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Abstract—This paper aims to test different methods for image 

classification focusing on small-scale agriculture in the region 

of Mocajuba and Cametá, municipalities in the Northeast of 

Pará state, Brazil. It is an important land use class, always 

ignored by Land-Use and Land-Cover monitoring systems 

because of its small size and variable spectral signature. We 

used an image from the PlanetScope Surface Reflectance 

Mosaics (Analysis Ready) with spatial resolution of 4.77 meters 

and 4 spectral bands (red, green, blue and infra-red). After 

proceeding with a multiresolution segmentation to identify 

image objects, two object-oriented classification algorithms 

were tested: Adapted Nearest-neighbor and C5.0 Decision trees 

algorithms. We selected 122 random points using the images 

available on Google Earth Pro as reference to assess the 

accuracy of classifications. Afterwards, confusion matrices 

were generated. Both methods showed similar overall accuracy 

and kappa value. However, C5.0 Decision trees reached a 

higher producer’s accuracy to small-scale agriculture (75%) in 

comparison to Adapted Nearest-neighbor (65%). The average 

size of the small-scale agriculture segments estimated was less 

than 1 ha in both maps, showing the need to carry out studies 

on scales of greater detail, preferably with images of high 

spatial resolution to represent these systems properly. In this 

study, C5.0 Decision trees had the best result, representing the 

most suitable method for mapping small-scale agriculture in 

Brazilian Amazon. 

Keywords - digital image processing; segmentation; land use; 

land cover; smallholders; planetscope. 

I. INTRODUCTION 

Small-scale agriculture is a rather important land use 
activity that takes place in small properties, providing 
income for families and food for local population [1]. 
Although we have few definitions about it, these producers 
are somehow invisible to public policy and they have 
difficulty in accessing credits for their production [2]. 

Despite of its importance, small-scale agriculture is not 
always properly represented in the maps produced by Land-
Use and Land-Cover (LULC) monitoring systems of 
Brazilian Amazon, such as TerraClass [3] and MapBiomas 
[4]. This class is included in generic mixed classes of LULC, 
that comprises undistinguishable features due to their small 
size. Besides using medium spatial resolution images, the 
mapping scale of these monitoring systems makes this land 
use undistinguishable, so they are included in mixed classes 
that embraces agriculture, pasture, secondary vegetation, etc.  

Identifying small-scale agriculture with satellite images is 
a challenge and demands new approaches. Only by knowing 
about the presence of this type of agriculture system and its 
spatial pattern, cartographic representation can be complete 
and small-scale agriculture can take its part in policies, since 
it makes possible to understand how this system works, who 
are the agents involved on it and so on [5]. Also, it is 
important to highlight that a large part of the food products 
that supply cities come from family farming included in 

small-scale agriculture. Therefore, we reiterate the 

importance of studying small-scale agriculture in the 
Amazon as a way of demonstrating quantitative and 
qualitative data of this important land use to subsidize public 
policies for the regional economy. 

Classifying an image requires high analyst experience 
and good background knowledge about the region of 
classification. Moreover, combining diverse parameters in 
supervised classification can improve the methods and 
provide good results [6]. Therefore, it is important to address 
the specific characteristics regarding small-scale agriculture 
in Brazilian Amazon. Especially for Amazon, scenes from 
optical sensors face problems with high proportion of cloud 
cover, which is worsened by low temporal resolution of 
some types of images [7]. Also, there is a significant 
confusion between small-scale agriculture with pasture and 
secondary vegetation, once they show similar spectral 
responses [8]. However, those LULC classes vary in shape 
and size [5]. 

To overcome these issues, different methods have been 
used to collect meaningful and useful information from 
image processing, GIS and modeling [9]. To consider shape 
information, the analyst may select Object-Based Image 
Analysis (OBIA) methods for image classification [10][11]. 
These methods address spectral and shape attributes using 
image segmentation. In addition, an alternative for high 
spatial resolution images to reduce cloud cover is to make a 
mosaic of images with the best pixels found in a certain 
period.  

Overall, considering the gap of information and 
challenges, there is still a lot to do when identifying small-
scale agriculture using remote sensing techniques. To assess 
how different methods perform, this work proposes to 
classify small-scale agriculture in an area that includes part 
of two municipalities in the Baixo Tocantins region 
(Brazilian Amazon), testing different image classification 
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algorithms based on OBIA and high spatial resolution image, 
the PlanetScope product of Surface Reflectance Mosaic. 

We organized this paper in four sessions. In Section 2, 
we provide the state of the art regarding small-scale 
agriculture mapping, we discuss related work, existing 
solutions and limitations. In Section 3, we describe the 
PlanetScope scene, discussing its characteristics, as well as 
the study area. We explain all the methods applied, from 
image segmentation to classification and accuracy 
assessment. In Section 4, we show and discuss the results for 
each classification method, comparing their performance 
mainly related to small-scale agriculture class. In Section 5, 
we give our final remarks, highlighting pros and cons of the 
tested methods and future work opportunities for this matter. 

II. STATE OF THE ART 

In Brazilian Amazon several studies on agriculture have 
been carried out with remote sensing techniques. However, 
most of them addresses large-scale agriculture. Few studies 
can be found related to small-scale agriculture. On the other 
hand, there are plenty of techniques that can be tested for 
mapping this land use class. Therefore, the main contribution 
of this study relies on testing and evaluating techniques 
capable of detecting this type of agriculture, which is largely 
invisible, despite its importance to society, environment and 
economy. By doing so, we explore the challenges, potentials 
and constraints of mapping small-scale agriculture in 
Brazilian Amazon. 

When searching for techniques, we can find plenty of 
options of classification algorithms that can be used for 
agriculture classification. Some authors use traditional 
approaches and algorithms to identify large-scale agriculture, 
such as Maximum likelihood (ML) and ISODATA [12][13]. 
Those algorithms are pixel-wise and depend uniquely on 
spectral response of the targets. However, small-scale 
agriculture is often composed of more than one crop types at 
different stages of growth, which results frequently in a 
spectral mixture at the pixel level. 

By using ML classification, a study carried out in 
Ethiopia could not discriminate crop types not even when the 
crop classes were groupings. To improve the result, the 
authors applied a second approach by using a neural network 
for sub-pixel classification of the image [13]. Another study 
carried out in Brazilian Amazon used ML to map 
smallholders and reported that this algorithm is not 

appropriate for it, the results showed a very low accuracy 

(8%) for small-scale agriculture [6]. The authors also 
performed a classification by segmenting the image and 
applying Adapted Nearest Neighbor method. In this case, 
they were able to reach a higher accuracy (64%) for 
detecting small-scale agriculture.  

Segmentation and object-based analysis are broadly used 
in many studies [10][14]-[17]. The main gain of using this 
technique for small-scale agriculture detection is because the 
segmentation allows the use of more features, such as shape, 
texture and so on, rather than only spectral ones. Once small-
scale agriculture has specific shape and texture, and spectral 
mixture, an object-based analysis unfolds as a key technique 
[6]. For some authors, working with object is also an 

advantage due to the ease of interpretation, for the features 
correspond to elements of landscape [15].  

Lastly, it is important to mention the image spatial 
resolution. Although [18] do not work directly with LULC 
classification methods, their research is based on remote 
sensing data and techniques and the analysis of small-scale 
agriculture intensification. The authors used Landsat and 
MODIS imagery, which have a spatial resolution of 30 and 
250 m, respectively. However, the use of higher spatial 
resolution images is more suitable for small farms, where 
cultivation takes place in areas smaller than 1ha, as in 

Northeast of Pará state [6]. In that sense, many authors used 

RapidEye imagery, which have a spatial resolution of 5 m 
[6][12][19]. Furthermore, the red-edge band from RapidEye 
imagery is adequate to discriminate the stage of vegetation, 
supporting small-scale agriculture mapping [20]-[22]. 

Overall, we can notice that frequently small-scale 
agriculture is not considered in LULC mapping and there are 
only a few researches regarding this matter. In the researches 
we reviewed we could commonly observe the use of the 

combination of different techniques: ML and neural 
networks [13]; multiresolution segmentation and adapted 
nearest neighbor [6]; and segmentation and random forest 
algorithm [14][15]. In some studies, we can observe that the 
authors adapted and tested techniques used to large-scale 
agriculture, but considering the unique features of small-
scale agriculture in Amazon. 

III. MATERIAL AND METHODS 

PlanetScope product of Surface Reflectance Mosaic is a 
free access and analysis-ready level product. This product is 
a Level-1 processing data, including geometric and 
atmospheric correction. Atmospheric parameters are 
estimated from an external data source, such as MODIS [23]. 
The availability of Planet's monthly mosaics comprises an 
initiative of Norway's International Climate and Forest 
Initiative (NICFI), which aims to provide universal access to 
monitoring the tropics through high spatial resolution 
satellite imagery, to support efforts to stop the deforestation 
of the world's rainforests [23]. 

The scene is a monthly composition of pixels acquired 
during the month of September, 2020. This mosaic has 
spatial resolution of 4.77 m and has four spectral bands: red, 
green, blue and near-infrared [23]. The image covers part of 
Mocajuba and Cametá municipalities, in the Northeast of 
Pará state, Brazil (Figure 1). We selected this study area 
because it is a hotspot of small-scale agriculture in Pará State 
[10]. This region is historically occupied by many 
smallholders that are responsible to provide food for local 
and regional markets, besides self-consumption [24]. In both 
municipalities, the main crop of small-scale agriculture is 
cassava (Table 1), which is planted exclusively in farms 
smaller than 10 ha. Açai, black pepper and cocoa are 
important crops, but they are not exclusive to small-scale 
farms, they are also cultivated in farms with area up to 200 
ha [25]. 

Furthermore, this region is a hotspot of secondary 
vegetation [26], that can be an indicator of shifting 
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cultivation, usually performed in Amazon by smallholders 
that leave part of the land to fallow and return their 
cultivation afterwards, reincorporating the nutrients and 
minerals to the soil [27]. The main river body are Tocantins 
River and its tributaries. 

 

 
Figure 1. Study area (Mocajuba and Cametá municipalities, Pará, Brazil), 
training samples, random validation points, and segmentation example. 

 TABLE I. MAIN CROPS OF SMALL-SCALE AGRICULTURE IN CAMETÁ AND 

MOCAJUBA, CONSIDERING PROPERTIES UP TO 10 HA (2017) 

Crop Harvested area (ha) 

Cassava 4,507 

Açai 1,676 

Black pepper 413 

Cocoa 402 

Corn 319 

Source: [25]. 

 
We used two different supervised methods: Adapted 

Nearest-neighbor (NN) [28] and C5.0 Decision trees, an 
improved version of C4.5 [29]. The main steps applied for 
each approach were: a) multiresolution segmentation and 
parameters definition; b) training sampling; c) classification; 
and d) assessment of accuracy. We chose LULC classes 
considering visual surveys and landscape descriptions in 
similar studies developed at the same location (Table 2). 

TABLE II. LAND-USE AND LAND-COVER CLASSES 

Classes Description 

Water Water bodies: rivers, lagoons, etc. 

Forest Natural vegetation with predominance of trees 

Secondary 

vegetation 

Natural vegetation in regeneration emerged from 

previously deforested areas, with trees, shrubs and herbs  

Urban areas 
Built-up areas with population clusters: city, village and 

community 

Pasture 

Predominance of herbaceous and grassy vegetation, it 

may occur also sparse shrub vegetation and few 

arboreal individuals 

Small-scale 

agriculture 
Small agriculture lands with mainly annual crops 

Others 
Aggregate of land use and land cover, such as rocky 

outcrops, sand banks 

Non observed Clouds and cloud shadows 

Source: adapted from [6]. 

 

A. Multiresolution segmentation 

The multiresolution segmentation was generated by 
eCognition 9.0.1 [30]. This kind of segmentation creates 
initially an 1-pixel-sized object and merges the neighbor 
pixels with similar features consecutively into the object 
[31]. When observing similar features, the algorithm 
considers a combination of spectral and shape criteria. The 
analyst can weigh the priority criteria when creating the 
segments. We repeatedly tested different values for 
segmentation parameters, until the algorithm could create 
appropriate objects for small-scale agriculture. We found 
the values of the following parameter more adequate: 

 Image layer weights = 1, 1, 1, 1. It ranges from 0 to 1. 
The same importance was assigned to all bands (R, G, B, 
NIR); 

 Scale parameter = 60. It defines the size of polygons;  

 Shape = 0.7. It defines the weight the shape criteria must 
have for segmentation. It ranges from 0 to 1, the higher 
its value, the lower the influence of the color. The 
chosen value prioritizes the shape over color; 

 Compactness = 0.5. It defines the weight of compactness 
criteria. It ranges from 0 to 1, the higher the value, the 
more compact image objects may be, that is the borders 
are closer to the center of the segment. 

B. Sampling design 

This step was performed using simple random sampling 
method throughout the scene. The sample units were objects 
obtained from the multiresolution segmentation. We selected 
the same objects/segments as training samples for both 
methods to keep them uniform. In total, we selected 172 
objects for all the 8 classes. We sampled 20 objects for each 
class described in Table 2, except Cloud shadows, with 12 
samples. We collected fewer samples of Cloud shadows 
because this class was less representative in terms of area. 

Note that we collected Clouds and Cloud shadows 
samples individually. After performing the classification, we 
merged those features into Non observed class. 

Overall, this step involved the random selection of 
segments from different shapes and sizes in each class. 
Water sample segments presented a mean area of 12.83 ha ± 
8.60 ha for these specific samples, compared to other classes 
(Table 3). On the other hand, small-scale agriculture 
presented a mean area of 0.84 ha ± 0.36 ha for these samples. 
As we standardized only the number of samples, this 
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variation in sample size might affect the final classification 
according to spectral mixture features of the pixels, and it 
may impact the accuracy. The main class for this study is 
small-scale agriculture and the random samples selected in 
this class presented similar sizes. As we see in Figure 2, this 
is a size pattern for this class in the Amazon for both 
algorithms, so the samples represented well the classification 
for this region. 

TABLE III. DESCRIPTIVE STATISCS FROM SAMPLING POLYGONS, IN HECTARE 

Classes μ σ σ² 

Water 12.83 8.60 73.87 

Forest 3.86 3.25 10.56 

Secondary 

Vegetation 
6.05 2.63 6.90 

Urban Area 1.44 0.94 0.89 

Pasture 3.09 2.32 5.37 

Small-scale 

agriculture 
0.84 0.36 0.13 

Others 2.72 2.74 7.49 

Units: hectare; μ = polygon mean area; σ = standard deviation; σ² = variance. 

C. Object-based image analysis 

OBIA is an alternative to pixel-to-pixel approaches as it 
relies on identifying regions of the image: it uses segments to 
extract neighborhood, spectral and spatial features, 
composing the feature space [10][11]. This method has 
shown to be more suitable to identify small-scale agriculture 
and to distinguish this land use from other classes [6]. 
Therefore, we ran two OBIA methods using the same image, 
samples and accuracy points. Both methods differ when it 
comes to classifying an object: the first one considers the 
nearest neighbor in the feature space, while the latter one 
uses multiple decision trees to identify the proper class, as 
explained in the next sections. 

 C.1 Adapted Nearest-neighbor (NN) 

This method is an adapted version of nearest neighbor, 
which considers not only the spectral features, but also other 
features related to the object [28]. The algorithm formulates 
a feature space considering the attributes including all 
segments, then it searches for the closest sample and assigns 
that class to the segment [30]. The analyst determines the 
correspondent features. To proceed with classification, we 
chose the features according to [6]: a) Spectral attributes: 
brightness, mean and standard deviation of each band, b) 
Object attributes: shape index. In total, we used 13 
attributes. 

 C.2 Decision trees (C5.0)  

We used the objects from multiresolution segmentation 
to perform a feature extraction from the original image by 
Geographical Data Mining Analyst (GeoDMA), an open-
source plug-in available for TerraView 5.5.1 [32]. In total, 
the algorithm generated 103 features, considering both 
spectral and spatial features, e.g., mean, mode, and 
maximum values of each band, polygon angle, shape index, 

compactness etc. After finishing the feature extraction, we 
collected the training samples and ran a boosting C5.0 
Decision trees classification. 

This algorithm generates a pre-set number of decision 
trees from the sample features, which is applied when 
classifying the segments. In total, the algorithm generated 
99 trees independently. The final classification for each 
segment is the one that was assigned by the most of the trees 
[33]. 

Among the 103 features, the algorithm highlights the 
ones that were more used when classifying an object. The 
main features, that showed 100% usage in this classification 
were: 

 Band 2 (Green): maximum value and band ratio; 

 Band 3 (Blue): median, mode, dissimilarity and contrast; 

 Band 4 (Near-infrared): mean, median and band ratio. 
Band ratio is the contribution of the given band to the 

region. Contrast is the measure of the intensity contrast 
between a pixel and its southeast neighbor over the object, 
aka Sum of Squares Variance. Dissimilarity is the measure 
of how different the elements of the Gray-level co-
occurrence matrix are from each other [34]. 

Regarding object features, the more important ones, 
which had ca. 60% of usage, were: Perimeter, compacity, 
radius and bounding box area. 

D. Assessment of accuracy 

To assess the accuracy of both classifications, 122 points 
were randomly distributed throughout the scene, 
representing all classes. For each class, we collected 20 
random points, except for Pasture. Note that we had only 2 
points for Pasture due its low scene cover.  

We used those points as test samples once the ground 
truth was assigned by inspecting the actual land use and 
land cover with Google Earth Pro 2020 images. Then, we 
used those points to validate NN and C5.0 classifications. 
From that point on, confusion matrix was created for each 
classification and we computed the accuracy and kappa 
index. These information were the basis for identifying the 
main confusion occurring to small-scale agriculture areas 
and the overall performance of each method, leading to the 
most suitable one for small-scale agricultural mapping 
[35][36]. 

IV. RESULTS AND DISCUSSION 

Classification maps are showed on Figure 2. Small-scale 
agriculture is more present in the upland region, even 
though that both riverine and upland population are 
acknowledged as important agents involved into this land 
use activity [6]. As stated before, high spatial resolution 
sensors are more adequate to improve classification 
accuracy due to the small-scale agriculture’s size: our 
results presented mean area of 0.97 ha ± 0.69 ha for NN and 
0.70 ha ± 0.39 ha for C5.0 Decision trees (Table 4). 
Considering that TerraClass maps have a minimum 
mapping area of 6.25 ha [6], it can not identify and map 
properly small-scale agriculture. That explains why this 
class is not explicitly visible in current LULC monitoring 
systems. 
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Descriptive statistics indicate similar classification area 
in both algorithms for the classes of water, forest, secondary 
vegetation, urban area, and others. The study area shows 
great forest and secondary vegetation cover in mainland and 
at the islands, covering ca. 60% of the scene in both maps. 
Water covers around 18% of the area. 

As presented in confusion matrix (Table 5), both 
algorithms presented similar overall accuracy (NN = 75% 
and C5.0 Decision trees = 73%) and kappa values. On the 
other hand, C5.0 Decision trees algorithm found better 
results when mapping small-scale agriculture (75%), 
compared to NN (65%). This performance of Adapted 
Nearest-neighbor algorithm is corroborated with other 
studies that found around 62% of producer’s accuracy for 
small-scale agriculture carried out in the same region of 
Brazilian Amazon [6]. 

NN may be overclassifying small-scale agriculture, 
representing 9.3% of the mapping area. For this 
classification, commission error was 19%, which indicates 
that a significant number of polygons were classified by 
mistake as small-scale agriculture, increasing the area of this 
class. These classification errors occurred due to confusion, 
especially with secondary vegetation, forest, and others. 

For C5.0 Decision trees, there was no commission error 
for small-scale agriculture class, which represents 4.8% of 
the mapping area. In other words, C5.0 Decision trees is 
more conservative for mapping small-scale agriculture and 
did not included other classes in small-scale agriculture by 
mistake as NN did. 

Both algorithms showed the same omission errors for 
small-scale agriculture regarding secondary vegetation 
(15%) and pasture (10%) classes. NN also showed omission 
errors for small-scale agriculture with the class others 
(10%). 

According to the literature, similar spectral attributes 
may affect the classification of small-scale agriculture, once 
this class has similar spectral responses to other classes, 
such as pasture [8] and secondary vegetation [5]. 

Small-scale agriculture and pasture differ in terms of 
size and shape [5]. Although the last one showed a mean 
area of 1.77 ha in both maps, the only area in the scene, 
identified as pasture by the analysts, had actually 100 ha. 
Yet, this single pasture area was segmented into many 
smaller objects by the multiresolution segmentation, once 
covered by grassland in different stages, for instance, clean 
pasture, shrubby pasture. When segmenting an image with 
parameters adjusted to small-scale agriculture objects, it is 
necessary to resort the spatial resolution with better detail, 
which influences other targets segmentation. In this case, 
although the targets differ when it comes to object features, 
there was still confusion among them. Anyhow, the 
confusion with pasture might also have been influenced by 
the small number of samplings due to the lack of other 
pasture areas in this scene. To better represent these classes 
we should separate them in two classes, clean and shrubby 
pasture. But due to the low presence of pasture on the scene, 
this step was not feasible. However, we highlight the 
confusion and the need to separate this land use in two 

distinct classes in case this methodology is applied in an 
area where pasture is more significant. 

Regarding the confusion with secondary vegetation, 
once again the spectral features are the main reason for it, as 
well as the different stages of secondary vegetation, that 
poses similar stratum as agriculture. The mean size of 
secondary vegetation polygons was 1.71 ± 1.34 for NN and 
1.58 ± 1.18 for C5.0. Even though this confusion is not 
opportune, it is important to address that secondary 
vegetation can be part of small-scale agriculture production 
system by forming biomass while the land is under fallow 
[37]. In this case, secondary vegetation poses as an asset, 
once its function is to ensure the land fertility [27]. 

Overall, the results for small-scale agriculture were 
adequate and despite the different accuracies, both methods 
showed limitations when differentiating this class from 
pasture and secondary vegetation.  

V. CONCLUSION AND FUTURE WORK 

As the first challenge faced in this study, we can 
highlight the successful attempted of using the same training 
and validation samples for the classification and evaluation 
steps, to promote an adequate comparison between the 
algorithms tested. Using the same samples in different 
software and algorithms is not always possible or easy. For 
instance, C5.0 automatically generates the confusion matrix 
for the classification, but does not point out the samples 
used in the validation process. For this reason, we collected 
randomly distributed points in the image to evaluate the two 
classifications. We can summarize our main findings as 
following: 

 

 Considering all small-scale agriculture identification 
challenges, C5.0 Decision trees results were able to 
reach a higher producer’s accuracy compared to NN 
method. Note that both methods were run relying upon 
different magnitude of features: C5.0 Decision tree 
identify automatically 103 features, however the ones 
that mattered the most for the classification were 33 of 
them, which were used at least in 50% of the decision 
trees. On the other hand, NN used 13 features pointed 
out by the analyst. So, while the latter requests that the 
analyst decides how many and which features are going 
to be inserted in the feature space, C5.0 Decision trees 
use as default 103 features and saves the analyst from 
selecting the most suitable features for small-scale 
agriculture. 
 

 Therefore, C5.0 showed greater results, representing the 
most suitable method for mapping small-scale 
agriculture in the study area. Nevertheless, we 
recommend carrying out more studies over larger areas 
to identify the best attributes for classifying small-scale 
agriculture and overcome misclassification errors, as 
well as in other mixed land cover types and landscape 
diffuse patterns. 
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Regarding future work, we have the following remarks: 
 

 We recommend investigating which features are more 
significant for the identification of small-scale 
agriculture by C5.0. We suggest a systematically 
removal of features at the classification level and 
performing a sensitive analysis; 
 

 We believe that temporal analysis can be explored in 
future work. The inclusion of the temporal component 
coupled with machine learning and deep learning 
techniques may contribute for selecting other important 
variables for small-scale agriculture classification. 

Additionally, the use of these methods may contribute 
for the advancement of studies linked to agricultural 
intensification and fallowing practices in shifting 
cultivation agriculture, widely used in the context of 
small-scale agriculture in the Brazilian Amazon. Then, 
the inclusion of the time component will also be 
important to test whether it is relevant or not to use 
phenological metrics for agriculture with large species 
diversity that does not present regular crop cycles. 
 

 Also, we strongly recommend testing different sampling 
design to test better results and perform a sensitive 
analysis.

TABLE IV.  DESCRIPTIVE STATISTICS FROM IMAGE CLASSIFICATION ACCORDING TO LAND USE AND LAND COVER, IN HECTARE 

Classes 
Adapted Nearest-neighbor C5.0 Decision trees 

μ σ σ2 Total % μ σ σ2 Total % 

Water 5.69 5.62 31.62 7,082.61 18.66 5.92 5.75 33.01 6,885.70 18.14 

Forest 1.55 1.18 1.40 11,317.54 29.82 1.62 1.26 1.58 10,477.20 27.60 

Secondary vegetation 1.71 1.27 1.61 11,182.62 29.46 1.58 1.18 1.39 11,934.05 31.44 

Urban Area 0.69 0.60 0.36 633.66 1.67 0.70 0.63 0.40 537.14 1.42 

Pasture 1.77 1.34 1.79 718.84 1.89 1.77 1.10 1.21 2,340.14 6.17 

Small-scale agriculture 0.97 0.69 0.48 3,526.97 9.29 0.70 0.39 0.15 1,837.95 4.84 

Others 1.22 1.37 1.88 3,493.84 9.20 1.38 1.38 1.92 3,943.92 10.39 

Total - - - 37,956.08 100 - - - 37,956.08 100 

Units: hectare; μ = polygon mean area; σ = standard deviation; σ² = variance. 
 

TABLE V. CONFUSION MATRIX FOR ADAPTED NEAREST-NEIGHBOR AND C5.0 DECISION TREES ALGORITHMS 

Adapted Nearest-neighbor 
 

C5.0 Decision trees 

% 

Reference 
 

% 

Reference 

(A) (B) (C)  (D) (E) (F) (G) 
User’s 

accuracy  
(A) (B) (C)  (D) (E) (F) (G) 

User’s 

accuracy 

C
la

ss
if

ic
a
ti

o
n
 

(A) Water 100 0 0 0 0 0 0 100 
 

C
la

ss
if

ic
a
ti

o
n
 

(A) 90 0 0 0 0 0 0 100 

(B) Forest 0 55 35 0 0 0 0 61 
 

(B) 0 50 30 0 0 0 0 63 

(C) Secondary vegetation 0 40 60 0 0 15 0 52 
 

(C)  0 45 60 0 0 15 0 50 

(D) Urban area 0 0 0 95 0 0 0 100 
 

(D) 0 0 0 85 0 0 5 94 

(E) Pasture 0 0 0 0 50 10 10 20 
 

(E) 0 0 10 15 100 10 20 15 

(F) Small-scale agriculture 0 5 5 0 50 65 0 81 
 

(F) 0 0 0 0 0 75 0 100 

(G) Others 0 0 0 5 0 10 90 86 
 

(G) 10 5 0 0 0 0 75 83 

Producer’s accuracy 100 55 60 95 50 65 90   
 

Prod. acc. 90 50 60 85 100 75 75  

Samples 20 20 20 20 2 20 20   
 

Samples 20 20 20 20 2 20 20  

Kappa = 0,70   Overall accuracy = 75% 
 

Kappa = 0,68 Overall accuracy = 73% 
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Figure 2. Land-Use and Land-Cover classification using NN and C5.0 Decision trees methods to identify small-scale agriculture. 
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