
Decentralized Swarms Visibility Algorithms

in 3D Urban Environments

Oren Gal and Yerach Doytsher

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology

Haifa, Israel

e-mail: orengal@alumni.technion.ac.il

Abstract— In this paper, we present a unique and efficient

visible trajectory planning for aerial swarm using

decentralized algorithms in a 3D urban environment. By using

SwarmLab environment, we are comparing two decentralized

algorithms from the state of the art for the navigation of aerial

swarms, Olfati-Saber’s and Vasarhelyi’s. The first step in our

concept is to extract basic geometric shapes. We focus on three

basic geometric shapes from point clouds in urban scenes that

can appear: planes, cylinders and spheres, extracting these

geometric shapes using efficient Random Sample Consensus

(RANSAC) algorithms with a high success rate of detection.

The second step is a decentralized swarm algorithm for motion

planning, demonstrated on drones in urban environment. Our

planner includes dynamic and kinematic platform’s limitation,

generating visible trajectories based on our first step

mentioned earlier. We demonstrate our visibility and

trajectory planning method in simulations, showing trajectory

planning in 3D urban environments for drone’s swarm with

decentralized algorithms demonstrating performance analysis

,such as order, safety, connectivity and union.

Keywords-Swarm; Visibility; 3D; Urban environment;

Decentralized algorithms.

I. INTRODUCTION

In this paper, we study a fast and efficient visible trajectory

planning for drone swarms in a 3D urban environment, based

on local point clouds data. Recently, urban scene modeling

has become more and more precise, using Terrestrial/ground-

based LiDAR on unmanned vehicles to generate point clouds

data for modeling roads, signs, lamp posts, buildings, trees

and cars. Visibility analysis in complex urban scenes is

commonly treated as an approximated feature due to

computational complexity.

Our trajectory planning method is based on a two-step

visibility analysis in 3D urban environments using predicted

visibility from point clouds data. The first step in our unique

concept is to extract basic geometric shapes. We focus on

three basic geometric shapes from point clouds in urban

scenes: planes, cylinders and spheres, extracting these

geometric shapes using efficient RANSAC algorithms with a

high success rate of detection. The second step include

decentralized swarm algorithm for motion planning,

demonstrated on drones in urban environment. Our planner

includes dynamic and kinematic platform’s limitation,

generating visible trajectories based on our first step

mentioned above. We demonstrate our visibility and

trajectory planning method in simulations, showing trajectory

planning in 3D urban environments for drone’s swarm with

decentralized algorithms including performance analysis,

such as order, safety, connectivity and union.

Visibility analysis based on this approximated scene

prediction is done efficiently, based on our analytic solutions

for visibility boundaries. With this capability, we present a

local on-line planner generating visible trajectories, exploring

the most visible and safe node in the next time step, using our

predicted visibility analysis.

For the first time, we propose a solution for decentralized

swarm algorithm which takes visibility into account, avoiding

obstacles using Velocity Obstacle (VO) search and planning

method.

 The rest of this paper is organized as follows: In Section II

we introduce visibility analysis from point clouds data. In

Section III, we introduce fast visibility analysis, and in Section

VI we present decentralized swarm algorithm.

II. VISIBILITY ANALYSIS FROM POINT CLOUDS DATA

As mentioned, visibility analysis in complex urban scenes

is commonly treated as an approximated feature due to its

computational complexity. Recently, urban scene modeling

has become more and more exact, using Terrestrial/ground-

based LiDAR generating dense point clouds data for modeling

roads, signs, lamp posts, buildings, trees and cars. Automatic

algorithms detecting basic shapes and their extraction have

been studied extensively, and are still a very active research

field [2].

In this part, we present a unique concept for predicted and

approximated visibility analysis in the next attainable

vehicle's state at a one-time step ahead in time, based on local

point clouds data which is a partial data set.

We focus on three basic geometric shapes in urban scenes:

planes, cylinders and spheres, which are very common and

can be used for the majority of urban entities in modeling

scenarios. Based on point clouds data generated from the

current vehicle's position in state k-1, we extract these

47Copyright (c) IARIA, 2022. ISBN: 978-1-61208-983-6

GEOProcessing 2022 : The Fourteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

geometric shapes using efficient RANSAC algorithms [3]

with high success rate detection tested in real point cloud data.

After extraction of these basic geometric shapes from local

point clouds data, our unified concept, and our main

contribution, focus on the ability to predict and approximate

urban scene modeling at the next view point Vk, i.e., at the

attainable location of the vehicle in the next time step. Scene

prediction is based on the geometric entities and the KF),

which is commonly used in dynamic systems for tracking

target systems [4][5]. We formulate the geometric shapes as

states vectors in a dynamic system and predict the scene

structure in the next time step, k.

Based on the predicted scene in the next time step, visibility

analysis is carried out from the next view point model [6],

which is, of course, an approximated one. As the vehicle

reaches the next viewpoint Vk, point clouds data are measured

and scene modeling and states vectors are updated, which is

an essential for the global swarm visible trajectory planning

based on state-of-the-art decentralized algorithms.

A. Shapes Extraction

1) Geometric Shapes:

The urban scene is a very complex one in the matter of

modeling applications using LiDAR, and the generated point

clouds are very dense. Despite these inherent complications,

feature extraction can be made very efficient by using basic

geometric shapes. We define three kinds of geometric shapes:

planes, cylinders and spheres, with a minimal number of

parameters for efficient time computation.

Plane: center point (x,y,z) and unit direction vector from

center point.

Cylinder: center point (x,y,z), radius and unit direction

vector of the cylinder axis. Cylinder height dimension will be

consider later on as part of the simulation.

Sphere: center point (x,y,z), radius and unit direction vector

from center point.

2) RANSAC:

The RANSAC [7] is a well-known paradigm, extracting

shapes from point clouds using a minimal set of a shape's

primitives generated by random drawing in a point clouds set.

A minimal set is defined as the smallest number of points

required to uniquely define a given type of geometric

primitive.

 For each of the geometric shapes, points are tested to

approximate the primitive of the shape (also known as "score

of the shape"). At the end of this iterative process, extracted

shapes are generated from the current point clouds data.

 Based on the RANSAC concept, the geometric shapes

detailed above can be extracted from a given point clouds

data set. In order to improve the extraction process and reduce

the number of points validating shape detection, we compute

the approximated surface normal for each point and test the

relevant shapes.

Given a point-clouds with associated normals

, the output of the RANSAC algorithm is a set of

primitive shapes and a set of remaining points

.

B. Predicted Scene – Kalman Filter

 In this part, we present the global KF approach for our

discrete dynamic system at the estimated state, k, based on

the defined geometric shapes formulation defined in the

previous sub-section.

 Generally, the Kalman Filter can be described as a filter

that consists of three major stages: Predict, Measure, and

Update the state vector. The state vector contains different

state parameters, and provides an optimal solution for the

whole dynamic system [5]. We model our system as a linear

one with discrete dynamic model, as described in (1):

 (1)

where is the state vector, F is the transition matrix and k is

the state.

 The state parameters for all of the geometric shapes are

defined with shape center , and unit direction vector , of

the geometric shape, from the current time step and viewpoint

to the predicted one.

 In each of the current states k, geometric shape center

, is estimated based on the previous update of shape center

location , and the previous updated unit direction vector

, multiplied by small arbitrary scalar factor c, described

in (2):

 (2)

 Direction vector can be efficiently estimated by

extracting the rotation matrix T, between the last two states

k, k-1. In case of an inertial system fixed on the vehicle, a

rotation matrix can be simply found from the last two states

of the vehicle translations in (3):

 (3)

 The 3D rotation matrix T tracks the continuous extracted

plans and surfaces to the next viewpoint , making it

possible to predict a scene model where one or more of the

geometric shapes are cut from current point clouds data in

state k-1. The discrete dynamic system can be written as

formulated in (4):

 (4)

1{ .. }NP p p=

1{ .. }Nn n

1{ .. }N 

1
\{ .. }

N
R P p p =

, 1 1k k k kx F x− −=

x

s d

ks

1ks −

1kd −

1 1k k ks s cd− −= +

kd

1k kd T d −=

kV

1

1

1

1

1

1

11 12 13

21 22 23

31 32 33

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0

0 0 0

0 0 0

k k

k k

k k

k k

k k

k k

x x

y y

z z

x x

y y

z z

s sc

s sc

cs s

T T Td d

T T Td d
T T T

d d

−

−

−

−

−

−

   
    
    
    
    

=     
    
    
    
        

48Copyright (c) IARIA, 2022. ISBN: 978-1-61208-983-6

GEOProcessing 2022 : The Fourteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

where the state vector is vector, and the transition

squared matrix is . The dynamic system can be

extended to additional state variables representing someof the

geometric shape parameters such as radius, length etc. We

define the dynamic system as the basic one for generic shapes

that can be simply modeled with center and direction vector.

Sphere radius and cylinder Z boundaries are defined in an

additional data structure of the scene entities.

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS

 In this section, we present an analytic analysis of the

visibility boundaries of planes, cylinders and spheres for the

predicted scene presented in the previous sub-section, which

leads to an approximated visibility. For the plane surface, fast

and efficient visibility analysis was already presented in [6].

In this part, we extend the previous visibility analysis concept

[6] and include cylinders as continuous curves

parameterization .

Cylinder parameterization can be described in (5):

 , (5)

We define the visibility problem in a 3D environment for

more complex objects as:

 (6)

where 3D model parameterization is , and the

viewpoint is given as . Extending the 3D cubic

parameterization, we also consider the case of the cylinder.

Integrating (5) to (6) yields:

 (7)

(8)

 As can be noted, these equations are not related to Z axis,

and the visibility boundary points are the same for each x-y

cylinder profile, as seen in (7), (8). .

 The visibility statement leads to a complex equation,

which does not appear to be a simple computational task. This

equation can be efficiently solved by finding where the

equation changes its sign and crosses the zero value; we used

analytic solution to speed up computation time and to avoid

numeric approximations. We generate two values of

generating two silhouette points in a very short time

computation. Based on an analytic solution to the cylinder

case, a fast and exact analytic solution can be found for the

visibility problem from a viewpoint.

 We define the solution presented in (8) as x-y-z

coordinates values for the cylinder case as Cylinder

Boundary Points (CBP). CBP, defined in (9), are the set of

visible silhouette points for a 3D cylinder, as presented in

Figure 1:

(9)

 (a) (b)

Figure 1. Cylinder Boundary Points (CBP) using Analytic Solution
marked as blue points, Viewpoint Marked in Red: (a) 3D View (Visible

Boundaries Marked with Red Arrows); (b) Topside View.

In the same way, sphere parameterization can be described as

formulated in (10):

 (10)

We define the visibility problem in a 3D environment for this

object in (11):

 (11)

where the 3D model parameterization is , and the

viewpoint is given as . Integrating (10) to (11)

yields:

 (12)

x 6 1

, 1k kF −

ln (, ,)c dC x y z

ln

sin()

(, ,) cos()C d

r const

r

C x y z r

c





=

 
 

=  
 
  _ max

0 2

1

0 peds

c c

c h

  

= +

 

co s co s 0 0 0'(,) ((,) (, ,)) 0
n t n tz zC x y C x y V x y z − =

(,)z constC x y =

0 0 0(, ,)V x y z

sincos

sin cos 0

0

x

y

z

r Vr

r r V

c V



 

 − 
  

−  − =  
   −   



_

_ _ _

1 1 1

1.. 2 0 0 0

, ,
(, ,)

, ,PBP bound

PBP bound PBP bound PBP bound

i N
N N N

x y z
CBP x y z

x y z= =

 
=  
  

sin cos

(, ,) sin sin

cos

0

0 2

Sphere

r const

r

C x y z r

r

 

 



 

 

=

 
 

=  
 
 

 

 

0 0 0'(, ,) ((, ,) (, ,)) 0C x y z C x y z V x y z − =

(, ,)C x y z

0 0 0(, ,)V x y z

49Copyright (c) IARIA, 2022. ISBN: 978-1-61208-983-6

GEOProcessing 2022 : The Fourteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Where r is defined from sphere parameter, and

are changes from visibility point along Z axis, as described in

(12). The visibility boundary points for a sphere, together

with the analytic solutions for planes and cylinders, allow us

to compute fast and efficient visibility in a predicted scene

from local point cloud data, which are updated in the next

state.

This extended visibility analysis concept, integrated with

a well-known predicted filter and extraction method, can be

implemented in real time applications with point clouds data.

IV. DECENTRALIZED SWARMS TRAJECTORY PLANNING

In this part, we focus on decentralized swarm algorithm

with visibility analysis in urban environment as cost function

for our trajectory.

For our simulation, we used SwarmLab [10], drone swarm

simulator that was implemented and adapted two

representative algorithms belonging to the category of

decentralized swarming. Decentralized approach can make

the system easily scalable and robust to the failures of a single

individual. SwarmLab includes algorithm developed by

Olfati-Saber [12], who proposes a formal theoretical

framework for the design and analysis of swarm algorithms

based on potential fields and graph theory.

The second algorithm that was implemented is an

adaptation of the recent Vasarhelyi’s algorithm [13], defined

by the following rules: repulsion to avoid inter-agent

collisions, velocity alignment to steer the agents to an average

direction, and self-propulsion to match a preferred speed

value. In addition, the algorithm includes friction forces that

reduce oscillations and ease the implementation on real

robots.

In decentralized approaches, one agent’s movement is

only influenced by local information coming from its

neighbors. Neighbors’ selection can be operated according to

different metrics.

In our work, we adopted these algorithms with visibility

analysis as part of swarm’s trajectory by leading the swarm

to the most visible areas in the scene by the swarm, as

presented in the previous section.

Unlike the original SwarmLab simulation where obstacle

avoidance is based on simulating the obstacles as virtual

agents, we used the Velocity Obstacles [8] local obstacles

avoidance method.

This obstacle avoidance method allows us to deal better

with swarm behavior and can be more precise and gentler,

avoiding obstacles in dense environments.

A. The Planner

 As mentioned above, our planner is based on an iterative

local planning method, where the swarm is moving to the

most visible area. By using RANSAC algorithm, point clouds

data are extracted each time step into three possible objects:

plane, cylinder and sphere. The scene is formulated as a

dynamic system using KF analysis for objects' prediction.

The objects are approximated for the next time step, and each

safe attainable state that can be explored is set as candidate

viewpoint. The cost for each agent is set as total visible

surfaces, based on the analytic visibility boundary, where the

optimal and safe node is explored for the next time step.

 At each time step, the planner computes the next

Attainable Velocities (AV). The safe nodes not colliding with

objects such as cubes, cylinders and spheres, i.e., nodes

outside VO, are explored. Where all nodes are inside VO, a

unified analytic solution for time horizon is presented,

generating an escape option for these radical cases without

affecting visibility analysis. The planner computes the cost

for these safe nodes based on predicted visibility and chooses

the node with the optimal cost for the next time step. We

repeat this procedure while generating the most visible

trajectory.

1) Visibility Analysis as Swarm Cost Function

Our swarm direction and movement is guided by minimum

invisible parts from viewpoint V to the approximated 3D

urban environment model in the next time step, 𝑡 + ∆𝑡, set by

KF after extracting objects from point clouds data using the

RANSAC algorithm. The cost function next state is a

combination of IRV and ISV, with different weights as

functions of the required task.

 The cost function presented in (13) is computed for each

agent from his current state, considering the agent’s future

location at the next time step (𝑥1(𝑡 + ∆𝑡),𝑥2(𝑡 + ∆𝑡)) as

viewpoint:

 𝑤(𝑥(𝑡 + ∆𝑡)) = 𝛼 ∙ 𝐼𝑆𝑉(𝑥(𝑡 + ∆𝑡)) + 𝛽 ∙ 𝐼𝑅𝑉(𝑥(𝑡 + ∆𝑡)) (13)

 where ∝, 𝛽 are coefficients affecting the trajectory's

character, as shown in (14). The cost function 𝑤(𝑥(𝑡 + ∆𝑡)
produces the total sum of invisible parts from the viewpoint

to the 3D urban environment.

 We divide point invisibility value into Invisible Surfaces

Value (ISV) and Invisible Roofs Value (IRV). This

classification allows us to plan delicate and accurate

trajectories upon demand. We define ISV and IRS as the total

sum of the invisible roofs and surfaces (respectively).

Invisible Surfaces Value (ISV) of a viewpoint is defined as

the total sum of the invisible surfaces of all the objects in a

3D environment, as described in (14):

 (14)

In the same way, we define Invisible Roofs Value (IRV) as

the total sum of all the invisible roofs' surfaces, as described

in (15):

 (15)

0 0 0(, ,)V x y z

1.. 1

1.. 10 0 0

1

(, ,)
obj

j Nbound
i
j Nbound

i

N

VP

VP
i

ISV x y z IS
= −

= −

=

=

0 0 0

1

(, ,)
obj

j Nbound
i
j Nbound

i

N

VP

VP
i

IRV x y z IS
=

=

=

=

50Copyright (c) IARIA, 2022. ISBN: 978-1-61208-983-6

GEOProcessing 2022 : The Fourteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

Extended analysis of the analytic solution for visibility

analysis for known 3D urban environments can be found in

[6].

V. SIMULATIONS

We implemented the presented algorithm and tested some

urban environments on a Intel(R) Core (TM) i5-10210U CPU

2.11 GHz with Matlab. We computed the visible trajectories

using our planner, simulating cloud points using Matlab

functions.

On the first part, we tested our visibility analysis integrated

into decentralized drones swarm algorithms as described

above. The workflow of a swarm simulation is summarized

in Figure 2, were typical scenario of cylinder objects in our

environment can be seen in Figure 3.

In the first case, we tested our algorithm with a relatively

large number of agents. As can be seen in Figure 4, thirty

agents in the swarm moving forward in straight line,

presenting swarm trajectory, distance between the agents

during mission, speed and accelerations during movement.

The swarm navigates based on modified Olfati-Saber’s

algorithm where obstacle avoidance implemented by

Velocity Obstacles, where agents are simulated by point mass

model. Swarm cost function is based on visibility analysis

computed each time step as mentioned in the previous

section.

In the second case, we tested our algorithm with ten agents

in the swarm, so each agent simulated with quadrotor

dynamic model. As can be seen in Figure 5, ten agents in the

swarm moving forward in straight line with C. Vasarhelyi’s

etc. algorithm, but visibility analysis and dynamic constraints

swift the swarm to the right side. presenting swarm trajectory,

distance between the agents. Figure 5 also includes speed and

accelerations during movement, performances analysis and

total distance to the obstacles during mission.

Figure 2. SwarmLab simulation workflow. From the top left, in clockwise

order: (1) in the GUI, the user sets the parameters related to the simulation,
drone typology, swarm algorithm and environment. (2) the main simulation

loop computes control commands for the drones, based on the information

of the map and neighboring drones; (3) both real-time and post-simulation

(Source [10]).

 Order metric captures the correlation of the agents

movements and gives an indication about how ordered the

flock. Safety metrics, measure the risk of collisions among

the swarm agents or between agents and obstacles.

 Union metric counts the number of independent

subgroups that originates during the simulation.

 Connectivity metric defined from the algebraic

connectivity of the sensing graph that underlines the

considered swarm configuration. Detailed mathematical

definitions of these performances’ parameters can be found

in [11].

Figure 3. Typical Scenario of Environmmet Obstacles Simulation

(1)

(2)

(3)

(4)

Figure 4. Thirty agents swarm moving forward in straight line using

Olfati-Saber’s algorithm with visibility analsysis; (1) presenting swarm
trajectory; (2) distance between the agents during mission; (3) speed and

(4) accelerations during movement.

51Copyright (c) IARIA, 2022. ISBN: 978-1-61208-983-6

GEOProcessing 2022 : The Fourteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

(1)

(2)

(3)

(4)

(5) (6)

Figure 5. Ten agents swarm moving forward in straight line using
Vasarhelyi’s algorithm with visibility analsysis, with quadrotor synamic

model for agent; (1) presenting swarm trajectory; (2) distance between the

agents during mission; (3) speed and (4) accelerations during movement;
(5) performances analysis; (6) total distance to the obstacles during

mission.

VI. CONCLUSION AND FUTURE WORK

 In this research, we have presented an efficient swarm

trajectory planning algorithm for visible trajectories in a 3D

urban environment.

 We extend our analytic visibility analysis method to

cylinders and spheres, which allows us to efficiently set the

visibility boundary of predicted objects in the next time step.

Based on these fast computation capabilities, the on-line

planner can approximate the most visible state as part of a

decentralized swarm algorithm.

 By using SwarmLab environment, we compare two

decentralized algorithms from the state of the art for the

navigation of aerial swarms, Olfati-Saber’s and Vasarhelyi’s.

Our planner includes dynamic and kinematic platform’s

limitation, generating visible trajectories based on our first

step mentioned earlier.

We demonstrate our visibility and trajectory planning

method in simulations, showing trajectory planning in 3D

urban environments for drone’s swarm with decentralized

algorithms with performance analysis, such as order, safety,

connectivity and union.

Further research will focus on advanced geometric shapes,

which will allow precise urban environment modeling, facing

real-time implementation with on-line data processing from

sensors.

REFERENCES

[1] G.Pandey, J.R. McBride, R.M. Eustice, "Ford campus vision
and lidar data set." International Journal of Robotics Research,
30(13), pp. 1543-1552, November 2011.

[2] G. Vosselman, B. Gorte, G. Sithole, T. Rabbani. "Recognizing
structure in laser scanner point clouds.", The International
Archives of the Photogrammetry Remote Sensing and Spatial
Information Sciences (IAPRS), 2004, vol. 36, pp. 33–38.

[3] R. Schnabel, R. Wahl, R. Klein, "Efficient RANSAC for Point-
Cloud Shape Detection," Computer Graphics Forum, 2007,
vol. 26, no.2, pp. 214-226.

[4] R. Kalman. "A new approach to linear filtering and prediction
problems.", Transactions of the ASME-Journal of Basic
Engineering, 1960, vol. 82, no. 1, pp:35–45.

[5] J. Lee, M. Kim, I. Kweon. "A kalman filter based visual
tracking algorithm for an object moving," In IEEE/RSJ
Intelligent Robots and Systems, 1995, pp. 342–347.

[6] O. Gal, and Y. Doytsher, "Fast Visibility Analysis in 3D
Procedural Modeling Environments," in Proc. of the, 3rd
International Conference on Computing for Geospatial
Research and Applications, Washington DC, USA, 2012.

[7] H. Boulaassal, T. Landes, P. Grussenmeyer, F. Tarsha- Kurdi.
"Automatic segmentation of building facades using terrestrial
laser data", The International Archives of the Photogrammetry
Remote Sensing and Spatial Information Sciences (IAPRS),
2007, vol. 36, no. 3.

[8] O. Gal, Z. Shiller, E. Rimon, "Efficient and safe on-line motion
planning in dynamic environment," in Proceedings of the IEEE
International Conference on Robotics and Automation, 2009,
pp. 88–93.

[9] Velodyne 2007: Velodyne HDL-64E: A high definition
LIDAR sensor for 3D applications. Available at:
http://www.velodyne.com/lidar/products/white paper.
[Accessed 1/23/2017].

[10] E. Soria, F. Schiano and D. Floreano, "SwarmLab: a Matlab
Drone Swarm Simulator," 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020,
pp. 8005-8011, doi: 10.1109/IROS45743.2020.9340854.

[11] E. Soria, F. Schiano, and D. Floreano, “The influence of limited
visual sensing on the Reynolds flocking algorithm,” IEEE
Third International Conference on Robotic Computing (IRC),
2019.

[12] R. Olfati-Saber, “Flocking for Multi-Agent Dynamic Systems:
Algo-rithms and Theory,” IEEE Transactions on Automatic
Control, vol. 51, no. 3, pp. 401–420, 2006.

[13] G. V´as´arhelyi, C. Vir´agh, G. Somorjai, T. Nepusz, A. E.
Eiben, and T. Vicsek, “Optimized flocking of autonomous
drones in confined environments,” Science Robotics, vol. 3,
no. 20, 2018.

52Copyright (c) IARIA, 2022. ISBN: 978-1-61208-983-6

GEOProcessing 2022 : The Fourteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

