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Abstract—In this article, we present a visual search system
based on the latest Deep Learning techniques, which enables
users to find images containing similar content as a query
image. As many applications battle the dual challenge of limited
labelled data that does not cover all the possible classes, we
propose to mitigate this issue with an approach we call zero shot
learning. We prove the potential of this approach by extensively
experimenting on 3 of all time popular aerial imagery datasets.
In addition, we show that pre-training the model on top-down
imagery improves the final performance of the visual search
system.

Keywords—visual search; zero-shot learning; data indexing;
deep learning

I. INTRODUCTION

At present there are more than 150 operational satellites
equipped with sensors gathering petabytes of data each year
for a variety of Earth observations tasks [1]. Usually, this data
is ingested and indexed in huge databases considering infor-
mation like the date of the image, the polygon of the covered
area, the number of spectral bands, the image resolution, the
number of bits per pixel, the vendor name, and so on. Then it
is fairly easy to extract the desired data by employing a query
composed of the aforementioned information, e.g., give me all
the Maxar WorldView-3 RGB orthorectified imagery acquired
after 2017 covering Paris area.

Unfortunately, this type of queries cannot be used for more
complex tasks like give me all the images in Africa that contain
power plants. In order to enable such a query we need to
extract the semantic content of each image. With the Deep
Learning revolution, Machine Learning (ML) models based on
Convolutional Neural Networks (CNN) proved to be efficient
in extracting the semantic content of an image [2]–[4].

Open Street Map (OSM) contains 130 object classes and for
many practical applications we could consider they cover all of
the use cases. Nevertheless, we identify two practical limita-
tions of this approach. The first one is that the semantic content
of many images is too complex to be tagged as belonging to a
single class. Labeling such images with more than one classes
is difficult and prone to significant errors. In order to exemplify
this, consider the image taken from the SpaceNet5 challenge
[5] and shown in Figure 1. In this image, one might identify
various semantic contents of interest: buildings, beach, road,
cars, pools, tennis court and so on. The second limitation is

Figure 1. Example of a satellite image with complex visual content

related to the closed-world assumption. In practice we often
need to add one or more classes that were not included in
the training dataset. In order to solve the above-mentioned
problems, researchers considered weak supervision and zero-
shot learning strategies, i.e., to recognize the objects whose
instances were never seen during the training. Since our model
has never learnt these additional classes, neither has learnt to
classify complex real world scenarios explicitly, we call this
approach a zero shot learning.

When the semantic content of an image is complex it is
easier to provide a query image and ask for similar images.
This is the definition of visual search and it includes the
construction of a model that transforms an image into a rich,
semantic vector representation, called an embedding. Thus, the
model is not trying to directly extract the content of the images
but to learn an embedding representation that pulls similar
images closer in the embedding space and pushes dissimilar
images apart.

Figure 2 shows a visual search service consisting of two
parts: the first one extracts an embedding for each image based
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Figure 2. High-level architecture for a visual search system using a deep neural network for learning an image feature vector representation.

on its contents, and the second one deals with the query search
in the embedding space. In this paper we mainly focus on the
first part and recommend the work published in [6] for the
search part.

A visual search service opens new opportunities for improv-
ing an existing application or for developing new applications
by making use of the right data (inspired from [4]):

• Constructing the training and testing datasets for a new
ML-based application, e.g., train an ML model for de-
tecting houses with a pool - for this we need to extract
images containing houses with and without pools.

• Better visualisation and understanding of large-scale
satellite imagery - it is now possible to easily search and
discover similar objects at planetary scale.

• Fast prototyping of a new application - visual search
enables us to only extract and use the data that the user
really needs for proving the feasibility of a new idea.

This paper is organized as follows. In Section II, we present
the prior work related to constructing a visual search system.
In Section III, we introduce our solution for constructing
a performing visual search system along with the datasets
used for doing our experiments. Then, in Section IV, we
present the results of various experiences using classic and
recent DNN architectures on 3 popular datasets. In Section V,
we conduct an ablation study and discuss the importance of
feature dimensionality reduction. Finally, we conclude with a
summary of future research directions in Section VI.

II. PRIOR WORK

The classic solution for extracting embedding vectors for a
visual search systems was to aggregate hand-crafted features

[7]–[9]. Even though ingenious, these techniques were very
difficult to be used on complex imagery at large scale, as it is
the case for satellite or aerial imagery.

In the seminal work [10] the authors proved that the rep-
resentations produced by a deep learning algorithm could be
used for image retrieval tasks. Since then, all major work in the
domain of visual search focused on extracting the embedding
vectors using a deep learning model. We now briefly present
the deep learning work for visual search from two aspects:

• CNN for image retrieval: Training a CNN model in
a supervised manner proved to deliver good results,
either by extracting local features (corresponding to some
objects of interest) [11] [12] or by extracting global
features (corresponding to the entire image). [4]). The
main drawback of this technique is the need for huge
amounts of manually annotated images with increasing
levels of annotation detail.

• Deep metric learning: This technique tries to learn the
similarity between two images using for example a
siamese network [13] or a triplet loss technique [14].
Such models take as input positive samples (correspond-
ing to similar images) and negative samples (not alike
images) and it will learn a similarity metric.

III. METHOD

A. Visual Search Architecture

The central purpose of our approach is to learn an embed-
ding function e = fθθθ(x) where fθθθ represents a deep neural
network (DNN) with parameters θθθ, mapping an image x to a
feature vector e.
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In the embedding space, the distance metric ||fθθθ(xi) −
fθθθ(xj)|| gets the particular meaning of the similarity between
the 2 images xi and xj . Therefore, a good embedding function
should map visually similar images closer to each other in the
N dimensional space, where N is the size of the feature vector.

In Figure 2 we illustrate a high-level architecture for a visual
search system that uses a DNN for learning a feature vector
representation for each image in the training dataset.

B. Indexing and query process

In order to train a DNN for learning the embedding function
e, we first need to carefully construct a training image dataset
making sure it covers all the semantic content of interest.
The visual content of these images could then be labeled for
supervised training or the unlabeled data could be directly
used for unsupervised training. At the end of the training,
the learned embedding function will then be applied to all
the images we have. If the dimension of the resulting feature
vectors is considered too high they could be passed through a
dimensionality reduction post-processing step and then stored
in a database. We call this the indexing process.

With the indexing process finished, it is now possible to
take a query image as input, pass it through the same DNN in
order to extract its feature vector and then search for similar
images in the embedding space (query process).

C. Data

For our experiments we used 3 public aerial imagery
datasets, having the main properties summarized in Table
I. The heterogeneity of these datasets in terms of image
resolution, image dimension, and the labeling strategy, allows
us to validate that our method works in the general case of
any RGB overhead imagery. For example the UC Merced
Land Use Dataset [17] corresponds to aerial orthoimagery
from USGS National Map of 20 US regions, having a 30 cm
resolution.

TABLE I
AERIAL AND SATELLITE IMAGERY DATASETS USED FOR EXPERIMENTS

Dataset # images resolution # classes image size
UC Merced [17] 2.1k 0.3 m 21 256x256

AID [18] 10k 8 to 0.5 m 30 600x600
RESISC45 [19] 31.5 k 30 to 0.2 m 45 256x256

In the next section, we present multiple experiments using
state-of-the-art DNN models, trained using supervised and
unsupervised strategies on the 3 aerial imagery datasets.

IV. EXPERIMENTS AND RESULTS

We strongly believe that the key component to have a robust
zero-shot visual search system is to improve the process of
extracting feature vector representation. This gives us a better
latent space for the query process. To verify this hypothesis,
we carried out several experiments seeking the optimal method
of pre-training DNN, which is then used to extract embedding
vectors for aerial/ satellite images. Our experiments range

from utilizing DNNs pre-trained on photographic datasets,
to investigating the capability of unsupervised pre-training
methods, as well as employing more state-of-the-art DNNs’
architecture.

For evaluating quantitative performance of the visual search
system we use mean Average Precision (mAP) metric as
defined in [15] and Recall@K (R@K) metric as introduced
in [16]. Experiments and results are detailed in the following
paragraphs.

A. Supervised pre-trained DNNs using large photographic
imagery datasets

We first investigated the extraction of embeddings for satel-
lite and aerial images using CNN(s) that have been trained
on large scale photographic object imagery (e.g., ImageNet1k
[20]) and indoor scene datasets (e.g., Places365 [21]). The
interesting conclusion was that even though the CNN model
trained on photographic images has little prior knowledge
of aerial top-down images, it performed relatively well in
modeling the feature space for top-down viewed images. To
have a fair comparison across all runs, we only adopted
ResNet50 [22] as the backbone CNN architecture in this
experiment. The results in term of mAP and R@1 for the
3 datasets described in Section III-C are reported in Table II.

TABLE II
PERFORMANCE COMPARISON OF RESNET50 PRE-TRAINED ON

PHOTOGRAPHIC DATASETS USING SUPERVISED TRAINING METHOD

Test dataset Pre-trained dataset mAP R@1

UC Merced Land Use
ImageNet1k 58.9 92.9
Places365 54.3 90.2

ImageNet1k & Places365 57.5 92.6

AID
ImageNet1k 44.6 85.4
Places365 42.3 83.3

ImageNet1k & Places365 44.4 84.0

RESISC45
ImageNet1k 34.0 78.7
Places365 33.2 77.9

ImageNet1k & Places365 35.0 80.3

We clearly observed the difference in performance of mod-
els pre-trained on different type of datasets. Specifically, the
results were better when the model was pre-trained on an
object imagery dataset namely ImageNet1k (denoted as bold
italic numbers), compared to Places365, an indoor scene
dataset. From our perspective, this result is very appealing
since it is intuitive to believe that the indoor scenes images
may be semantically closer to top-down satellite ones as they
both feature complex real world scenes. This observation
makes us wonder what kind of performance we would be able
to get with a model backbone pre-trained directly on bird eye
view imagery. We present our findings in the following section.

B. Supervised pre-trained DNNs using aerial and satellite
imagery datasets

Following the setting of previous experiment, we only
deployed ResNet50 as the CNN backbone for this experiment.
In order to investigate the effectiveness of using bird eye
view images, the factor we changed this time was to pre-
train the backbone CNN directly on the airborne imagery
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datasets. We iteratively pre-trained the extractor backbone on
one of the satellite imagery datasets, mentioned in section
section III-C, then tested its performance on the remaining
datasets. However, as the UC Merced Land Use dataset is
too small, we skipped using this dataset for pre-training and
only adopted it for testing instead. We present the performance
comparisons in tables III to V. The best performance metrics
are denoted as bold italic numbers while underline numbers
are used for baseline metrics from previous experiments.

TABLE III
PERFORMANCE COMPARISON OF RESNET50 BACKBONE PRE-TRAINED
USING SUPERVISED METHOD AND AERIAL IMAGERY DATASETS ON UC

MERCED LAND USE DATASET

Pre-trained dataset mAP R@1
ImageNet1k 58.9 92.9
AID (x224) 60.0 91.0
AID (x320) 62.7 90.9
RESISC45 78.6 95.9

TABLE IV
PERFORMANCE COMPARISON OF RESNET50 BACKBONE PRE-TRAINED
USING SUPERVISED METHOD AND AERIAL IMAGERY DATASETS ON AID

DATASET

Pre-trained dataset mAP R@1
ImageNet1k 44.6 85.4
RESISC45 69.3 89.2

TABLE V
PERFORMANCE COMPARISON OF RESNET50 BACKBONE PRE-TRAINED

USING SUPERVISED METHOD AND AERIAL IMAGERY DATASETS ON
RESISC45 DATASET

Pre-trained dataset mAP R@1
ImageNet1k 34.0 78.7
AID (x224) 44.0 80.9
AID (x320) 43.4 79.6

(x224): input image size as 224x224.
(x320): input image size as 320x320.

Looking at the performance tables, it is evident that pre-
training the extractor backbone directly on top-down airborne
images has a positive affect on the visual search system
performance.

C. Unsupervised pre-trained DNNs using aerial satellite im-
agery datasets

Recently, unsupervised training has become the approach
of choice to pre-train DNNs. It is noticeable that many pro-
posed unsupervised pre-training methods [28]–[33] improve
the performance of the model in the down-stream tasks with
a considerable margin. The technique enables us to train the
neural networks on a huge amount of data without having
to lable it. This inspired us to carry out the next batch
of experiments, in which we investigated the capability of
unsupervised pre-training methods.

Among many available unsupervised training methods for
DNNs, we selectively picked DINO (self-distillation with no
labels) [23], a self-supervised training method, popular for
its clarity and effectiveness. Adopting similar settings with
earlier experiments, we only used ResNet50 as CNN backbone
architecture in this experiment for the sake of fairness in the
comparison. Results are reported in tables VI to VIII.

TABLE VI
PERFOMANCES OF RESNET50 BACKBONE PRE-TRAINED USING

UNSUPERVISED METHOD AND AERIAL IMAGERY DATASETS ON UC
MERCED LAND USE DATASET

Pre-trained dataset mAP R@1
ImageNet1k 58.9 94.7

AID 55.0 93.1
RESISC45 63.0 93.8

TABLE VII
PERFOMANCES OF RESNET50 BACKBONE PRE-TRAINED USING

UNSUPERVISED METHOD AND AERIAL IMAGERY DATASETS ON AID
DATASET

Pre-trained dataset mAP R@1
ImageNet1k 46.7 88.6
RESISC45 52.1 90.1

TABLE VIII
PERFOMANCES OF RESNET50 BACKBONE PRE-TRAINED USING

UNSUPERVISED METHOD AND AERIAL IMAGERY DATASETS ON RESISC45
DATASET

Pre-trained dataset mAP R@1
ImageNet1k 36.6 84.6

AID 36.1 84.0

Our experiment demonstrated that feature space of visual
search algorithm is enhanced by pre-training CNN backbones
using unsupervised training method with a sufficient to large
amount of bird eye view images. This shed light on how to
effectively utilize an abundant source of aerial and satellite
images without labeling.

D. Vision Transformer as extractor backbone

In order to understand the impact of utilizing recent state-of-
the-art DNN architecture as the backbone extractor, we carried
on our next experiment. We purposely chose to deploy Vision
Transformers (ViT) [27] because it is the best performance
DNN in many tasks at the present.

In this experiment, we only changed the DNN’s architecture,
while the other components were kept the same. Specifically,
we deployed the ResNet50 and variants of ViT models pre-
trained on ImageNet1k dataset using DINO self-supervised
training method as the backbone extractor. We intentionally
chose two small variances (having 21M parameters, compara-
ble to 23M in ResNet50) in ViT family, the difference between
the two are input patch size (16 × 16 and 8 × 8), denoting
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as ViT-S/16 and ViT-S/8 respectively. The results in term of
performance are reported in tables IX to XI.

TABLE IX
PERFOMANCES OF DIFFERENT PRE-TRAINED DNNS’ ARCHITECTURE ON

UC MERCED LAND USE DATASET

Backbone Pre-trained Pre-trained mAP R@1architecture dataset method
ResNet50 ImageNet1k unsupervised 58.9 94.7
ViT-S/16 ImageNet1k unsupervised 63.3 95.7
ViT-S/8 ImageNet1k unsupervised 67.0 95.4

TABLE X
PERFOMANCES OF DIFFERENT PRE-TRAINED DNNS’ ARCHITECTURE ON

AID DATASET

Backbone Pre-trained Pre-trained mAP R@1architecture dataset method
ResNet50 ImageNet1k unsupervised 46.7 88.6
ViT-S/16 ImageNet1k unsupervised 49.8 90.2
ViT-S/8 ImageNet1k unsupervised 53.7 91.7

TABLE XI
PERFOMANCES OF DIFFERENT PRE-TRAINED DNNS’ ARCHITECTURE ON

RESISC45 DATASET

Backbone Pre-trained Pre-trained mAP R@1architecture dataset method
ResNet50 ImageNet1k unsupervised 36.6 84.6
ViT-S/16 ImageNet1k unsupervised 39.7 86.9
ViT-S/8 ImageNet1k unsupervised 43.0 88.8

ResNet50: Residual Network with depth of 50 layers.
ViT-S/16: Vision Transformer small, 16-patch variance.
ViT-S/8: Vision Transformer small, 8-patch variance.

From the results, we can clearly observe that by simply
replacing ResNet50 backbone with a ViT, we can obtain a
significant improvement in terms of performance. This implies
that one may consider utilizing better DNN architectures
available when wanting to enhance the visual search system’s
performance.

E. Qualitative results

In this section, we would like to present some qualitative
search results from our zero-shot visual search system. These
search results, shown in Figure 3, are obtained from our
system equipped with a ViT-S/8 as the backbone extractor,
which had been pre-trained on ImageNet1k dataset using self-
supervised method DINO. Visually the results re-confirmed
our observations in this study.

V. ABLATION STUDY

Besides the experiments presented above, we also carried
out an ablation study on the visual search system, in which we
studied the role of feature dimensionality reduction step, e.g.,
Principal Component Analysis (PCA) [26], Singular Value
Decomposition (SVD) [24], k-reciprocal encoding [25]. We

discovered an interesting phenomena that needs to be cau-
tiously considered when building a robust and efficient zero-
shot visual search system over billions satellite/aerial images.

A. Impact of removing feature dimensionality reduction step

After the feature extraction procedure, one of the post
processing steps is to reduce the dimensionality of feature
vectors before indexing. There are many methods for feature
dimensionality reduction, but for the sake of brevity we
only discuss PCA. However, these methods suffer from low
scalability since they need to be trained on extracted feature
vectors of the gallery images in the database. This process may
be trivial for small-medium datasets, yet can be a potential
issue when dealing with huge amounts of data, i.e., building a
visual search system over billions airborne images. Therefore,
in this experiment we examined the influence of removing
feature dimensionality reduction step from the system.

TABLE XII
PERFORMANCES OF VISUAL SEARCH SYSTEM WITH & WITHOUT PCA ON

AID DATASET

Backbone Dimension
mAP mAP R@1 R@1

architecture(∗∗) Reduction drop ↓ drop ↓method

ResNet50 PCA 46.7 5.1 ↓ 88.6 0.6 ↓None 41.6 88.0

ViT-S/16 PCA 49.8 4.5 ↓ 90.2 0.3 ↓None 45.3 88.9

ViT-S/8 PCA 53.7 4.8 ↓ 91.7 1.1 ↓None 48.9 90.6
(∗∗): All backbones had been pre-trained on AID dataset using DINO
self-supervised method.

From table XII, we can conclude that the performance of the
visual search system dropped by a considerable margin in term
of mean Average Precision (mAP) and a small margin for Re-
call at 1 (R@1) when removing dimension reduction method,
specifically PCA in our experiment. This demonstrates the
necessity of deploying dimension reduction module in the task
where high accuracy is required.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented two ideas that could help improve
the performance of a zero-shot visual search system applied
to satellite or aerial imagery: firstly, the importance of pre-
training the model using aerial and satellite imagery and
secondly, using a new network architecture of deep learning
algorithms, i.e., family of ViT, for better feature vector learn-
ing.

As future work, we are envisaging to explore more deeply
the capacity of ViT for embedding learning in an unsupervised
strategy. We believe that applying such strategy to Visual
Search will open new opportunities for better using the con-
tinuously increasing satellite and aerial data volumes.
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