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Abstract— In this paper, we present a unique and efficient 

visible trajectory planning for aerial swarm using 

decentralized algorithms in a 3D urban environment.   By using 

SwarmLab environment, we are comparing two decentralized 

algorithms from the state of the art for the navigation of aerial 

swarms, Olfati-Saber’s and Vasarhelyi’s. The first step in our 

concept is to extract basic geometric shapes. We focus on three 

basic geometric shapes from point clouds in urban scenes that 

can appear: planes, cylinders and spheres, extracting these 

geometric shapes using efficient Random Sample Consensus 

(RANSAC) algorithms with a high success rate of detection. 

The second step is a decentralized swarm algorithm for motion 

planning, demonstrated on drones in urban environment. Our 

planner includes dynamic and kinematic platform’s limitation, 

generating visible trajectories based on our first step 

mentioned earlier. We demonstrate our visibility and 

trajectory planning method in simulations, showing trajectory 

planning in 3D urban environments for drone’s swarm with 

decentralized algorithms demonstrating performance analysis 

,such as order, safety, connectivity and union. 

 
Keywords-Swarm; Visibility; 3D; Urban environment; 

Decentralized algorithms. 

I. INTRODUCTION 

In this paper, we study a fast and efficient visible trajectory 

planning for drone swarms in a 3D urban environment, based 

on local point clouds data. Recently, urban scene modeling 

has become more and more precise, using Terrestrial/ground-

based LiDAR on unmanned vehicles to generate point clouds 

data for modeling roads, signs, lamp posts, buildings, trees 

and cars. Visibility analysis in complex urban scenes is 

commonly treated as an approximated feature due to 

computational complexity.  

Our trajectory planning method is based on a two-step 

visibility analysis in 3D urban environments using predicted 

visibility from point clouds data. The first step in our unique 

concept is to extract basic geometric shapes. We focus on 

three basic geometric shapes from point clouds in urban 

scenes: planes, cylinders and spheres, extracting these 

geometric shapes using efficient RANSAC algorithms with a 

high success rate of detection. The second step include 

decentralized swarm algorithm for motion planning, 

demonstrated on drones in urban environment. Our planner 

includes dynamic and kinematic platform’s limitation, 

generating visible trajectories based on our first step 

mentioned above. We demonstrate our visibility and 

trajectory planning method in simulations, showing trajectory 

planning in 3D urban environments for drone’s swarm with 

decentralized algorithms including performance analysis, 

such as order, safety, connectivity and union.  

Visibility analysis based on this approximated scene 

prediction is done efficiently, based on our analytic solutions 

for visibility boundaries. With this capability, we present a 

local on-line planner generating visible trajectories, exploring 

the most visible and safe node in the next time step, using our 

predicted visibility analysis.  

For the first time, we propose a solution for decentralized 

swarm algorithm which takes visibility into account, avoiding 

obstacles using Velocity Obstacle (VO) search and planning 

method.  

 The rest of this paper is organized as follows: In Section II 

we introduce visibility analysis from point clouds data. In 

Section III, we introduce fast visibility analysis, and in Section 

VI we present decentralized swarm algorithm.  

II. VISIBILITY ANALYSIS FROM POINT CLOUDS DATA 

As mentioned, visibility analysis in complex urban scenes 

is commonly treated as an approximated feature due to its 

computational complexity. Recently, urban scene modeling 

has become more and more exact, using Terrestrial/ground-

based LiDAR generating dense point clouds data for modeling 

roads, signs, lamp posts, buildings, trees and cars. Automatic 

algorithms detecting basic shapes and their extraction have 

been studied extensively, and are still a very active research 

field [2]. 

In this part, we present a unique concept for predicted and 

approximated visibility analysis in the next attainable 

vehicle's state at a one-time step ahead in time, based on local 

point clouds data which is a partial data set. 

We focus on three basic geometric shapes in urban scenes: 

planes, cylinders and spheres, which are very common and 

can be used for the majority of urban entities in modeling 

scenarios. Based on point clouds data generated from the 

current vehicle's position in state k-1, we extract these 
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geometric shapes using efficient RANSAC algorithms [3] 

with high success rate detection tested in real point cloud data. 

After extraction of these basic geometric shapes from local 

point clouds data, our unified concept, and our main 

contribution, focus on the ability to predict and approximate 

urban scene modeling at the next view point Vk, i.e., at the 

attainable location of the vehicle in the next time step. Scene 

prediction is based on the geometric entities and the KF), 

which is commonly used in dynamic systems for tracking 

target systems [4][5]. We formulate the geometric shapes as 

states vectors in a dynamic system and predict the scene 

structure in the next time step, k. 

Based on the predicted scene in the next time step, visibility 

analysis is carried out from the next view point model [6], 

which is, of course, an approximated one. As the vehicle 

reaches the next viewpoint Vk, point clouds data are measured 

and scene modeling and states vectors are updated, which is 

an essential for the global swarm visible trajectory planning 

based on state-of-the-art decentralized algorithms. 

A. Shapes Extraction 

1) Geometric Shapes: 

The urban scene is a very complex one in the matter of 

modeling applications using LiDAR, and the generated point 

clouds are very dense. Despite these inherent complications, 

feature extraction can be made very efficient by using basic 

geometric shapes. We define three kinds of geometric shapes: 

planes, cylinders and spheres, with a minimal number of 

parameters for efficient time computation. 

Plane: center point (x,y,z) and unit direction vector from 

center point.  

Cylinder: center point (x,y,z), radius and unit direction 

vector of the cylinder axis. Cylinder height dimension will be 

consider later on as part of the simulation. 

Sphere: center point (x,y,z), radius and unit direction vector 

from center point. 

2) RANSAC: 

The RANSAC [7] is a well-known paradigm, extracting 

shapes from point clouds using a minimal set of a shape's 

primitives generated by random drawing in a point clouds set. 

A minimal set is defined as the smallest number of points 

required to uniquely define a given type of geometric 

primitive.  

     For each of the geometric shapes, points are tested to 

approximate the primitive of the shape (also known as "score 

of the shape"). At the end of this iterative process, extracted 

shapes are generated from the current point clouds data. 

     Based on the RANSAC concept, the geometric shapes 

detailed above can be extracted from a given point clouds 

data set. In order to improve the extraction process and reduce 

the number of points validating shape detection, we compute 

the approximated surface normal for each point and test the 

relevant shapes.  

Given a point-clouds with associated normals 

, the output of the RANSAC algorithm is a set of 

primitive shapes  and a set of remaining points 

. 

B. Predicted Scene – Kalman Filter 

     In this part, we present the global KF approach for our 

discrete dynamic system at the estimated state, k, based on 

the defined geometric shapes formulation defined in the 

previous sub-section. 

     Generally, the Kalman Filter can be described as a filter 

that consists of three major stages: Predict, Measure, and 

Update the state vector. The state vector contains different 

state parameters, and provides an optimal solution for the 

whole dynamic system [5]. We model our system as a linear 

one with discrete dynamic model, as described in (1): 

 

                                   (1) 

 

where  is the state vector, F is the transition matrix and k is 

the state.  

     The state parameters for all of the geometric shapes are 

defined with shape center , and unit direction vector , of 

the geometric shape, from the current time step and viewpoint 

to the predicted one. 

     In each of the current states k, geometric shape center 

, is estimated based on the previous update of shape center 

location , and the previous updated unit direction vector 

, multiplied by small arbitrary scalar factor c, described 

in (2): 

 

                              (2) 

 

     Direction vector can be efficiently estimated by 

extracting the rotation matrix T, between the last two states 

k, k-1. In case of an inertial system fixed on the vehicle, a 

rotation matrix can be simply found from the last two states 

of the vehicle translations in (3): 

 

                                     (3) 

 

     The 3D rotation matrix T tracks the continuous extracted 

plans and surfaces to the next viewpoint , making it 

possible to predict a scene model where one or more of the 

geometric shapes are cut from current point clouds data in 

state k-1. The discrete dynamic system can be written as 

formulated in (4): 
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where the state vector  is  vector, and the transition 

squared matrix is . The dynamic system can be 

extended to additional state variables representing someof the 

geometric shape parameters such as radius, length etc. We 

define the dynamic system as the basic one for generic shapes 

that can be simply modeled with center and direction vector. 

Sphere radius and cylinder Z boundaries are defined in an 

additional data structure of the scene entities. 

 

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS 

     In this section, we present an analytic analysis of the 

visibility boundaries of planes, cylinders and spheres for the 

predicted scene presented in the previous sub-section, which 

leads to an approximated visibility. For the plane surface, fast 

and efficient visibility analysis was already presented in [6]. 

In this part, we extend the previous visibility analysis concept 

[6] and include cylinders as continuous curves 

parameterization . 

Cylinder parameterization can be described in (5): 

  

      ,         (5) 

 

We define the visibility problem in a 3D environment for 

more complex objects as: 

 

     (6) 

 

where 3D model parameterization is , and the 

viewpoint is given as . Extending the 3D cubic 

parameterization, we also consider the case of the cylinder. 

Integrating (5) to (6) yields: 

 

                        (7) 

 

(8) 

     As can be noted, these equations are not related to Z axis, 

and the visibility boundary points are the same for each x-y 

cylinder profile, as seen in (7), (8). . 

     The visibility statement leads to a complex equation, 

which does not appear to be a simple computational task. This 

equation can be efficiently solved by finding where the 

equation changes its sign and crosses the zero value; we used 

analytic solution to speed up computation time and to avoid 

numeric approximations. We generate two values of  

generating two silhouette points in a very short time 

computation. Based on an analytic solution to the cylinder 

case, a fast and exact analytic solution can be found for the 

visibility problem from a viewpoint. 

     We define the solution presented in (8) as x-y-z 

coordinates values for the cylinder case as Cylinder 

Boundary Points (CBP). CBP, defined in (9), are the set of 

visible silhouette points for a 3D cylinder, as presented in 

Figure 1: 

 

(9) 

 

        
                    (a)                                         (b)  

Figure 1.  Cylinder Boundary Points (CBP) using Analytic Solution 
marked as blue points, Viewpoint Marked in Red: (a) 3D View (Visible 

Boundaries Marked with Red Arrows); (b) Topside View. 

In the same way, sphere parameterization can be described as 

formulated in (10): 

 

               (10) 

 

We define the visibility problem in a 3D environment for this 

object in (11): 

 

     (11) 

 

where the 3D model parameterization is , and the 

viewpoint is given as . Integrating (10) to (11) 

yields: 
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Where r is defined from sphere parameter, and 

are changes from visibility point along Z axis, as described in 

(12). The visibility boundary points for a sphere, together 

with the analytic solutions for planes and cylinders, allow us 

to compute fast and efficient visibility in a predicted scene 

from local point cloud data, which are updated in the next 

state. 

This extended visibility analysis concept, integrated with 

a well-known predicted filter and extraction method, can be 

implemented in real time applications with point clouds data. 

 

IV. DECENTRALIZED SWARMS TRAJECTORY PLANNING 

In this part, we focus on decentralized swarm algorithm 

with visibility analysis in urban environment as cost function 

for our trajectory. 

For our simulation, we used SwarmLab [10], drone swarm 

simulator that was implemented and adapted two 

representative algorithms belonging to the category of 

decentralized swarming. Decentralized approach can make 

the system easily scalable and robust to the failures of a single 

individual. SwarmLab includes algorithm developed by 

Olfati-Saber [12], who proposes a formal theoretical 

framework for the design and analysis of swarm algorithms 

based on potential fields and graph theory. 

The second algorithm that was implemented is an 

adaptation of the recent Vasarhelyi’s algorithm [13], defined 

by the following rules: repulsion to avoid inter-agent 

collisions, velocity alignment to steer the agents to an average 

direction, and self-propulsion to match a preferred speed 

value. In addition, the algorithm includes friction forces that 

reduce oscillations and ease the implementation on real 

robots. 

In decentralized approaches, one agent’s movement is 

only influenced by local information coming from its 

neighbors. Neighbors’ selection can be operated according to 

different metrics. 

In our work, we adopted these algorithms with visibility 

analysis as part of swarm’s trajectory by leading the swarm 

to the most visible areas in the scene by the swarm, as 

presented in the previous section. 

Unlike the original SwarmLab simulation where obstacle 

avoidance is based on simulating the obstacles as virtual 

agents, we used the Velocity Obstacles [8] local obstacles 

avoidance method.  

This obstacle avoidance method allows us to deal better 

with swarm behavior and can be more precise and gentler, 

avoiding obstacles in dense environments. 

A. The Planner 

     As mentioned above, our planner is based on an iterative 

local planning method, where the swarm is moving to the 

most visible area. By using RANSAC algorithm, point clouds 

data are extracted each time step into three possible objects: 

plane, cylinder and sphere. The scene is formulated as a 

dynamic system using KF analysis for objects' prediction. 

The objects are approximated for the next time step, and each 

safe attainable state that can be explored is set as candidate 

viewpoint. The cost for each agent is set as total visible 

surfaces, based on the analytic visibility boundary, where the 

optimal and safe node is explored for the next time step. 

     At each time step, the planner computes the next 

Attainable Velocities (AV). The safe nodes not colliding with 

objects such as cubes, cylinders and spheres, i.e., nodes 

outside VO, are explored. Where all nodes are inside VO, a 

unified analytic solution for time horizon is presented, 

generating an escape option for these radical cases without 

affecting visibility analysis. The planner computes the cost 

for these safe nodes based on predicted visibility and chooses 

the node with the optimal cost for the next time step. We 

repeat this procedure while generating the most visible 

trajectory. 

 

1) Visibility Analysis as Swarm Cost Function 

Our swarm direction and movement is guided by minimum 

invisible parts from viewpoint V to the approximated 3D 

urban environment model in the next time step, 𝑡 + ∆𝑡, set by 

KF after extracting objects from point clouds data using the 

RANSAC algorithm. The cost function next state is a  

combination of IRV and ISV, with different weights as 

functions of the required task.  

     The cost function presented in (13) is computed for each 

agent from his current state, considering the agent’s future 

location at the next time step (𝑥1(𝑡 + ∆𝑡),𝑥2(𝑡 + ∆𝑡)) as 

viewpoint: 

 

   𝑤(𝑥(𝑡 + ∆𝑡)) = 𝛼 ∙ 𝐼𝑆𝑉(𝑥(𝑡 + ∆𝑡)) + 𝛽 ∙ 𝐼𝑅𝑉(𝑥(𝑡 + ∆𝑡))    (13) 

 

       where ∝, 𝛽  are coefficients affecting the trajectory's 

character, as shown in (14). The cost function 𝑤(𝑥(𝑡 + ∆𝑡) 
produces the total sum of invisible parts from the viewpoint 

to the 3D urban environment. 

       We divide point invisibility value into Invisible Surfaces 

Value (ISV) and Invisible Roofs Value (IRV). This 

classification allows us to plan delicate and accurate 

trajectories upon demand. We define ISV and IRS as the total 

sum of the invisible roofs and surfaces (respectively). 

Invisible Surfaces Value (ISV) of a viewpoint is defined as 

the total sum of the invisible surfaces of all the objects in a 

3D environment, as described in (14): 

 

            (14) 

 

In the same way, we define Invisible Roofs Value (IRV) as 

the total sum of all the invisible roofs' surfaces, as described 

in (15):  

                (15) 
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Extended analysis of the analytic solution for visibility 

analysis for known 3D urban environments can be found in 

[6]. 

V. SIMULATIONS 

We implemented the presented algorithm and tested some 

urban environments on a Intel(R) Core (TM) i5-10210U CPU   

2.11 GHz with Matlab. We computed the visible trajectories 

using our planner, simulating cloud points using Matlab 

functions. 

On the first part, we tested our visibility analysis integrated 

into decentralized drones swarm algorithms as described 

above. The workflow of a swarm simulation is summarized 

in Figure 2, were typical scenario of cylinder objects in our 

environment can be seen in Figure 3. 

In the first case, we tested our algorithm with a relatively 

large number of agents. As can be seen in Figure 4, thirty 

agents in the swarm moving forward in straight line, 

presenting swarm trajectory, distance between the agents 

during mission, speed and accelerations during movement. 

The swarm navigates based on modified Olfati-Saber’s 

algorithm where obstacle avoidance implemented by 

Velocity Obstacles, where agents are simulated by point mass 

model. Swarm cost function is based on visibility analysis 

computed each time step as mentioned in the previous 

section. 

In the second case, we tested our algorithm with ten agents 

in the swarm, so each agent simulated with quadrotor 

dynamic model. As can be seen in Figure 5, ten agents in the 

swarm moving forward in straight line with C. Vasarhelyi’s 

etc. algorithm, but visibility analysis and dynamic constraints 

swift the swarm to the right side. presenting swarm trajectory, 

distance between the agents. Figure 5 also includes speed and 

accelerations during movement, performances analysis and 

total distance to the obstacles during mission. 

 

Figure 2.  SwarmLab simulation workflow. From the top left, in clockwise 

order: (1) in the GUI, the user sets the parameters related to the simulation, 
drone typology, swarm algorithm and environment. (2) the main simulation 

loop computes control commands for the drones, based on the information 

of the map and neighboring drones; (3) both real-time and post-simulation 

(Source [10]). 

     Order metric captures the correlation of the agents 

movements and gives an indication about how ordered the 

flock. Safety metrics, measure the risk of collisions among 

the swarm agents or between agents and obstacles. 

     Union metric counts the number of independent 

subgroups that originates during the simulation. 

     Connectivity metric defined from the algebraic 

connectivity of the sensing graph that underlines the 

considered swarm configuration. Detailed mathematical 

definitions of these performances’ parameters can be found 

in [11].  

 

 

Figure 3.  Typical Scenario of Environmmet Obstacles Simulation 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

Figure 4.  Thirty agents swarm moving forward in straight line using 

Olfati-Saber’s algorithm with visibility analsysis; (1) presenting swarm 
trajectory; (2) distance between the agents during mission; (3) speed and 

(4) accelerations during movement. 
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(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5)                                                      (6) 

Figure 5.  Ten agents swarm moving forward in straight line using 
Vasarhelyi’s algorithm with visibility analsysis, with quadrotor synamic 

model for agent; (1) presenting swarm trajectory; (2) distance between the 

agents during mission; (3) speed and (4) accelerations during movement; 
(5) performances analysis; (6) total distance to the obstacles during 

mission. 

VI. CONCLUSION AND FUTURE WORK 

    In this research, we have presented an efficient swarm 

trajectory planning algorithm for visible trajectories in a 3D 

urban environment. 

    We extend our analytic visibility analysis method to 

cylinders and spheres, which allows us to efficiently set the 

visibility boundary of predicted objects in the next time step. 

Based on these fast computation capabilities, the on-line 

planner can approximate the most visible state as part of a 

decentralized swarm algorithm. 

     By using SwarmLab environment, we compare two 

decentralized algorithms from the state of the art for the 

navigation of aerial swarms, Olfati-Saber’s and Vasarhelyi’s. 

Our planner includes dynamic and kinematic platform’s 

limitation, generating visible trajectories based on our first 

step mentioned earlier.  

We demonstrate our visibility and trajectory planning 

method in simulations, showing trajectory planning in 3D 

urban environments for drone’s swarm with decentralized 

algorithms with performance analysis, such as order, safety, 

connectivity and union.  

Further research will focus on advanced geometric shapes, 

which will allow precise urban environment modeling, facing 

real-time implementation with on-line data processing from 

sensors.  
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