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Abstract—The task of predicting the consumer’s electricity con-
sumption is currently a trend in power energy companies. This
prediction becomes difficult or impractical for consumers with
no history or a short history of consumption. Thus, this work
deals with an alternative to the prediction of energy consumption
for these consumers. The proposed method is based on the
consumption of the k closest neighbors and the consumption
forecast made by one of three available regression models. The
regressors used, namely Autoregressive Integrated Moving Av-
erage (ARIMA), Boosting Additive Quantile Regression (BAQR)
and the named Seasonal and Trend decomposition using Loess
(STL), were chosen for providing the best performance. The
results obtained were promising, achieved a mean of the 30.4
% in the symmetric mean absolute percentage error (sMAPE)
metric in a dataset with 86,874 customers.

Keywords–Geospatial Information; Energy Forecasting; STL;
ARIMA; BAQR

I. INTRODUCTION

It is a current trend for power companies to invest in arti-
ficial intelligence and machine learning to predict the monthly
behavior of their consumers’ energy consumption [1][2]. Fore-
casting is beneficial for both energy companies and con-
sumers. This mutual benefit comes from reducing the energy
company’s expenses during power distribution and increasing
its revenues. By reducing financial losses caused by wrong
measurements or power thefts, it can then pass on to its
consumers a lower energy consumption billing rate.

The problem of predicting consumers’ electricity consump-
tion is an essential step in verifying inconsistencies in mea-
suring monthly energy consumption. Inconsistency checking
avoids both incorrect billing for a consumer and may indicate
that, due to abnormal energy consumption, the consumer may
be using technical arrangements to reduce his energy con-
sumption and, therefore, not being properly registered. For this
reason, power companies have invested in Pattern Recognition
(PR) methods to predict their customers’ energy consumption
and thus improve the verification step for measuring energy
consumption inconsistencies.

In practice, each company defines its criteria for check-
ing for inconsistencies in reading data. For this verification,
Equatorial Energy uses the average consumption of the last
threes months as a forecast for each consumer. Forecasted
consumption is used to define a minimum and maximum
consumption range. This range is defined to avoid errors and
anomalies in the reading performed. Readings outside the
expected range are reviewed by company technicians before
issuing the customer invoice.

Our motivation stems from the fact that this task of
predicting the behavior of power consumption is relatively

simple when its consumers’ consumption history exists, but
it becomes difficult or impractical for consumers with no con-
sumption history, i.e., for new consumer installations or those
who have a short history of power consumption. Consequently,
the reading of these customers usually goes through technical
analysis before issuing the invoice, given the impossibility of
predicting consumption.

In this sense, to solve the problem of energy consumption
prediction of consumers without consumption history and
reduce the number of customers that are analyzed before
the invoice issue, this paper proposes an energy consumption
prediction method using neighborhood consumption informa-
tion. Indeed, it is likely that a new customer will have a
consumption similar to that of its closest neighbors, as well
as its consumption range.

In the proposed work, the term spatial information is
related to neighborhood identification, to compute energy
consumption based on Tobler’s first law of geography [3]
stating that everything is related to everything else, but near
things are more related than distant things.

This work is part of a Research and Development
(R&D) project, contracted by Equatorial Energy under contract
CELPA 962/2018 and CEMAR 30/2019, executed by the
Applied Computing Group (NCA) of the Federal University of
Maranhão (UFMA). This project will develop the Consump-
tion Habit Analysis System (SisHCo). The project is organized
to provide the development of methods, techniques, and tools
based on computational intelligence and machine learning, to
define, in an individualized and adaptive way, parameters for
the critique of power consumption measurement, based on
historical information.

The main contributions resulting from this work are:
1) We developed a method that solves a real problem

of the energy supply companies, using simple tech-
niques and with reasonable accuracy;

2) An alternative method was developed to forecast
energy consumption in customers without a history
of consumption;

3) The proposed method uses spatial data as a step in
the forecast flow of energy consumption;

4) We determined and compared the most accurate pre-
diction methods.

The rest of the paper is organized as follows. In Section II,
we present the main related works. Section III describes the
proposed methodology of the prediction of individual power
consumption of consumers. The presentation of the results
is given in Section IV. Finally, a conclusion on the results
obtained is drawn in Section V.
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II. RELATED WORK

A Long Short-Term Memory (LSTM) network was used
by Alonso et al. [4] for predicting the individual hourly load
data of consumers. The prediction model was generated from
consumption, weather and calendar data. In the construction
of the model, data from 3,891 smart meters in 2013 were
collected, producing 8,760 readings on each meter. Then,
it was evaluated how the spatial location of the residential
customers influences the load prediction. Results indicate that
the proposed model mean-absolute error was 19 % better than
that of the ARIMA [5] and around 24 % better than that of
the seasonal naive approach [6].

Bâra and Oprea [7] evaluated the dynamic profile of energy
consumption of consumers with and without power generation.
Their objective was to develop a Neural Network (NN) for
predicting energy demand based on smart grid consumption
patterns and profiles. For this purpose, the profiles were created
using a Self-Organizing Map-based pooler (SOM) and an
autoregressive NN for daily prediction of energy consumption.
As for the power generation properties, a feed-forward NN
was used to predict the consumption. Results were obtained
in a dataset consisting of 212 consumers, with approximately
1,900,000 hourly energy consumption registers from several
devices. Clustering with SOM produced better results than with
k-means. The consumption prediction of consumers without
power generation resulted a correlation coefficient of 0.99429,
Mean Squared Error (MSE) of 0.0046 and a Mean Absolute
Percentage Error (MAPE) of 4.21%. Similar results were
observed for consumers with power generation, in which the
correlation coefficient was 0.999 and the MSE was 0.04.

Jiang et al. [8] proposed a fuzzy clustering model to
categorize consumers and identify their energy consumption
characteristics. The identification of such characteristics is
done after each customer’s consumption series are individually
grouped into similar parts to detect consumption patterns.
Then, the fuzzy clustering generates groups of customers with
the same consumption profile, from which the features of
consumption patterns are extracted. Finally, a classifier is used
to categorize new consumers into one of the previously found
groups. Results were obtained for a dataset of hourly energy
consumption from 1,168 non-residential consumers over a
year. The authors concluded that their fuzzy clustering-based
method improved classification accuracy for the inclusion of
new consumers.

The prediction of daily energy consumption in apartments
in the Republic of South Korea appears as a problem in the
work of Wahid and Kim [9]. In this work, K-Nearest Neighbors
(KNN) was used as a predictor of energy consumption over
hourly consumption data from 520 apartments. From the
consumption history, four features were extracted: average,
variance, asymmetry and kurtosis. An accuracy 95.96% was
obtained as best result.

Lora et al. [10] compared the energy price time series pre-
diction performance of two models, one based on a multilayer
perceptron recurrent neural network, and the other based on
a combination of KNN and Genetic Algorithm (GA). They
used GA to adjust the weights for Euclidean distance. The
performances of both models were compared in a small dataset
of energy prices from January to August 2001, in which was
obtained in the period from March to May an MSE of 0.3464,
and in the period between June and August an MSE of 0.428.

Poloczek et al. [11] and Kim et al. [12] used KNN to
predict the values lost in the process of sensor data acquisition,
due to inactivity. Both works showed that KNN is able to
produce results close to real values, using both the proximity
of the data values and the sensors’ spatial information. These
results motivated us to use both the spatial information of
energy-consuming facilities and KNN, for its simplicity in data
generation.

Most of the aforementioned works use consumption read-
ings automatically acquired on smart meters, which are less
sensitive to noise caused by acquisition mistakes. Our proposed
work, however, makes use of a dataset which acquisitions were
made manually in electromechanical and digital meters and, as
a consequence, are subject to mistakes during the readings of
energy consumption. Therefore, the presence of noise makes
the task of forecasting consumption more challenging.

It is worth mentioning that only a small group of clients
use smart meters, which explains the small number of clients
in these works. In our work, though, we use a large customer
dataset with more than one year of energy consumption data.
Moreover, it can be observed that in Jiang et al. [8] there is a
need for initial consumption data for new customers, so that
they can be inserted in a group. This is necessary to enable
the use that group’s model in future predictions. We highlight
that this restriction is not present in our work.

Additionally, the works of Wahid and Kim [9], Lora et
al. [10], Poloczek et al. [11], and Kim et al. [12] perform
data prediction using only KNN and spatial information due
to its excellent performance in the data regression process.
Similarly, our work uses KNN, spatial information, and energy
consumption data to estimate new customer consumption.
However, it differs from the mentioned studies in that it uses
the best prediction result among three proposed regressors,
obtained in eight distinct classes of consumers.

III. MATERIALS AND METHOD

This section describes the materials and the proposed
method for consumption estimation of new installations. The
steps of the proposed method are presented in the sequence
they are applied, as illustrated in Figure 1. First, the process
of data acquisition is described. Second, the dataset goes
through a preprocessing step. Third, the neighborhood of each
customer is determined. Fourth, consumption of the customer’s
neighbors is predicted. Fifth, consumption of customers with
short series is predicted. And, finally, results are validated in
step six.

A. Data acquisition
The dataset consists of power consumption data from

2,316,760 active customers from the state of Maranhão, Brazil.
The data was collected monthly from January 2017 to April
2019, and form the series consumption history for each cus-
tomer.

Customers are organized into classes and subclasses, ac-
cording to ANEEL Normative Resolution no. 414/2010 [13],
repealed by ANEEL Normative Resolution no. 800/2017 [14].
The consumption classes applicable to consumers are:

• Residential: this category includes consumer units
with residential purposes;
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Figure 1. Steps of the proposed method.

• Industrial: are the consumer units in which industrial
activity is developed;

• Commercial, services and other activities: this in-
cludes the consumer units where the service rendering
activities are developed and others not provided for in
the other classes;

• Public service: consumer units are intended exclu-
sively for the supply of engines, machinery and cargo
essential for the operation of public water, sewage,
sanitation and urban or railway traction services, oper-
ated directly by the Government or through concession
or authorization;

• Self-Consumption: the consumer units owned by the
distributors are included;

• Rural: consumer units that develop activities of agri-
culture, livestock or aquaculture;

• Government: consumer units that are consumers of a
legal entity governed by public law are independent
of the activity developed, including illumination on
roads and traffic lights, radars and traffic monitoring
cameras, except for those classified as public irrigation
services, schools, agrotechnics, street lighting and
public service;

• Public Lighting: public service whose sole purpose
is to provide clarity to public places on a periodic,
continuous or occasional basis.

B. Preprocessing
Before the short-series consumption forecast step, the

dataset is subjected to a preprocessing step. In the dataset
there are customers with short series, ranging from zero to
four months of registered consumption, totaling 95,052. For
this reason, this data is separated and used in the tests of the
proposed method. In addition, we ignore consumer series that:
(1) do not have at least two neighbors to be considered in
their estimation, i.e., series categorized in classes that have
less than threes installations; (2) cases where clients do not
have valid coordinates, which makes it impossible to identify
their location and distance to their neighbors; and finally, (3)
cases in which the series do not have consumption registered
in the reference month of this study, making it impossible to
validate the estimated consumption.

C. Finding K-Nearest Neighbor
The k-nearest neighbors are defined based on the cus-

tomer’s geographic coordinates. Fig. 2 shows the information

available on each neighbor, which is the prediction of con-
sumption for the reference month of June 2018, the prediction
interval with minimum and maximum (after III-D); the co-
ordinates with latitude and longitude; and the Reading Unit
(RU). The reading unit represents a set of installations that are
read by a particular reader on a reading day. RU information
is used to narrow the search scope of K-neighbors. Instead of
searching for K-Neighbors throughout the municipality, only
the neighbors belonging to the same RU of the analyzed series
are searched.

Figure 2. New customers in red and their neighborhood in green.

On the other hand, in the case of a larger number than
K-neighbors are available with the same coordinate, only the
k-neighbors with the greatest consumption history will be
selected.

D. Consumption forecast for neighbors
Consumption forecast and neighbors minimum and max-

imum prediction interval were performed for the reference
month of June 2018. Consumption was estimated using statis-
tical methods (STL [15] and ARIMA [5]) and methods based
on machine learning (BAQR) [16]. These methods were em-
pirically chosen based on tests because they outperform most
classes over other methods, such as LSTM [17], SGD [18].
STL was better for the Industrial and Self-consumption class,
ARIMA in the Public Lighting and Public Power class and
BAQR was superior in the Residential, Rural, Public Service
and Commercial classes.

1) Boosting Additive Quantile Regression (BAQR): It is a
quantile regression model that uses additive models to relax the
assumption of linearity [16][19]. It is based on the following
equation:

q̂α

(
x
(i)
1 , ..., x

(i)
d , z

(i)
1 , ..., z

(i)
J

)
= β0+

d∑
j=1
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(i)
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where gj is a variable smoothing function z
(i)
j . The method

uses the boosting technique to estimate the model by mini-
mizing a loss function using the descending gradient method.

2) STL: According to Cleveland et al. [15], STL is a
filtering procedure that decomposes the series into Trend (T ),
Seasonality (S) and Error (E) components. Thus, the original
series can be formed by the sum of these components. So,
seasonality determines the existence of a cyclic pattern in a
time series and the trend is characterized by the behavior
of growth or decrease in the long-term amplitude of the
time series. Therefore, the power consumption series was
filtered using STL and the result was used to choose two
regressors: Simple Exponential Smoothing (SES) and Holt’s
Linear Smoothing(Holt).

The first regressor, SES [20], shows better results when the
dataset has no trend or seasonality, while the second, Holt [21],
when there is a trend but no seasonality. Therefore, because
these regression methods were input using the result of STL
filtering, this method was named STL.

3) Autoregressive Integrated Moving Average - ARIMA: It
is defined as a generalization of the Autoregressive Moving
Average (ARMA) model. These models are generally applied
to non-stationary data because, through the differentiation step,
this data is transformed into stationary data [5].

E. Definition of consumption of the short series
This section presents the method for estimating the k-

nearest neighbors of the new customer. Consumption estima-
tion for new, short-series, non-consumer customers depends
on the discovery of k-nearest neighbors, as well as the con-
sumption estimation and prediction interval of the k-nearest
neighbor which is described in the Section III-D.

In the study, the developed methodology considers four
scenarios for consumption estimation and prediction interval.
The first scenario is made for customers without consumption
history and the other scenarios are made for customers with
short series. June 2018 is used for validation of results only, not
entering each client’s series size count. Therefore, customers
who have only the June 2018 validation reference month, for
example, have zero-size series.

The first scenario considers only customers who have
no history of consumption. The second scenario considers
customers who have a single month of consumption. The third
scenario considers customers who have two months in their
consumption history. And finally, the fourth scenario considers
customers who have three or four months in their consumption
history.

For the first scenario, in which the customer has no
history, the consumption estimation and prediction interval are
generated from its vicinity, as shown in Fig. 3. In this figure, in
(1) are the nearest neighbors of the new customer, all belonging
to the same RU, which is defined by the company. In (2), the
median of consumption predictions and prediction intervals of
the k-nearest neighbor are calculated.

For the second scenario, the approach repeats the previous
month’s consumption for the prediction of consumption. For
the third scenario, the approach calculates the median con-
sumption of previous months to predict consumption. How-
ever, the consumption interval estimation of these scenarios

continues to be made by estimating the neighborhood con-
sumption interval.

In scenarios two and three, a problem was encountered
regarding the generated consumption interval. In some cases,
the prediction based on previous customer consumption may
be outside the range generated by neighbors. This problem
was mitigated as follows: the ratio between the upper limit
and the estimated customer prediction found from the neigh-
borhood method is obtained and this factor is multiplied by
the customer’s predicted consumption, due to its short history
of consumption.

F. Validation of Results

The proposed method was evaluated using the MAPE,
Symmetric Mean Absolute Percentage Error (sMAPE) and
Mean Absolute Error (MAE). These metrics are commonly
used to evaluate value estimation techniques. The lower the
error metrics, the better.

The MAPE is a percentage relative error, as in (2), that
expresses how much the absolute error between the real value
(yi) and the predicted value (ŷi) is greater than the real value,
for a point i in the time series. According to Yorucu [22], a
prediction with MAPE percentage below 10 % is interpreted
as highly accurate; forecast greater than 10 % and less than
20 % is interpreted as good; forecast greater than 20 % and
less than 50 % is reasonable; and prediction greater than 50
% is considered inaccurate.

MAPE =
1

n

n∑
i

∣∣∣∣yi − ŷiyi

∣∣∣∣ (2)

The sMAPE is a percentage measure of prediction errors
according to (3) and indicates how much the observed error is
greater than the sum of the modules of the real value (yi) and
the predicted value (ŷi), for the N available points. Therefore,
the closer to zero, the better the prediction.

sMAPE =
100%

n

n∑
t=1

|ŷt − yt|
|ŷt|+ |yt|

(3)

MAE is simply the average of the absolute values of
errors, i.e., the differences between the real value (yi) and the
predicted value (ŷi), according to (4).

MAE =
1

n

n∑
i=1

|ŷi − yi| (4)

The proposed validation metrics are commonly used in
prediction tasks. Thus, although the MAE is useful to verify
the magnitude of the errors found along the predictions, the vi-
sualization together with MAPE and sMAPE is very important
to understand the performance of the proposed method.

IV. RESULTS AND DISCUSSION

This section presents the results of the first experiments
needed for parameter definition, case studies and the final
result of the proposed method.
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Figure 3. First scenario: a new customer with no history.

A. First experiments
The first experiments were performed in the data set of

the Residential class of a municipality X of Brazil. This
dataset contains 107,738 customers. The objective of these
experiments was to verify the influence of the calculation
of distances on the results for the first scenario, where both
consumption and interval predictions are generated only by
the nearest neighbors. Thus, the Euclidean and Manhattan
distances were tested. First, 10 % of these customers were
randomly separated. We then simulated short series using only
the customer’s first four months and applied the consumption
and interval estimation method described for the first scenario
(III-E, using the predicted consumption median of the 10
nearest customers. Next, the result found for the Manhattan
distance was an sMAPE of 35.4 % and the Euclidean distance
obtained an sMAPE of 35.42 %. Despite the slight difference,
the distance from Manhattan was chosen to be applied in real
cases.

1) Study of case: To exemplify tests performed in the
first experiments during the development of the methodology,
specific cases to be analyzed were removed.

Fig. 4 presents a case considered highly accurate, according
to Yorucu [22], with a 4.28 % sMAPE, an 8.20 % MAPE
and a 6.14 MAE. In this case, the customer has, in the
reference month analyzed, real consumption of 75 kWh and
had a predicted consumption of 68.85 kWh. The neighborhood
consumption range relative to the customer is close, resulting
in a closer prediction of the real.

Figure 4. First case study: high accuracy of consumption prediction.

Fig. 5 presents a bad case, where the customer’s consump-
tion range is much lower than its neighborhood consumption
range. In this case, the real customer consumption is 7 kWh,
but the predicted was 358.21 kWh, with an sMAPE of 96.17
%, a MAPE of 351.21 % and an MAE of 5,017.29.

Figure 5. Second case study: low accuracy of consumption prediction.

B. Results of the proposed method
This section describes the results of the experiment con-

ducted with a short series of clients. In total, 86,874 customers
remained after the preprocessing. In this experiment, the dis-
tance from Manhattan was used as a metric of the proximity
of the points and ten neighbors closest to the new client were
experimentally defined.

Table I shows the results by class of the methods chosen
to predict neighborhood consumption, from the stage prior to
the consumption forecast for new customers. The metric used
to choose the methods was MAPE and each line represents a
class with their respective values in each method used. From
this same table, it is possible to verify that BAQR was the
most used method among classes.

Table II presents the Quantity (QTY) of customers sepa-
rated by class, which were processed by the proposed method
and the results obtained in the consumption estimation for
the short series. The residential class, with 79,871, contains
the largest number of customers. While the lighting public
class contains only 12. The best results were obtained with
the sMAPE metric, as it is a symmetric metric, i.e., it limits
the extreme effects, as well as avoiding null results. However,
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TABLE I. RESULTS BY CLASS OF THE THREE BEST METHODS
CHOSEN TO PREDICT NEIGHBORHOOD CONSUMPTION.

Methods
Classes BAQR STL ARIMA

Residential 36.20% 47.00% 57.10%
Industrial 41.80% 32.90% 62.10%

Commercial 32.60% 61.90% 157.00%
Rural 38.90% 48.70% 203.70%

Government 129.40% 77.50% 57.90%
Lighting public 29.50% 32.90% 25.10%
Public service 31.30% 337.80% 229.70%

Self-Consumption 14.40% 10.00% 12.70%

when analyzing the prediction results in terms of MAPE and
MAE, these were not considered ideal but promising given
the diversity of scenarios and consumption classes found in
the dataset.

MAPE had the highest values where consumption patterns
are highest. For example, in the class Self-consumption, with
minimum consumption of 0, the average is 15,596 and a
maximum of 82,740 kWh.

TABLE II. RESULTS OF VALIDATION METRICS BY CONSUMPTION
CLASS.

CLASSES QTY. sMAPE (%) MAPE (%) MAE Within range (%)
Residential 79,871 30.92 1,136.56 490.05 96.14%
Industrial 76 26.57 133.29 379.28 94.74%

Commercial 4,032 36.42 301.43 1,292.05 94.10%
Rural 1,475 33.17 614.16 3,472.73 93.42%

Government 577 25.15 91.11 443.54 93.41%
Lighting public 12 22.71 45.12 667.67 91.67%
Public service 98 41.57 200.91 1,548.66 83.67%

Self-Consumption 733 22.69 447.65 86,477.52 89.50%

Table III presents the percentage distribution of customers
to sMAPE and MAPE percentage interval. The largest number
of customers (37.39 %) were found with up to 10 % of
the sMAPE metric. Analyzing sMAPE according to Yorucu’s
classification [22], 37 % of customers presented a highly
accurate forecast, 16 % good, 22 % reasonable and only 23 %
of customers presented an inaccurate forecast.

TABLE III. COSTUMERS DISTRIBUTION ACCORDING TO SMAPE
AND MAPE METRIC VALUE RANGE.

Percentage of customers by metric
Range sMAPE (%) MAPE (%)

[0 - 10%[ 37.39 28.70
[10% - 20%[ 16.57 15.16
[20% - 50%[ 22.89 23.43
[50% - inf[ 23.15 32.70

During the results analysis, it was observed that close
customers may have characteristics in common, such as pur-
chasing power, consequently the same consumption pattern.
However, there are areas where customer consumption does
not have a common range, e.g., a new customer A, with a
consumption range of 10 to 50 kWh, while its vicinity has
a range of 100 to 300 kWh. Thus, it was found that new
customers usually have low consumption in the first months
or zero consumption, which was often incompatible with the
consumption of their neighbors, who already have a stable
consumption pattern. Therefore, this situation contributes to
the increase of the prediction error.

Likewise, customers whose neighborhood may be located
in a border region between two neighborhoods with different

consumption characteristics, may experience an increase in the
prediction error, since only the distance is used to determine
that neighborhood.

The consumption prediction interval for new customers
was not previously found by the company. Thus, the proposed
method appears as an important tool for theses cases, due to
the reasonable accuracy obtained. As a result, at least 83 % of
the real cases were within the generated interval, in the worst
case, as shown in the Table II, in Public service class.

This result is significantly relevant since this method, for
this example, would prevent around 92 % (79,900) of these
customers from going into the billing sector, avoiding the
need for manual analysis of the recorded consumption for
these customers. In the current practice of the company, all
customers with short series end up going to this sector.

V. CONCLUSION

In the present work, a method of prediction of power
consumption for consumers with short or no consumption
history was proposed. The method made use of machine
learning techniques such as k-nearest neighbors, different
distance measurements and various regressors such as SGD,
STL, ARIMA, BAQR, LSTM, which are used to predict
the energy consumption of consumers had their installation
recently connected.

The proposed methodology used several approaches, such
as Euclidean distance and Manhattan distance to find k-nearest
neighbors; different regressors; and the median predicted
neighborhood consumption. From the evaluated approaches,
the distance from Manhattan showed a small advantage over
Euclidean and among the regressors, the best estimates were
made with STL, ARIMA, and BAQR.

From the above, it can be concluded that the neighborhood-
based estimation method for power consumption is a promising
method for new consumers, with no consumption history yet.
In addition, it was possible to observe from the two selected
case studies, that the proximity to neighbors results in a good
result of prediction of consumption and its corresponding
consumption interval, according to the first case study. The
opposite, that is, when these neighbors are distant from each
other, resulted in a low accuracy of prediction and their
consumption range, as shown in Fig. 5, of the second case
study. Therefore, the results presented contribute to reduce the
volume of customers that need to be analyzed by the company.

Although promising, the method can be improved by
utilizing other network-based serial data estimation techniques
such as TCN [23] and N-BEATS [24].
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