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Abstract—In this paper, we present a spatial motion planner in 

3D environments based on Deep Reinforcement Learning 

(DRL) algorithms. We tackle 3D motion planning problem by 

using Deep Reinforcement Learning (DRL) approach, which 

learns agent’s and environment constraints. Spatial analysis 

focus on visibility analysis in 3D setting an optimal motion 

primitive considering agent’s dynamic model based on fast and 

exact visibility analysis for each motion primitives. Based on 

optimized reward function, consisting of generated 3D 

visibility analysis and obstacle avoidance trajectories, we 

introduce DRL formulation which learns the value function of 

the planner and generates an optimal spatial visibility 

trajectory. We demonstrate our planner in simulations for 

Unmanned Aerial Vehicles (UAV) in 3D urban environments. 

Our spatial analysis is based on a fast and exact spatial 

visibility analysis of the 3D visibility problem from a viewpoint 

in 3D urban environments. We present DRL architecture 

generating the most visible trajectory in a known 3D urban 

environment model, as time-optimal one with obstacle 

avoidance capability.  

  
Keywords-Deep Reinforcement Learning; Visibility; 3D; 

Spatial analysis; Motion Planning. 

I.  INTRODUCTION 

Spatial clustering in urban environments is a new spatial 

field from trajectory planning aspects [1]. The motion and 

trajectory planning fields have been extensively studied over 

the last two decades [2][4][6]. The main effort has focused 

on finding a collision-free path in static or dynamic 

environments, i.e., in moving or static obstacles, using 

roadmap, cell decomposition, and potential field methods 

[11]. 

The efficient computation of visible surfaces and 

volumes in 3D environments is not a trivial task. The 

visibility problem has been extensively studied over the last 

twenty years, due to the importance of visibility in GIS and 

Geomatics, computer graphics and computer vision, and 

robotics. Accurate visibility computation in 3D environments 

is a very complicated task demanding a high computational 

effort, which could hardly have been done in a very short 

time using traditional well-known visibility methods.  

In this paper, we present, unique spatial trajectory 

planning method based on DRL algorithm based on exact 

visibility analysis in urban environment. The generated 

trajectories are based on visibility motion primitives as part 

of the planned trajectory, which takes into account exact 3D 

visible volumes analysis clustering in urban environments. 

The proposed planner includes obstacle avoidance 

capabilities, satisfying dynamics' and kinematics' agent 

model constraints in 3D environments, using Velocity 

Obstacles (VO) in 3D for Unmanned Aerial Vehicle (UAV) 

model.  

In the following sections, we first introduce the DRL 

algorithm and method and our extension for a spatial 

analysis case, such as 3D visibility. Later on, we present the 

our planner, using VO method and planner model. In the last 

part of the paper, with planner simulation using DRL 

method. 

 

II. PROBLEM STATEMENT 

We consider the basic visibility problem in a 3D urban 
environment, consisting of 3D buildings modeled as 3D 

cubic parameterization 
max
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Given: 

• Parameterizations of N objects 
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describing a 3D urban environment model 
 
Computes: 

• Trajectory, which consist of optimal set of all visible 

points, i.e., most visible points of max

min

1
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h

i h

i

C x y z
=

= , 

from starting point ,qs, to the goal, qg, without 
collision. 

This problem seems to be solved by conventional 
geometric methods, but as mentioned before, it demands a 
long computation time. We introduce a fast and efficient 
computation solution for a schematic structure of an urban 
environment that demonstrates our method based on DRL. 

On the first part, we present DRL algorithm, formulated 
to our planning problem, and the visibility analysis along 
with obstacles avoidance planner. 
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III. DEEP REINFORCEMENT LEARNING (DRL)  

In most Deep Reinforcement Learning (DRL) systems, 

the state is basically agent’s observation of the environment. 

At any given state, the agent chooses its action according to a 

policy. Hence, a policy is a road map for the agent, which 

determines the action to take at each state. Once the agent 

takes an action, the environment returns the new state and 

the immediate reward. Then, the agent uses this information, 

together with the discount factor to update its internal 

understanding of the environment, which, in our case, is 

accomplished by updating a value function. Most methods 

are using the use well-known simple and efficient greedy 

exploration method maximizing Q-value. 

In case of velocity planning space as part of spatial 

analysis planning, each possible action is a possible velocity 

in the next time step, that also represent a viewpoint. The Q-

value function is based on greedy search velocity, with 

greedy local search method. Based on that, TD and SARSA 

methods for DRL can be used, generating visible trajectory 

in 3D urban environment. 

 

A. Markov Decision Processes (MDP) 

The standard Reinforcement Learning set-up can be 

described as a MDP   as can be seen in Figure 1, consisting 

of: 

• A finite set of states S, comprising all possible 

representations of the environment. 

• A finite set of actions A, containing all possible 

actions available to the agent at any given time. 

• A reward function R = ψ(st ,at ,st+1), determining 

the immediate reward of performing an action at 

from a state st, resulting in st+1. 

• A transition model T(st , at , st+1) = p(st+1| st ,at), 

describing the probability of transition between 

states st and st+1when performing an action at. 

 

Figure 1. standard Reinforcement Learning Methology [20].  

B. Temporal Difference Learning  

Temporal-difference learning (or TD) interpolates ideas 

from Dynamic Programming (DP) and Monte Carlo 

methods. TD algorithms can learn directly from raw 

experiences without any model of the environment.  

Whether in Monte Carlo methods, an episode needs to 

reach completion to update a value function, Temporal-

difference learning can learn (update) the value function 

within each experience (or step). The price paid for being 

able to regularly change the value function is the need to 

update estimations based on other learnt estimations 

(recalling DP ideas). Whereas in DP a model of the 

environment’s dynamic is needed, both Monte Carlo and TD 

approaches are more suitable for uncertain and unpredictable 

tasks.  

Since TD learns from every transition (state, reward, 

action, next state, next reward) there is no need to 

ignore/discount some episodes as in Monte Carlo algorithms. 

 

C. Spatial Planning Using DRL  

In this section, we present DRL approach based on the 

proposed spatial planning method. The spatial planner seeks 

to obtain the trajectory T* that based on visibility motion 

primitives set as part of the planned trajectory, which takes 

into account exact 3D visible volumes analysis clustering in 

urban environments, based on optimizing value function f 

along T.  

The generated trajectories are then represented by a set of 

discrete configuration points T = {x1,x2,··· ,xN}. 

Without loss of generality, we can assume that the value 

function for each point can be expressed as a linear 

combination of a set of sub-value functions, that will be 

called features c(x) = ∑ cj fj(x). The cost of path T is then 

the sum of the cost for all points in the path. Particularly, in 

the Velocity Obstacles as will be presented later on, the 

value is the sum of the sub-values of moving between pairs 

of states in the path: 

 

          (2) 

 

Based on number of demonstration trajectories D, D = 

{ζ1,ζ2,··· ,ζD}, by using DRL, weights ω can be set for 

learning from demonstrations and setting similar planning 

behavior. As was shown by [23][24], this similarity is 

achieved when the expected value of the features for the 

trajectories generated by the planner is the same as the 

expected value of the features for the given demonstrated 

trajectories: 

                        (3) 

     Applying the Maximum Entropy Principle [25] to the 

DRL problem leads to the following form for the probability 

density for the trajectories returned by the demonstrator: 

                           (4) 
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where Z(ω) is a normalization function that does not depend 

on ζ. One way to determine ω is maximizing the (log-) 

likelihood of the demonstrated trajectories under the 

previous model: 

L(D|ω) = −Dlog(Z(ω))        +∑  (−𝑤𝑇𝑓(𝜁𝑖))𝐷
𝑖=1       (5) 

    

The gradient of the previous log-likelihood with respect to 

ω is given by [23]: 

       (6) 

      As mentioned in [23], this gradient in equation (6) can 

be intuitively explained. If the value of one of the features 

for the trajectories returned by the planner are higher from 

the value in the demonstrated trajectories, the corresponding 

weight should be increased to increase the value of those 

trajectories. 

     The main problem with the computation of the previous 

gradient is that it requires to compute the expected value of 

the features E(f(ζ)) for the generative distribution (4).  

     We suggest setting large amount of D cased, setting the 

relative w values for our planner characters. 

TABLE I.  DRL PLANNER PSEUDO CODE 

DRL Planner  
Setting Trajectory S Examples D, D= T*.init (xinit); 

Calculate function features Weight, w  

fD ← AverageFeatureCount(D); 

w ← random_init(); 

Repeat 

                   for each T* do 

           for VelocityObstacles_repetitions do 

       ζi ← getVOstarPath(T*,ω) 

      f(ζi) ← calculeFeatureCounts(ζi) 

  end for 

              fVO (T*)←∑ 𝑓(
𝑉𝑂_𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠
𝑖=1  ζi))/VO_repetitions 

            end for 

           fVO ←( ∑ 𝑓𝑉𝑂
𝑆
𝑖=1 )/s 

          ∇𝐿 ← fVO - fD 

                    w ←UpdatedWeigths (∇𝐿)            
 Until convergence 

Return w  

IV. UAV MODEL 

We introduce an Unmanned Aerial Vehicle (UAV) model, 

based on the well-known simple car and Dubins airplane 

[26]. Dubins airplane [27] model extends Dubins car model 

with continuous change of altitude without reverse gear, 

avoiding sudden altitude speed rate variation. Our UAV 

model includes kinematic and dynamic constraints which 

ignore pitch and roll rotation or winds disturbances.  

A. Kinematic Constraints 

We use a simple UAV model with four dimensions, each 

configuration is ( , , , )q x y z = , when , ,x y z  are the 

coordinates of the origin, and   is the orientation, in x-y 

plane relative to x-axis, as can be seen in Figure 2 for a 

simple car-like model. 

The steering angle is denoted as  . The distance 

between front and rear axles is equal to 1. The kinematic 

equations of a simple UAV model can be written as: 

 

,

cos ,

sin ,

tan

s

s

z

s

x u

y u

z u

u u







=

=

=

=

 
(7) 

 

Where su is the speed parallel to x-y plane, climb rate 

(speed parallel to z-axis) is zu and the control on steering 

angle
 
u . We denote the control vector as ( , , )s zu u u u= . 

Each of the controllers is bounded,
max max[ , ]u   −

where 
max / 2  , the speed 

min max[ , ]s s su u u and climb 

rate
max max[ , ]z z zu u u − . 

min 0su  , so UAV cannot stop. 

B. Dynamic Constraints 

The UAV model has to take into account the dynamic 

constraints, preventing instantaneous changes (increase or 

decrease) of the control vector ( , , )s zu u u u= . 

UAV model also includes dynamic constraints,

[ , ]s s su a a − , [ , ]z z zu a a − and [ , ]u a a   − . 

 

 
Figure 2. The Simple Car Model. The z-axis can be changed for a Simple 

-Airplane (Source [26]) 

V. DEEP REINFORCEMENT LEARNING (DRL) PLANNER 

Our planner, as described in Table 1, based on DRL method, 

generate visible sequence of optimal-visible waypoints as a 

candidate trajectory. We extend previous planners which 

takes into account kinematic and dynamic constraints 

[29,30] and present a local planner for UAV with these 

constraints, which for the first time generates fast and exact 

visible trajectories based on analytic solution. The fast and 
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efficient visibility analysis of our method presented above, 

allows us to generate the most visible trajectory from a start 

state to the goal state in 3D urban environments, and 

demonstrates our capability, which can be extended to real 

performances in the future. We assume knowledge of the 

3D urban environment model and use the well-known 

Velocity Obstacles (VO) method to avoid collision with 

buildings presented as static obstacles.  

For obstacle avoidance capability, at each time step, the 

planner computes the next eighth Attainable Velocities 

(AV). The safe nodes not colliding with buildings, i.e., 

nodes outside Velocity Obstacles [28], are explored. The 

planner computes the cost for these safe nodes and chooses 

the node with the lowest cost. Trajectory can be 

characterized by the most visible roofs only, surfaces only, 

or another combination of these kinds of visibility types. We 

repeat this procedure while generating the most visible 

trajectory. 

A. Velocity Obstacles 

The VO [28] is a well-known method for obstacle 

avoidance in static and dynamic environments, used in our 

planner to prevent collision between UAV and the buildings 

(as static obstacles), as part of the trajectory planning 

method. 

The VO represents the set of all colliding velocities of 

the UAV with each of the neighboring obstacles, in our case 

static obstacles as can be seen in Figure 3 and Figure 4.  

Based on the dynamic and kinematic constraints, UAVs 

velocities at the next time step are limited. At each time step 

during the trajectory planning, we map the Attainable 

Velocities (AV), the velocities set at the next time step 

t + , which generate the optimal trajectory, as is well-

known from Dubins theory [27]. 

 

 
Figure 3. Linear Velocity Obstacles 

We denote the allowable controls as ( , , )s zu u u u= as 

U , where V U . 

We denote the set of dynamic constraints bounding 

control's rate of change as ( , , ) 's zu u u u U=  . 

Considering the extremals controllers as part of the 

motion primitives of the trajectory cannot ensure time-

optimal trajectory for Dubin's airplane model [27], but is 

still a suitable heuristic based on time-optimal trajectories of 

Dubin - car and point mass models. 

We calculate the next time step's feasible velocities
 

~

( )U t + , between ( , )t t + : 

~

( ) { | ( ) '}U t U u u u t U + =  =    (14) 

Integrating 
~

( )U t + with UAV model yields the next 

eight possible nodes for the following combinations: 

 
~

min

,
~ ~

max max max

~ max

( ) ( )

( ) ( ) tan , ( ) tan ( ) tan

( )( )

s
s s s

z s s s

z z z

U t u u t a

U t U t u u t u t u a

u u t aU t

 



 
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

 
+  + 

  
+ = + = − +  

    −+   
 

 

(15) 

 

At each time step, we explore the next eight AV at the 

next time step as part of our tree search. 

Each node ( , )q q


,where ( , , , )q x y z = , consist of the 

current UAVs position and velocity at the current time step. 

At each state, the planner computes the set of Admissible 

Velocities (AV), 
~

( )U t + , from the current UAV velocity,

( )U t , as shown in Figure 4. We ensure the safety of nodes 

by computing a set of Velocity Obstacles (VO).  

In Figure 4, nodes inside VO, marked in red, are 

inadmissible. Nodes out of VO are further evaluated; safe 

nodes are colored in blue. The safe node with the lowest 

cost, which is the next most visible node, is explored in the 

next time step. This is repeated while generating the most 

visible trajectory. 

Admissible velocities profile is similar to a trunked cake 

slice, as seen in Figure 4, due to the Dubins airplane model 

with one time step integration ahead. Simple models 

admissible velocities, such as point mass, create rectangular 

profile [28].     

 

Figure 4. Tree Search Method. Admissible Velocities marked in Blue and 

Red Circles; Nodes inside VO (marked Red) are Inadmissible; Nodes 

outside VO, Colored in Blue with Lowest Cost, are Explored 

B. Cost Function 

Our search is guided by minimum invisible parts from 

viewpoint V to the 3D urban environment model. The cost 

function for each node is a combination of IRV and ISV, 

with different weights as functions of the required task.  

The cost function is computed for each safe node

( , )q q VO


 , i.e., node outside VO, considering UAV 
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position at the next time step ( ( ), ( ), ( ))x t y t z t  + + +  

as viewpoint: 

 
( ( )) ( ( )) ( ( ))w q t ISV q t IRV q t    + =  + +  +  (16) 

 

Where ,  are coefficients, effecting the trajectory 

character. The cost function ( ( ))w q t + produces the total 

sum of invisible parts from the viewpoint to the 3D urban 

environment, meaning that the velocity at the next time step 

with the minimum cost function value is the most visible 

node in our local search. 

 

C. Planner Neural Network 

In our DRL model, we are using fully-connected layers, 

consisting of: the state space of 37 dimensions, two hidden 

layers (64 nodes each), an output of four actions. Our 

network structure can be seen in Figure 5. 

 

Figure 5. DRL planner network model based on fully-connected layers 

D. Simulation Results 

We have implemented the presented algorithm and tested 

some urban environments. We computed the visible 

trajectories using our DRL planner, as described above. We 

used the proposed UAV model with several types of 

trajectories consisting of roof and surfaces visibility, based 

on the introduced visibility computation method. Obstacle 

avoidance capability tested by VO method.  

The initial parameters values are: ( 0) 10su t = = [m/s], 

zu  ( 0) 5[deg]t = = . UAV dynamic and kinematic 

constraints are
max / 4 = , 

max 0.3[ / ]zu m s= . 
min 1su =

[m/s], 
max 15su = [m/s]. 

In the following simulations, Figures 6 till Figure 10, the 

start and goal points are marked, in number of scenarios 

with various start’s and goal’s points location. 

 

Figure 6. Trajectory Planning in Urban Environment Using DRL. Start and 

Goal Points with Scenario Demonstration. 

 

Figure 7. Trajectory Planning in Urban Environment Using DRL. Setting 

other Start and Goal Points with Scenario Demonstration. 

 

Figure 8. Trajectory Planning in Urban Environment Using DRL. Setting 

other Start and Goal Points with Scenario Demonstration. 

 

Figure 9. Trajectory Planning in Urban Environment Using DRL. Setting 

other Start and Goal Points with Scenario Demonstration. 

 

Figure 10. Trajectory Planning in Urban Environment Using DRL. Setting 

other Start and Goal Points with Scenario Demonstration. 

VI. CONCLUSIONS 

In this paper, we present a spatial motion planner in 3D 

environments based on Deep Reinforcement Learning (DRL) 

algorithms. We tackled 3D motion planning problem by 

using Deep Reinforcement Learning (DRL) approach which 

learns agent’s and environment constraints.  

Spatial analysis focus on visibility analysis in 3D setting 

an optimal motion primitive considering agent’s dynamic 

model based on fast and exact visibility analysis for each 
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motion primitives. Based on optimized reward function, 

consist of generated 3D visibility analysis and obstacle 

avoidance trajectories, we introduced DRL formulation 

which learns the value function of the planner and generates 

an optimal spatial visibility trajectory.  

We presented DRL architecture generating the most 

visible trajectory in a known 3D urban environment model, 

as time-optimal one with obstacle avoidance capability. 
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