
Deep Reinforcement Learning for

Spatial Motion Planning in 3D Environments

Oren Gal and Yerach Doytsher

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology

Haifa, Israel

e-mails: {orengal@alumni.technion.ac.il, doytsher@technion.ac.il}

Abstract—In this paper, we present a spatial motion planner in

3D environments based on Deep Reinforcement Learning

(DRL) algorithms. We tackle 3D motion planning problem by

using Deep Reinforcement Learning (DRL) approach, which

learns agent’s and environment constraints. Spatial analysis

focus on visibility analysis in 3D setting an optimal motion

primitive considering agent’s dynamic model based on fast and

exact visibility analysis for each motion primitives. Based on

optimized reward function, consisting of generated 3D

visibility analysis and obstacle avoidance trajectories, we

introduce DRL formulation which learns the value function of

the planner and generates an optimal spatial visibility

trajectory. We demonstrate our planner in simulations for

Unmanned Aerial Vehicles (UAV) in 3D urban environments.

Our spatial analysis is based on a fast and exact spatial

visibility analysis of the 3D visibility problem from a viewpoint

in 3D urban environments. We present DRL architecture

generating the most visible trajectory in a known 3D urban

environment model, as time-optimal one with obstacle

avoidance capability.

Keywords-Deep Reinforcement Learning; Visibility; 3D;

Spatial analysis; Motion Planning.

I. INTRODUCTION

Spatial clustering in urban environments is a new spatial

field from trajectory planning aspects [1]. The motion and

trajectory planning fields have been extensively studied over

the last two decades [2][4][6]. The main effort has focused

on finding a collision-free path in static or dynamic

environments, i.e., in moving or static obstacles, using

roadmap, cell decomposition, and potential field methods

[11].

The efficient computation of visible surfaces and

volumes in 3D environments is not a trivial task. The

visibility problem has been extensively studied over the last

twenty years, due to the importance of visibility in GIS and

Geomatics, computer graphics and computer vision, and

robotics. Accurate visibility computation in 3D environments

is a very complicated task demanding a high computational

effort, which could hardly have been done in a very short

time using traditional well-known visibility methods.

In this paper, we present, unique spatial trajectory

planning method based on DRL algorithm based on exact

visibility analysis in urban environment. The generated

trajectories are based on visibility motion primitives as part

of the planned trajectory, which takes into account exact 3D

visible volumes analysis clustering in urban environments.

The proposed planner includes obstacle avoidance

capabilities, satisfying dynamics' and kinematics' agent

model constraints in 3D environments, using Velocity

Obstacles (VO) in 3D for Unmanned Aerial Vehicle (UAV)

model.

In the following sections, we first introduce the DRL

algorithm and method and our extension for a spatial

analysis case, such as 3D visibility. Later on, we present the

our planner, using VO method and planner model. In the last

part of the paper, with planner simulation using DRL

method.

II. PROBLEM STATEMENT

We consider the basic visibility problem in a 3D urban
environment, consisting of 3D buildings modeled as 3D

cubic parameterization
max

min

1

(, ,)
N

h

i h

i

C x y z
=

=
, and viewpoint

V(x0, y0, z0).

Given:

• Parameterizations of N objects
max

min

1

(, ,)
N

h

i h

i

C x y z
=

=

describing a 3D urban environment model

Computes:

• Trajectory, which consist of optimal set of all visible

points, i.e., most visible points of max

min

1

(, ,)
N

h

i h

i

C x y z
=

= ,

from starting point ,qs, to the goal, qg, without
collision.

This problem seems to be solved by conventional
geometric methods, but as mentioned before, it demands a
long computation time. We introduce a fast and efficient
computation solution for a schematic structure of an urban
environment that demonstrates our method based on DRL.

On the first part, we present DRL algorithm, formulated
to our planning problem, and the visibility analysis along
with obstacles avoidance planner.

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-871-6

GEOProcessing 2021 : The Thirteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

III. DEEP REINFORCEMENT LEARNING (DRL)

In most Deep Reinforcement Learning (DRL) systems,

the state is basically agent’s observation of the environment.

At any given state, the agent chooses its action according to a

policy. Hence, a policy is a road map for the agent, which

determines the action to take at each state. Once the agent

takes an action, the environment returns the new state and

the immediate reward. Then, the agent uses this information,

together with the discount factor to update its internal

understanding of the environment, which, in our case, is

accomplished by updating a value function. Most methods

are using the use well-known simple and efficient greedy

exploration method maximizing Q-value.

In case of velocity planning space as part of spatial

analysis planning, each possible action is a possible velocity

in the next time step, that also represent a viewpoint. The Q-

value function is based on greedy search velocity, with

greedy local search method. Based on that, TD and SARSA

methods for DRL can be used, generating visible trajectory

in 3D urban environment.

A. Markov Decision Processes (MDP)

The standard Reinforcement Learning set-up can be

described as a MDP as can be seen in Figure 1, consisting

of:

• A finite set of states S, comprising all possible

representations of the environment.

• A finite set of actions A, containing all possible

actions available to the agent at any given time.

• A reward function R = ψ(st ,at ,st+1), determining

the immediate reward of performing an action at

from a state st, resulting in st+1.

• A transition model T(st , at , st+1) = p(st+1| st ,at),

describing the probability of transition between

states st and st+1when performing an action at.

Figure 1. standard Reinforcement Learning Methology [20].

B. Temporal Difference Learning

Temporal-difference learning (or TD) interpolates ideas

from Dynamic Programming (DP) and Monte Carlo

methods. TD algorithms can learn directly from raw

experiences without any model of the environment.

Whether in Monte Carlo methods, an episode needs to

reach completion to update a value function, Temporal-

difference learning can learn (update) the value function

within each experience (or step). The price paid for being

able to regularly change the value function is the need to

update estimations based on other learnt estimations

(recalling DP ideas). Whereas in DP a model of the

environment’s dynamic is needed, both Monte Carlo and TD

approaches are more suitable for uncertain and unpredictable

tasks.

Since TD learns from every transition (state, reward,

action, next state, next reward) there is no need to

ignore/discount some episodes as in Monte Carlo algorithms.

C. Spatial Planning Using DRL

In this section, we present DRL approach based on the

proposed spatial planning method. The spatial planner seeks

to obtain the trajectory T* that based on visibility motion

primitives set as part of the planned trajectory, which takes

into account exact 3D visible volumes analysis clustering in

urban environments, based on optimizing value function f

along T.

The generated trajectories are then represented by a set of

discrete configuration points T = {x1,x2,··· ,xN}.

Without loss of generality, we can assume that the value

function for each point can be expressed as a linear

combination of a set of sub-value functions, that will be

called features c(x) = ∑ cj fj(x). The cost of path T is then

the sum of the cost for all points in the path. Particularly, in

the Velocity Obstacles as will be presented later on, the

value is the sum of the sub-values of moving between pairs

of states in the path:

 (2)

Based on number of demonstration trajectories D, D =

{ζ1,ζ2,··· ,ζD}, by using DRL, weights ω can be set for

learning from demonstrations and setting similar planning

behavior. As was shown by [23][24], this similarity is

achieved when the expected value of the features for the

trajectories generated by the planner is the same as the

expected value of the features for the given demonstrated

trajectories:

 (3)

 Applying the Maximum Entropy Principle [25] to the

DRL problem leads to the following form for the probability

density for the trajectories returned by the demonstrator:

 (4)

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-871-6

GEOProcessing 2021 : The Thirteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

where Z(ω) is a normalization function that does not depend

on ζ. One way to determine ω is maximizing the (log-)

likelihood of the demonstrated trajectories under the

previous model:

L(D|ω) = −Dlog(Z(ω)) +∑ (−𝑤𝑇𝑓(𝜁𝑖))𝐷
𝑖=1 (5)

The gradient of the previous log-likelihood with respect to

ω is given by [23]:

 (6)

 As mentioned in [23], this gradient in equation (6) can

be intuitively explained. If the value of one of the features

for the trajectories returned by the planner are higher from

the value in the demonstrated trajectories, the corresponding

weight should be increased to increase the value of those

trajectories.

 The main problem with the computation of the previous

gradient is that it requires to compute the expected value of

the features E(f(ζ)) for the generative distribution (4).

 We suggest setting large amount of D cased, setting the

relative w values for our planner characters.

TABLE I. DRL PLANNER PSEUDO CODE

DRL Planner
Setting Trajectory S Examples D, D= T*.init (xinit);

Calculate function features Weight, w

fD ← AverageFeatureCount(D);

w ← random_init();

Repeat

 for each T* do

 for VelocityObstacles_repetitions do

 ζi ← getVOstarPath(T*,ω)

 f(ζi) ← calculeFeatureCounts(ζi)

 end for

 fVO (T*)←∑ 𝑓(
𝑉𝑂_𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠
𝑖=1 ζi))/VO_repetitions

 end for

 fVO ←(∑ 𝑓𝑉𝑂
𝑆
𝑖=1)/s

 ∇𝐿 ← fVO - fD

 w ←UpdatedWeigths (∇𝐿)
 Until convergence

Return w

IV. UAV MODEL

We introduce an Unmanned Aerial Vehicle (UAV) model,

based on the well-known simple car and Dubins airplane

[26]. Dubins airplane [27] model extends Dubins car model

with continuous change of altitude without reverse gear,

avoiding sudden altitude speed rate variation. Our UAV

model includes kinematic and dynamic constraints which

ignore pitch and roll rotation or winds disturbances.

A. Kinematic Constraints

We use a simple UAV model with four dimensions, each

configuration is (, , ,)q x y z = , when , ,x y z are the

coordinates of the origin, and  is the orientation, in x-y

plane relative to x-axis, as can be seen in Figure 2 for a

simple car-like model.

The steering angle is denoted as  . The distance

between front and rear axles is equal to 1. The kinematic

equations of a simple UAV model can be written as:

,

cos ,

sin ,

tan

s

s

z

s

x u

y u

z u

u u







=

=

=

=

(7)

Where su is the speed parallel to x-y plane, climb rate

(speed parallel to z-axis) is zu and the control on steering

angle

u . We denote the control vector as (, ,)s zu u u u= .

Each of the controllers is bounded,
max max[,]u   −

where
max / 2  , the speed

min max[,]s s su u u and climb

rate
max max[,]z z zu u u − .

min 0su  , so UAV cannot stop.

B. Dynamic Constraints

The UAV model has to take into account the dynamic

constraints, preventing instantaneous changes (increase or

decrease) of the control vector (, ,)s zu u u u= .

UAV model also includes dynamic constraints,

[,]s s su a a − , [,]z z zu a a − and [,]u a a   − .

Figure 2. The Simple Car Model. The z-axis can be changed for a Simple

-Airplane (Source [26])

V. DEEP REINFORCEMENT LEARNING (DRL) PLANNER

Our planner, as described in Table 1, based on DRL method,

generate visible sequence of optimal-visible waypoints as a

candidate trajectory. We extend previous planners which

takes into account kinematic and dynamic constraints

[29,30] and present a local planner for UAV with these

constraints, which for the first time generates fast and exact

visible trajectories based on analytic solution. The fast and

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-871-6

GEOProcessing 2021 : The Thirteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

efficient visibility analysis of our method presented above,

allows us to generate the most visible trajectory from a start

state to the goal state in 3D urban environments, and

demonstrates our capability, which can be extended to real

performances in the future. We assume knowledge of the

3D urban environment model and use the well-known

Velocity Obstacles (VO) method to avoid collision with

buildings presented as static obstacles.

For obstacle avoidance capability, at each time step, the

planner computes the next eighth Attainable Velocities

(AV). The safe nodes not colliding with buildings, i.e.,

nodes outside Velocity Obstacles [28], are explored. The

planner computes the cost for these safe nodes and chooses

the node with the lowest cost. Trajectory can be

characterized by the most visible roofs only, surfaces only,

or another combination of these kinds of visibility types. We

repeat this procedure while generating the most visible

trajectory.

A. Velocity Obstacles

The VO [28] is a well-known method for obstacle

avoidance in static and dynamic environments, used in our

planner to prevent collision between UAV and the buildings

(as static obstacles), as part of the trajectory planning

method.

The VO represents the set of all colliding velocities of

the UAV with each of the neighboring obstacles, in our case

static obstacles as can be seen in Figure 3 and Figure 4.

Based on the dynamic and kinematic constraints, UAVs

velocities at the next time step are limited. At each time step

during the trajectory planning, we map the Attainable

Velocities (AV), the velocities set at the next time step

t + , which generate the optimal trajectory, as is well-

known from Dubins theory [27].

Figure 3. Linear Velocity Obstacles

We denote the allowable controls as (, ,)s zu u u u= as

U , where V U .

We denote the set of dynamic constraints bounding

control's rate of change as (, ,) 's zu u u u U=  .

Considering the extremals controllers as part of the

motion primitives of the trajectory cannot ensure time-

optimal trajectory for Dubin's airplane model [27], but is

still a suitable heuristic based on time-optimal trajectories of

Dubin - car and point mass models.

We calculate the next time step's feasible velocities

~

()U t + , between (,)t t + :

~

() { | () '}U t U u u u t U + =  =   (14)

Integrating
~

()U t + with UAV model yields the next

eight possible nodes for the following combinations:

~

min

,
~ ~

max max max

~ max

() ()

() () tan , () tan () tan

()()

s
s s s

z s s s

z z z

U t u u t a

U t U t u u t u t u a

u u t aU t

 



 

  



 
+  + 

  
+ = + = − +  

    −+   
 

(15)

At each time step, we explore the next eight AV at the

next time step as part of our tree search.

Each node (,)q q


,where (, , ,)q x y z = , consist of the

current UAVs position and velocity at the current time step.

At each state, the planner computes the set of Admissible

Velocities (AV),
~

()U t + , from the current UAV velocity,

()U t , as shown in Figure 4. We ensure the safety of nodes

by computing a set of Velocity Obstacles (VO).

In Figure 4, nodes inside VO, marked in red, are

inadmissible. Nodes out of VO are further evaluated; safe

nodes are colored in blue. The safe node with the lowest

cost, which is the next most visible node, is explored in the

next time step. This is repeated while generating the most

visible trajectory.

Admissible velocities profile is similar to a trunked cake

slice, as seen in Figure 4, due to the Dubins airplane model

with one time step integration ahead. Simple models

admissible velocities, such as point mass, create rectangular

profile [28].

Figure 4. Tree Search Method. Admissible Velocities marked in Blue and

Red Circles; Nodes inside VO (marked Red) are Inadmissible; Nodes

outside VO, Colored in Blue with Lowest Cost, are Explored

B. Cost Function

Our search is guided by minimum invisible parts from

viewpoint V to the 3D urban environment model. The cost

function for each node is a combination of IRV and ISV,

with different weights as functions of the required task.

The cost function is computed for each safe node

(,)q q VO


 , i.e., node outside VO, considering UAV

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-871-6

GEOProcessing 2021 : The Thirteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

position at the next time step ((), (), ())x t y t z t  + + +

as viewpoint:

(()) (()) (())w q t ISV q t IRV q t    + =  + +  + (16)

Where ,  are coefficients, effecting the trajectory

character. The cost function (())w q t + produces the total

sum of invisible parts from the viewpoint to the 3D urban

environment, meaning that the velocity at the next time step

with the minimum cost function value is the most visible

node in our local search.

C. Planner Neural Network

In our DRL model, we are using fully-connected layers,

consisting of: the state space of 37 dimensions, two hidden

layers (64 nodes each), an output of four actions. Our

network structure can be seen in Figure 5.

Figure 5. DRL planner network model based on fully-connected layers

D. Simulation Results

We have implemented the presented algorithm and tested

some urban environments. We computed the visible

trajectories using our DRL planner, as described above. We

used the proposed UAV model with several types of

trajectories consisting of roof and surfaces visibility, based

on the introduced visibility computation method. Obstacle

avoidance capability tested by VO method.

The initial parameters values are: (0) 10su t = = [m/s],

zu (0) 5[deg]t = = . UAV dynamic and kinematic

constraints are
max / 4 = ,

max 0.3[/]zu m s= .
min 1su =

[m/s],
max 15su = [m/s].

In the following simulations, Figures 6 till Figure 10, the

start and goal points are marked, in number of scenarios

with various start’s and goal’s points location.

Figure 6. Trajectory Planning in Urban Environment Using DRL. Start and

Goal Points with Scenario Demonstration.

Figure 7. Trajectory Planning in Urban Environment Using DRL. Setting

other Start and Goal Points with Scenario Demonstration.

Figure 8. Trajectory Planning in Urban Environment Using DRL. Setting

other Start and Goal Points with Scenario Demonstration.

Figure 9. Trajectory Planning in Urban Environment Using DRL. Setting

other Start and Goal Points with Scenario Demonstration.

Figure 10. Trajectory Planning in Urban Environment Using DRL. Setting

other Start and Goal Points with Scenario Demonstration.

VI. CONCLUSIONS

In this paper, we present a spatial motion planner in 3D

environments based on Deep Reinforcement Learning (DRL)

algorithms. We tackled 3D motion planning problem by

using Deep Reinforcement Learning (DRL) approach which

learns agent’s and environment constraints.

Spatial analysis focus on visibility analysis in 3D setting

an optimal motion primitive considering agent’s dynamic

model based on fast and exact visibility analysis for each

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-871-6

GEOProcessing 2021 : The Thirteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

motion primitives. Based on optimized reward function,

consist of generated 3D visibility analysis and obstacle

avoidance trajectories, we introduced DRL formulation

which learns the value function of the planner and generates

an optimal spatial visibility trajectory.

We presented DRL architecture generating the most

visible trajectory in a known 3D urban environment model,

as time-optimal one with obstacle avoidance capability.

REFERENCES

[1] O. Gal and Y. Doytsher, "Spatial Visibility Clustering
Analysis In Urban Environments Based on Pedestrians'
Mobility Datasets," The Sixth International Conference on
Advanced Geographic Information Systems, Applications,
and Services, pp. 38-44, 2014.

[2] J. Bellingham, A. Richards, and J. How, "Receding Horizon
Control of Autonomous Aerial Vehicles," in Proceedings
ofthe IEEE American Control Conference, Anchorage, AK,
pp. 3741–3746, 2002.

[3] A. Borgers and H. Timmermans, "A model of pedestrian
route choice and demand for retail facilities within inner-city
shopping areas," Geographical Analysis, vol. 18, No. 2, pp.
115-128, 1996.

[4] S. A. Bortoff, "Path planning for UAVs," In Proc. of the
American Control Conference, Chicago, IL, pp. 364–368,
2000.

[5] B. J. Capozzi and J. Vagners, “Navigating Annoying
Environments Through Evolution,” Proceedings of the 40th
IEEE Conference on Decision and Control, University of
Washington, Orlando, FL, 2001.

[6] H. Chitsaz and S. M. LaValle, "Time-optimal paths for a
Dubins airplane," in Proc. IEEE Conf. Decision. and Control.,
USA, pp. 2379–2384, 2007.

[7] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic
Motion Planning,” Journal of the Association for Computing
Machinery, pp. 1048–1066, 1993.

[8] Y. Doytsher and B. Shmutter, "Digital Elevation Model of
Dead Ground," Symposium on Mapping and Geographic
Information Systems (Commission IV of the International
Society for Photogrammetry and Remote Sensing), Athens,
Georgia, USA, 1994.

[9] W. Fox, D. Burgard, and S. Thrun, "The dynamic window
approach to collision avoidance," IEEE Robotics and
Automation Magazine, vol. 4, pp. 23–33, 1997.

[10] O. Gal and Y. Doytsher, "Fast and Accurate Visibility
Computation in a 3D Urban Environment," in Proc. of the
Fourth International Conference on Advanced Geographic
Information Systems, Applications, and Services, Valencia,
Spain, pp. 105-110, 2012 [accessed February 2014].

[11] O. Gal and Y. Doytsher, "Fast and Efficient Visible
Trajectories Planning for Dubins UAV model in 3D Built-up
Environments," Robotica, FirstView, Article pp. 1-21
Cambridge University Press 2013 DOI:
http://dx.doi.org/10.1017/S0263574713000787, [accessed
February 2014].

[12] M. Haklay, D. O’Sullivan, and M.T. Goodwin, "So go down
town: simulating pedestrian movement in town centres,"
Environment and Planning B: Planning & Design, vol. 28, no.
3, pp. 343-359, 2001.

[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” Int. J. Robot. Res., vol. 30, no. 7,
pp. 846–894, 2011.

[14] N.Y. Ko and R. Simmons, "The lane-curvature method for
local obstacle avoidance," In International Conference on
Intelligence Robots and Systems, 1998.

[15] S. M. LaValle, "Rapidly-exploring random trees: A new tool
for path planning," TR 98-11, Computer Science Dept., Iowa
State University, 1998.

[16] S. M. LaValle and J. Kuffner. "Randomized kinodynamic
planning," In Proc. IEEE Int. Conf. on Robotics and
Automation, Detroit, MI, pp. 473–479, 1999.

[17] L.R. Lewis, "Rapid Motion Planning and Autonomous
Obstacle Avoidance for Unmanned Vehicles," Master's
Thesis, Naval Postgraduate School, Monterey, CA, December
2006.

[18] C. W. Lum, R. T. Rysdyk, and A. Pongpunwattana,
“Occupancy Based Map Searching Using Heterogeneous
Teams of Autonomous Vehicles,” Proceedings of the 2006
Guidance, Navigation, and Control Conference, Autonomous
Flight Systems Laboratory, Keystone, CO, August 2006.

[19] S. Okazaki and S. Matsushita, "A study of simulation model
for pedestrian movement with evacuation and queuing,"
Proceedings of the International Conference on Engineering
for Crowd Safety, London, UK, pp. 17-18, March 1993.

[20] P. Abbeel and P. Ng, "Apprenticeship learning via inverse
reinforcement learning," in Proceedings of the twenty-first
international conference on Machine learning, ICML ’04,
ACM, New York, NY, USA,
http://doi.acm.org/10.1145/1015330.1015430, 2004.

[21] M. Kuderer, S. Gulati, and W. Burgard, "Learning driving
styles for autonomous vehicles from demonstration," in
Proceedings of the IEEE International Conference on
Robotics & Automation (ICRA), Seattle, USA. vol. 134, 2015

[22] B. Ziebart, A. Maas, J. Bagnell, and A. Dey, "Maximum
entropy inverse reinforcement learning," in Proc. of the
National Conference on Artificial Intelligence (AAAI), 2008.

[23] Kuderer, M., Gulati, S., Burgard, W, (2015) "Learning
driving styles for autonomous vehicles from demonstration",
In: Proceedings of the IEEE International Conference on
Robotics & Automation (ICRA), Seattle, USA. vol. 134.

[24] Abbeel, P., Ng, A.Y., (2004) "Apprenticeship learning via
inverse reinforcement learning" In: Proceedings of the
twenty-first international conference on Machine learning,
ICML ’04, ACM, New York, NY, USA,
http://doi.acm.org/10.1145/1015330.1015430.

[25] Ziebart, B., Maas, A., Bagnell, J., Dey, A., (2008) "Maximum
entropy inverse reinforcement learning", In: Proc. of the
National Conference on Artificial Intelligence (AAAI).

[26] S. M. LaValle, Planning Algorithms.
Cambridge,U.K.:Cambridge Univ. Pr., (2006).

[27] H. Chitsaz and S. M. LaValle, Time-optimal paths for a
Dubins airplane, in Proc. IEEE Conf. Decision. and Control.,
USA, pp. 2379–2384, (2007).

[28] P. Fiorini and Z. Shiller, Motion planning in dynamic
environments using velocity obstacles, Int. J. Robot. Res.17,
pp. 760–772, (1998).

[29] G. Elber, R. Sayegh, G. Barequet and R. Martin. Two-
Dimensional Visibility Charts for Continuous Curves, in Proc.
Shape Modeling, MIT, Boston, USA, pp. 206-215, (2005).

[30] S. A. Bortoff,. Path planning for UAVs. In Proc. of the
American Control Conference, Chicago, IL, pp: 364–368
,(2000).

11Copyright (c) IARIA, 2021. ISBN: 978-1-61208-871-6

GEOProcessing 2021 : The Thirteenth International Conference on Advanced Geographic Information Systems, Applications, and Services

http://www.thinkmind.org/index.php?view=article&articleid=geoprocessing_2014_2_30_30101
http://www.thinkmind.org/index.php?view=article&articleid=geoprocessing_2014_2_30_30101
http://www.thinkmind.org/index.php?view=article&articleid=geoprocessing_2014_2_30_30101
https://sites.google.com/site/orenusv/goog_551503830
http://journals.cambridge.org/article_S0263574713000787
http://dx.doi.org/10.1017/S0263574713000787
http://dx.doi.org/10.1017/S0263574713000787
http://doi.acm.org/10.1145/1015330.1015430

