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Abstract—Rainfed crops rarely include the application of 

phytosanitary products due to the high cost of their application 

and the reduced rentability of crops. Nonetheless, if diseases are 

early detected, phytosanitary application costs are heavily 

reduced. This paper presents a method of detecting rabies in 

chickpeas based on true-colour images gathered from drones. 

The methodology consists of applying a series of vegetation 

indexes and filters. In the proposed method, applied to several 

images, we include the detection of areas affected by rabies of 

chickpea but also their differentiation from other areas with 

lower vigour. The developed approach is tested with images 

obtained in different soil types and gathered at diverse flying 

heights. As vegetation indexes, we used well-known vegetation 

indexes and specific vegetation indexes developed for chickpeas. 

To evaluate the accuracy of the proposed methodology, the 

number and percentage of true positives and false positives are 

assessed. Moreover, a verification is done using a different 

picture in order to evaluate if the methodology might be applied 

in other scenarios. The results of the initial test and the 

verification test offer a number of true positives higher than 

85%. Thus, we can affirm that the proposed methodology can 

be useful for the differentiation between areas affected by rabies 

of chickpea and areas with low vigour due to the passing of 

machinery. 

Keywords-plant disease; aggregation; image processing; 

legume; biotic stress; crop 

I.  INTRODUCTION  

Chickpea is a legume crop with a high percentage of 
protein, which can help to reduce the dependence on meat. 
Spain is the main producer of chickpea in Europe. 
Nonetheless, the cultivation of chickpeas has declined in 
recent decades. As indicated by the Lonja de Sevilla, the main 
problems are the following: (i) Lack of support via Common 
Agrarian Policy, (ii) Little Research (little use of certified 
seed), (iii) Technical difficulties in crop management (high 
presence of weeds, diseases, such as rabies and harvesting 
problems) and (iv) Obstacles in marketing. The technical 
difficulties of crop management are the most important for 
farmers and those that can be solved by means of new 
technologies. Of these difficulties, the detection of weeds [1] 
and plants affected by diseases [2] are vital in chickpea 
cultivation and other crops. Among the chickpea diseases, 

rabies of the chickpea is one of the most problematic ones, 
causing a decrease in production and even the death of the 
plant. 

The use of a remote sensing approach is pointed out as one 
of the best methodologies for evaluating plant features. In 
other crops, the use of remote sensing for detecting plant 
diseases is common. According to [3], the most studied 
diseases are fungal diseases. They are generally studied in 
cereals such as wheat, rice and maise, followed by soya. No 
study evaluated the use of hyperspectral images in chickpeas 
or other rainfed legumes. In [4], a large collection of 
Vegetation Indexes (VI) developed by different authors for 
diverse crops is presented. The authors indicate that VI are 
highly correlated at plot level with the presence of plant 
diseases. Focusing on VI, RGB images are reported as 
adequate for cotton, sugar beet, grapefruit, and tobacco [5]. 
Although hyperspectral images provide more information 
than RGB images, the elevated cost of hyperspectral cameras 
precludes its use for real solutions.  

The main problem of applying VI to identify the areas to 
be treated is that we can find other zones characterised by low 
vigour in the fields, which can be confused with zones 
affected by rabies. These zones are usually the areas that have 
been stepped on by a tractor when entering to apply 
treatments. If the areas are not correctly differentiated, 
phytosanitary products will be wasted, increasing the 
treatment's cost and efficiency.  

The aim of this paper is to evaluate the use of RGB images 
taken by Unmanned Aerial Vehicle (UAV) to identify areas 
affected by rabies in different fields. The images have been 
taken at different heights and included affected and unaffected 
areas. The entire process includes the application of the VI 
(testing up to 5 different VI) and the use of different tools for 
image processing, such as aggregation or reclassification 
tools. Simple tools are selected to avoid the use of artificial 
inteligence or complex tools. This, ensures that the 
methodology can be applied in the fields in real time. Thus, 
the Unmanned Aerial Vehicle (UAV) will be able to identify 
the areas to be treated and apply the treatment at the same 
time.  

The rest of the paper is structured as follows; Section II 
outline the related work and the gap in the current solutions. 
The proposal is described in Section III. Section IV details the 
material and methods used in this research. The results and 
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main discussion are presented in Section V. Finally, the 
conclusion and future work are summarised in Section VI.  

II. RELATED WORK 

This section summarises the existing proposals for 
identifying diseases or abiotic stress in plants using RGB 
images and the existing VI developed for chickpeas.  

Regarding the use of RGB images to identify plant 
diseases, we can find a limited number of examples. More 
examples of using the RGB data to evaluate abiotic stress.  

In 2019, Marc Sancho-Adamson et al. [6], showed the use 
of RGB-based VI for evaluating the effects of 
VerticilliumWilt of olive. The authors used the following VI: 
Green Area (GA), Greener Area (GGA), normalised green-
red difference index and triangular greenness index. Their 
results indicate that GA was the one with the strongest 
correlations between the VI and chlorophyll and carotenoid 
extractions to identify the diseases. Nonetheless, the VI was 
applied in pictures done in the laboratory, not in the field.  

Another example of the application of RGB indexes to 
identify plat diseases was published in 2021 by Arturo Yee-
Rendon [7]. In their paper, the authors pointed out the 
possibility of using RGB-based VI for detecting tobacco 
mosaic virus and pepper huasteco yellow vein Virus in 
jalapeño pepper plants. New VI was proposed and evaluated. 
The authors combine the VI with a convolutional neural 
network to identify the affected leaves in their proposal. Their 
results indicate that the VI with better accuracy was the 
normalised green–blue vegetation index, which combines the 
green and the blue bands.  

In 2021, Brenon Diennevam Souza Barbosa et al. [8], 
assess the use of RGB images for monitoring a coffee farm. A 
total of 9 VI were used and correlated with the obtained Leaf 
Area Index (LAI). Results indicate that the index that best 
correlates with the LAI varies along the different phenological 
stages of the crop. Salima Yousfi et al. in 2022 [9] present the 
use of RGB-based VI for evaluating the hydric stress in 
turfgrasses. GA and GGA were used to assess the stress of the 
plants. Their results indicate that RGB-based VI obtained 
from aerial images explains the hydric stress of the plants 
better than terrestrial indexes, even better than the Normalised 
Difference Vegetation Index (NDVI). The NDVI is a well-
known VI that uses not only the RGB data but also the 
information of infrared light.  

Finally, a few examples of VI applied for chickpeas 
monitoring can be found. Particularly, in the case of RGB 
indexes, only two papers have been published. In the first 
example, the VI was used to differentiate soil from vegetation 
in order to assess the degree of establishment of different 
legumes, including lentils and chickpea [10]. In the second 
example, a tailored VI including a series of thresholds is used 
to differentiate species of legumes in intercropping. The 
included species were chickpea, lentil and ervil. The results of 
[11] pointed out that chickpea was the species that was easier 
to differentiate.  

As far as we know, no paper has shown the use of RGB-
based VI to identify chickpea's rabies nor to differentiate 
regions affected by the disease and the pass of machinery. 
Moreover, no example of RGB-based VI applied in the field 

is found. Thus, the methodology presented in this paper can 
be considered an advance over state of the art.  

III. PROPOSAL 

In this section, we outline the proposal developed in the 
paper. We will describe why the proposed methodology is the 
most suitable approach for the problem. 

The problem indicated in the introduction is differentiating 
areas affected by rabies of chickpea from areas with lower 
vigour due to the passing of machinery. Our proposal is to 
develop a methodology that allows an UAV to apply it in real-
time to smartly decide the areas to be treated with the 
phytosanitary product. The aim is to minimise the application 
of phytosanitary products treating only the area affected by the 
disease and its surroundings. Thus, it is essential to 
differentiate the areas in which crop has low vigour due to the 
rabies of the chickpea from the areas with low vigour due to 
the machinery, which does not need any treatment. 

Figure 1 shows an example of a picture in which, 
manually, we have differentiated the areas with low vigour 
and their cause. The proposed approach is depicted in Figure 
2, in which we represent the whole process to minimise the 
use of phytosanitary products. Applying the phytosanitary 
product to the affected area it is possible to reduce the cost and 
environmental impact of the treatment without minimizing its 
effectivity. Traditionally, the phytosanitary product is applied 
to the whole plot. 

 

 

Figure 1.  Example of areas with low vigour. 

 

Figure 2.  Representation of proposal. 
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IV. MATERIAL AND METHODS 

A. Studied area 

The study area is located in the autonomous community of 
Castilla la Mancha (Spain), in the municipality of Trijueque 
(40º46'45''N, 2º59'2''W) at an approximate altitude of 1,000 
m.a.s.l. The location of the studied area in Spain and the 
detailed image of the studied fields can be seen in Figure 3 a) 
and Figure 3 b). The studied area is composed of two 
production fields in which chickpea is grown. Different crop 
densities characterise the plots due to different soils. Plots are 
located on a plain close to a highway.  

Pictures were gathered on 25 May 2021 in cloudless sky 
conditions (clouds covered less than 20% of the sky). This 
ensures the light condition for picture collection.  

B. Studied crop 

In the studied plots, chickpeas are in the reproductive 
stage. More specifically, chickpea was in the phenologic state 
R6, with the seeds starting their formation in the pods. The 
plants have an approximate height of about 40 cm. The plats 
belong to a variety of chickpea with small seeds.  

At different points of the plots, it is possible to identify 
areas affected by rabies of chickpeas. Those areas can be seen 
in Figure 4. In addition to the affected areas, the use of 
agricultural machinery in the early stages has affected the 
correct development of plants.  

C. AUV details 

The images are taken by a drone (Parrot Bebop 2) that uses 
an RGB and thermal camera (FLIR ONE Pro thermal – RGB 
camera). In the present study, only the information from the 
RGB camera is used. Figure 5 depicts the data gathering 
process. 

 

a)   b)

 

Figure 3.  Location of the studied area, a) location in the 

Iberian Peninsula and b) image of the fields.  

 

Figure 4.  Terrestrial picture of the studied area. 

 

Figure 5.  Picture during data collection. 

D. Image processing 

The pictures were taken at a height of 8 to 10 m above the 
ground. The images are subsequently processed 
mathematically to identify the areas with low vigour, 
differentiating the areas affected by rabies from the areas 
affected by the passage of a tractor. In Figure 1, we can see an 
example of the images taken. In each of the images, the tractor 
pass (on the left of the image) and the area affected by rabies 
(on the right of the image) are identified. 

The problem that we need to solve is the possible false 
positives caused by the tractor tread area. It is expected that 
when applying the VI, both the areas affected by rabies and 
the areas trampled by the tractor will give similar results. 

The process used with the images to identify areas with 
low vigour and differences between areas affected by rabies 
or by the passage of a tractor is broken down into the 
following elements: (i) Application of the VI (created for this 
case), (ii) Tools to differentiate false positives from the 
machinery pass, and (iii) Aggregation techniques and 
mathematical operations between bands. The process is 
summarized in Figure 6. 
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Figure 6.  Block diagram of the followed process, including the most relevant tools (VI, reclassification and aggregation technique). 

V. EVALUATION OF RESULTS AND DISCUSSION 

In this section, we analyse the results of the proposed 
methodology and the selected values for each of the conducted 
steps. Moreover, we display the code of the used tools. 

A. Followed process 

Figure 7 shows the results of the processes followed to 
identify the areas affected by rabies. An example of the raster 
obtained working with the image taken at 10 m is shown in 
each block diagram. 

As VI, we have evaluated the use of well-known VI as 
well as analysed the generation of tailored VI. The use of 
existing VI does not offer good results compared with the 
proposed VI. Among the proposed VI, five different VI were 
considered. Being the VI indicated in (1), the one with better 
results. Three of the proposed VI are based on blue and green 
bands (B3 and B2), another VI is based on red and green bands 
(B1 and B2), and the last one on the three bands (B1, B2 and 

B3). The VI with better results is the one based on the 
combination of the three bands.  

Another relevant finding of this paper is that the "Thin" 
tool was the one that allowed the differentiation of the areas 
with low vigour due to the machinery from the areas affected 
by rabies of chickpea. The differentiation is done based on the 
different shapes of affected areas (round for rabies of chickpea 
and linear for the machinery). This tool was selected among 
different spatial analyst tools. Other tools tested in this paper 
included Boundary clean, Expand, Nibble, and Shrink. 
Nonetheless, none of these tools has proven to be as accurate 
as of the Thin tool. 

We can identify it at the end of the block diagram. As a 
result, a raster in which combines the AIVR and ATIVRR (see 
(2)), the red spots indicate the area in which rabies of chickpea 
appear. The area in grey is discarded due to the fine tool since 
it indicates that the shape of the area cannot be considered as 
an area affected by rabies of the chickpea for the given flying 
height and camera. 

 

Aggregation
Technique

Tool to 
differentiate 

zones (which tool 
will be evaluated 

in the article)

True-colour image
(RGB)

Vegetation Index
(VI)

Classification
(RESULTS)

VI Reclassified
(VIR)
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Figure 7.  Results of each step until reaching the result. 

B. Code and values for selected code 

Following the process described in Figure 7, we detail the 
included code. The first code to be described is used for the 
reclassification of VI to generate the VIR. This code can be 
seen in Figure 8. The selected ranges do not need to be adapted 
if the proposed methodology is applied under different 
conditions.  

In the next step, the use of the Thin tool is defined in 
Figrue 9. In this case, the selected parameters were round 
since the results are more accurate than with sharp and 50 as 
the maximum thickness in pixels. The number of maximum 
thickness should be reconsidered for other scenarios in which 
the pixel size changes, such as for using another flying height 
or a camera with a different resolution.  

The Aggregation processes for both IVR and ATVIR are 
defined in Figrue 10. The aggregation method (mean for IVR 
and summation for ATVIR) should not be modified. 
Nonetheless, the cell size should be reconsidered and adapted 
for other scenarios.  

 

Code 1 

# Code for Reclassify Operation (I) 
import arcpy 
from arcpy import env 
from arcpy.sa import * 
env.workspace = "C:/sapyexamples/data" 
outReclass1 = Reclassify("VI", "Value",  
RemapRange([[0,1,1],[1,255,2]])) 
outReclass1.save("C:/sapyexamples/output/VIR")  

Figure 8.  Code for reclassify operation (i) 

Code 2: 

# Code for Thin 
import arcpy  
from arcpy import env  
from arcpy.sa import *  
env.workspace = "C:/sapyexamples/data"  
thinOut = Thin("VIR","ZERO", "FILTER","ROUND",50) 
thinOut.save("c:/sapyexamples/output/FIVR")  

True-color Imabe
(RGB)

Red Band

Green Band

Blue Band

VI Thin IVR (TVIR)

Aggregated TIVR

(ATVIR)

AFIVR Reclassified 
((ATVIR) R)

Result
(AVIR) x ((ATVIR) R)

VIR

AVIR
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Figure 9.  Code for thin operation 

Code 3: 

# Code for Aggregate Operation 
import arcpy 
from arcpy import env 
from arcpy.sa import * 
env.workspace = "C:/sapyexamples/data" 
outAggreg = Aggregate("IVR", 5, "MEAN", 
"TRUNCATE", "DATA") 
outAggreg.save("C:/sapyexamples/output/AVIR") 
outAggreg = Aggregate("TAVIR", 25, "SUMMATION", 
"TRUNCATE", "DATA") 
outAggreg.save("C:/sapyexamples/output/ATAVIR") 

Figure 10.  Code for Aggregate Operation 

 

Finally, Figure 11 presents the reclassification of ATVIR. 
Again, no modification of this code is needed for different 
scenarios. The selected values for the aggregation are the ones 
that allow the assigment of pixel value = 1 in the result of the 
methodology when the area has rabies of chickpea. 

 

Code 4: 

# Code for Reclassify Operation (II) 
import arcpy 
from arcpy import env 
from arcpy.sa import * 
env.workspace = "C:/sapyexamples/data" 
outReclass1 = Reclassify("AFIVR", "Value",  
RemapRange([[0,1],[0,255,0]])) 
outReclass1.save("C:/sapyexamples/output/VIR")  

Figure 11.  Code for reclassify operation (ii). 

 (1) 

 

 
(2) 

 

C. Accuracy of obtained results and verification 

The proposed methodology makes it possible to identify 
the areas affected by rabies in 100% of the cases. After 
removing the positives that are on the edge of the photograph, 
there are 85.7% true positives versus 14.3% false positives. In 
the verification of the methodology, using a different picture, 
we identify 100% of affected areas by rabies of chickpea. In 
this case, we have 88.2% of true positives and 11.8% of false 
positives. The results in terms of true positives and false 
positives are summarised in Table 1.  

TABLE I.  SUMMARY OF RESULTS AND VERIFICATION 

 
Accuracy 

Nº of positive 

pixels 
True positives False positives 

Test 7 6 (85.7 %) 1 (14.3 %) 

 
Accuracy 

Nº of positive 

pixels 
True positives False positives 

Verification 17 15 (88.2 %) 2 (11.8 %) 

A correct classification percentage of 80% is within what 
is expected in this type of case, especially for preliminary 
results [11]. The precision is lower than in other articles in 
which more advanced classification techniques are used, in 
which case the precision is close to 90% [12]. There are cases 
in which these advanced classification techniques have a 
precision of less than 80% [13]. 

D. Dicussion 

The obtained accuracy, in the verification is aligned with 
accuracies found in other similar models [10 and 11].  

Existing approaches to solve the identification of fungic 
diseases focused on machine learning are designed for other 
crops such as cotton [14], wheat [15], maize [16], oilseed rape 
[17] or strawberry [18], amon oghers. Nonetheless, it is not 
possible to fairly compare the results since the accuracy of the 
methodologies are calculated in a whyde range of forms 
(confusion matrices, R2 of the correlation, etc).  

Only one paper has been found in which the detection of 
fungic disease in chickpea is analyzed [19] Nevertheless, in 
[19] the authors do not offer the accuracy of the disease 
detection, results are referred to productivity. Another 
example of use of remote sensing in chickpea, aimed to detect 
water stress, obtained accuracies between 72 % and 83 %. In 
a posterior study, using convolutional neural network [21], the 
maximum accuracy reached 96%. The accuracy of porposed 
method is aligned with existing accuracies in proposals for 
chickpea. 

The main limitation of the proposed methodology is the 
use of RGB images. Probably, if infrared informtionis 
included the differentiation will be easier. However, to 
maintain the methodology as simple as possible and to avoid 
using high-cost resources, RGB images are the sole 
information source. 

VI. CONCLUSION 

In the presented work, we have evaluated a methodology 
to identify areas affected by rabies capable of not giving false 
positives in the areas through which agricultural machinery 
has passed. It is a preliminary methodology that will be 
evaluated within the framework of the GO TecnoGAR and 
Valvagar-Dron Guardes projects in the years 2022 and 2023. 

In the future, it is hoped that this information will be 
combined with specific treatments that will reduce the number 
of phytosanitary products used to treat large areas. Similar 
methodologies will also be used to identify weeds. 
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