web-based GIS
mapping environment,” British Journal of Educational Technology,
vol. 50, no. 4, pp. 1865-1881, Sep. 2018.

C. Tadanza et al., “IdroGEO: A collaborative web mapping application
based on REST API services and open data on landslides and floods in
italy,” ISPRS International Journal of Geo-Information, vol. 10, no. 2,
p. 89, Feb. 2021.

J. Wang et al., “Assessing the spatial accessibility of urban medical
facilities in multi-level and multi-period scales based on web mapping
API and an improved potential model,” ISPRS International Journal of
Geo-Information, vol. 11, no. 11, p. 545, Oct. 2022.

C. Columbro, R. R. Eudave, T. M. Ferreira, P. B. Lourenco, and
G. Fabbrocino, “On the use of web mapping platforms to support the
seismic vulnerability assessment of old urban areas,” Remote Sensing,
vol. 14, no. 6, p. 1424, Mar. 2022.

A. Gonzilez, C. Kelly, and A. Rymszewicz, “Advancements in web-
mapping tools for land use and marine spatial planning,” Transactions
in GIS, vol. 24, no. 2, pp. 253-267, Dec. 2019.

M. Luppichini et al., “Web mapping and real-virtual itineraries to
promote feasible archaeological and environmental tourism in versilia
(italy),” ISPRS International Journal of Geo-Information, vol. 11, no. 9,
p. 460, Aug. 2022.

“React - A JavaScript library for building user interfaces.” React. https:
/reactjs.org/ (accessed Mar. 3, 2023).

“Flux.” Flux. https://facebook.github.io/flux/ (accessed Mar. 3, 2023).
“Leaflet - a JavaScript library for interactive maps.” Leaflet. https://
leafletjs.com/ (accessed Mar. 3, 2023).

M. Cunha, “mateusqc’s Profile.” Docker Hub. https://hub.docker.com/u/
mateusqc (accessed Mar. 3, 2023).

M. Cunha, “mateusqc/node-gis: An application to support the construc-
tion of Web GIS.” GitHub. https://github.com/mateusqc/node - gis
(accessed Mar. 3, 2023).

J. Lewis, “Psychometric evaluation of the post-study system usability
questionnaire: The PSSUQ),” vol. 2, Jan. 1992, pp. 1259-1263.

M. Cunha, “NodeGIS - Main Features.” YouTube. https://youtu.be/
SZYesxzrBlc (accessed Mar. 3, 2023).

97



