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Abstract— Today, when a report of a lost person occurs, both 
the Search And Rescue (SAR) team and Lost Person (LP) have 
limited access to assistive technologies, leaving manual or ad-hoc 
search planning as an all too common solution. Geospatial data 
exists, however, that when coupled with appropriate models and 
algorithms can enable decision support systems to help predict the 
location of lost persons and provide guidance for optimal search 
execution given the available search resources. The environments 
and context for application of these technologies, however, 
introduce several key complexities. The data required for accurate 
analysis and prediction (e.g., elevation, land cover, exclusion 
zones, known markers) can be large and the exact subset needed 
for any particular incident may not be known until the lost person 
event occurs. The algorithms required to generate location 
probability distributions are compute intensive in comparison to 
the limited compute resources available on the devices located 
closest to the incident or carried by a search team. That search 
team is by design, distributed, conducting operations with multiple 
independent operators, often in areas with limited, degraded 
access to network infrastructure. This paper describes the design, 
algorithms, models, and evaluation of software entitled LandSAR 
that employs geospatial datasets and tooling in a distributed 
context to address these challenges and enable such capabilities at 
the network edge.  

Keywords-search and rescue; geospatial algorithms; team 
awareness kit; geospatial data. 

I. INTRODUCTION 

Time and situational awareness are crucial to search and 
rescue efforts. While there is a plethora of geospatial data to 
assist and guide action in response to LP incidents, the ability to 
gather, process, disseminate, and leverage this information is 
one more challenge at a time of significant risk and stress. 
Weather, sustenance requirements and injuries all impose a time 
clock on the search teams. Today’s practices are laden with 
manual elements and thus can only operate at human speed, 
accuracy and scale, and further require expert knowledge of 
terrain, personnel and other factors. The work described in this 
paper presents a machine-speed and machine-scale solution to 
these issues, with the goal of saving lives, and reducing the 

duration and thus cost of searches. The LandSAR technology 
provides a tool that presents probabilities of lost person locations 
over time, and based on this information, presents search teams 
with search recommendations given their available assets. 
Figure 1 depicts this tool executing within an Android-based 
team Situational Awareness (SA) tool. 

 

To understand the LandSAR concept of operations, let us 
consider an event that leads to a lost person who must be located 
and recovered. LandSAR operators use the LandSAR client 
software resident on their mobile device, or in a web browser, to 
record the event and last known position of the LP along with 
several other parameters, including selection of a model 
representing the class of LP (e.g., a hiker, someone with 
dementia), that can help guide the search process. The LandSAR 
models further capture awareness of destination goals, the most 
likely selection among multiple such points, and the subsequent 
choice the LP must make to determine a route to that objective. 
As an example, a model and its parameters might indicate that 
the LP has one of several known locations that they may try to 
get to if lost, and that there may be an area that they will likely 
avoid if they encounter it (e.g., due to recent flooding that area 
is no longer easily traversable). The LP will have to make a 

Figure 1. LandSAR UI showing probability distribution, sample paths 
used by underlying calculations, and recommended search path. 
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quick rough estimate of the difficulty of such a path based on the 
information at hand. That information centers on elevation and 
major features such as water bodies and rivers. Paths which 
reduce the total elevation deltas and traverse the most amenable 
land cover types are favored by the LP and thus are also favored 
by the model. Of course, the LP will not follow the planned route 
exactly. While keeping with the general trend of the path, the LP 
will make the final determination based on local factors. For 
example, the LP will favor open fields over wooded areas to 
increase visibility. The model will similarly estimate LP paths 
by using land cover data to make the final determination for each 
considered path. LandSAR uses these models and 
accompanying algorithms to develop a time parameterized 
probability distribution which is sent to the search team, as seen 
in Figure 1. They can then drag within the interface forward and 
backward in time to estimate where the LP was, is, or will be. A 
user can then request that LandSAR calculate an optimal search 
rectangle and representative search path, providing the system 
with information about the available assets (searchers on foot, 
helicopters, or small unmanned aerial systems). LandSAR will 
generate a recommended search path and disseminate this to the 
client devices for inspection and execution.  

The remainder of this paper is organized as follows: Section 
II describes related work. The LandSAR system design and its 
subcomponents are described in Section III. Section IV details 
the challenges and solutions in geospatial data acquisition and 
fusion to address the LandSAR information requirements. 
Section V describes the probability distribution generation and 
search recommendation algorithms and the models that support 
them. Section VI describes evaluation of performance and 
exercise-based evaluation of efficacy. Finally, in Section VII, 
we conclude and discuss ongoing and future work extending, 
enhancing, and augmenting the LandSAR capabilities. 

II. RELATED WORK 

Search Theory [1][2], a mathematical approach to the search 
for objects, dates back to World War II and the search for 
German U-boats. Work in the application of this theory to search 
and rescue [3], and in particular land-based search, provided the 
basis on which LandSAR realizes optimal search 
recommendations. 

Other systems exist to predict locations of lost persons and 
provide search recommendations. SAROPS [4] is a US Coast 
Guard tool that produces probability distributions using a 
particle filter for the location of the search object and that 
recommends search allocations to maximize the increase in 
probability of detection with the assets available. SAROPS 
applies these techniques to the sea domain, as opposed to the 
land-based domain employed in LandSAR. 

The Android Team Awareness Kit (ATAK) [5], described in 
more detail in Section III, is a platform in which the LandSAR 
capabilities are exposed (in addition to a web-based version). 
ATAK provides a plug-in interface that allows for easy 
extension. Other ATAK plug-ins [6] have been developed that 
project movement to predict potential locations of an entity, but 
require non-trivial terrain pre-processing and don’t provide 
search recommendations. LandSAR requires only lightweight 
processing of input datasets before they can be used, and can 
perform this processing at runtime, is focused more on LP 
models than determining concealed routes to be used, and 

recommends optimal search paths based on the determined 
probability distributions. 

III. THE LANDSAR SYSTEM 

LandSAR, as seen in Figure 2, is a distributed system where 
the core computation executes on the server, and the results can 
be disseminated to a team of users. In this section, we briefly 
describe these technologies and then provide an overall system 
view of the LandSAR software. 

ROGER [7][8] is a framework for building modular network 
middleware by composing plug-ins. The LandSAR capabilities 
are realized through ROGER plug-ins that model the movement 
of lost persons over time and provide optimal search 
recommendations. These plug-ins embody the logic of the 
search algorithms and work alongside another set of plug-ins 
that ingest inputs for these algorithms from client devices and 
local or remote data stores, and a 3rd set of plug-ins that expose 
the LandSAR outputs to a situational awareness platform called 
the Team Awareness Kit (TAK). TAK provides a suite of mobile 
mapping and SA applications employed by over 100,000 US 
users from numerous local, state, federal, and military agencies. 
ATAK, the Android-based primary TAK client, supports mobile 
teams and the wide variety of operating environments and roles 
that mobile scenarios demand. A server component, called TAK 
Server, acts as a publish-subscribe middleware connecting 
ATAK (and other) devices. As shown in Figure 2, client devices 
communicate with TAK Server for normal SA operations, and 
can send lost person notifications and search requests directly to 
ROGER (the box labeled R in the figure) for processing. 
Generated probability distribution and search recommendation 
map overlays are distributed to TAK Server as Keyhole Markup 
language Zipped (KMZ) files to be distributed to all members of 
the search party, and rendered on ATAK. 

 
Figure 2. LandSAR Systems View. 
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The LandSAR client-server model is augmented by the use 
of a peer-to-peer information management capability called 
BANDIT [9]. BANDIT processes geospatial situational 
awareness messages like TAK Server, but does so in a 
decentralized manner using a light-weight quality of service 
aware broker on each node in a set of devices. Through the use 
of mesh networks and the BANDIT technology, LandSAR 
operations can extend beyond direct line of sight ranges and can 
handle partitioned group operation (e.g., a subset of searchers 
out of range of the server or other users). 

IV. GEOSPATIAL DATA ACQUISITION AND DISSEMINATION 

LandSAR requires a number of data inputs in order to 
generate high quality probability distributions and search 
recommendations. Some of these inputs may be prepositioned 
on the server for targeted use cases, while others are required at 
the time of an lost person event. Several of the key inputs are 
depicted in Figure 3. On the client side, the last known position 

is used to center a search. Motion model parameters describe 
properties of a lost person’s movement that may be context 
specific. For example, a hiker lost in a national park may only 
move during the day time. Destination goals describe locations 
known to the LP that they may be more likely to move towards. 
Exclusion zones are those places an LP is more likely to avoid, 
and fall into two categories: those known in advance, and those 
that may be discovered during an event. On the server side the 
datasets become larger. Land cover data describes the type of 
terrain (e.g., deciduous forest, grasslands) and is used to help 
calculate the Speed Of Advance (SOA) – how fast someone may 
move across that terrain. Digital elevation data is similarly used 
to determine a realistic SOA and to guide path selection (e.g., an 
LP may favor flatter terrain over mountainous). Behavior 
models are used to guide estimation of how an LP will act and 
make decisions  while lost (these models are discussed in detail 
in Section V.A). These inputs present challenges in terms of 
both data hygiene, and data acquisition, dissemination, and 
storage at the tactical edge. 

The accuracy and precision of the LandSAR algorithms is a 
direct function of the quality of the data inputs. Many elevation 
data sources, for example, contain voids – spaces for which no 
sensor data was present in the dataset. These voids are often 
filled with marker values (e.g., some extreme minimum or 
maximum) and can impact path prediction. An extreme positive 
value used as a void-filler, for example, might lead the 
algorithms to believe extreme elevations are present in a path 
when in fact none exist. Smoothing operations, or dataset 

fusions to fill such gaps are thus useful. In testing and 
evaluation, LandSAR thus often uses the Shuttle Radar 
Topography Mission (SRTM) [12] Version 2 elevation data, 
which has been post-processed by the National Geospatial-
Intelligence Agency. Among other improvements, this post-
processing removed single pixel errors and defined coastlines. 
SRTM data for the United States is accurate to within 1 arc-
second, or 30 meters. 

While highly accurate data is useful for high quality results, 
such data also implies large storage requirements and retrieval 
costs. Each SRTM file, for example, is 25.9 MB once unzipped, 
and represents 1° latitude by 1° longitude. The 968 such files 
across six regions of the contiguous United States (CONUS), 
are, therefore, just over 25 GB in size. All available SRTM data 
was also obtained in Digital Terrain Elevation Data (DTED) 
format from the U.S.  Army Geospatial Center, consisting of 
13,986 files totaling 322.9 GB. For search operations in 
CONUS, land cover data is obtained from the National Land 
Cover Database (NLCD), available from the Multi-Resolution 
Land Characteristics (MRLC) consortium. The CONUS NLCD 
data is 1.1 GB when compressed in a zip file, and 18.3 GB 
uncompressed. Visual Navigation (VISNAV) [10] land cover 
data covers the globe, excluding CONUS and Alaska, and is 
17,437 files totaling 288.5 GB. Importantly, the NLCD data and 
the VISNAV data have the same resolution as SRTM data, 
allowing for a consistent discretization of the area of interest.   

The LandSAR data acquisition design was tailored 
specifically to address the challenges posed by large datasets 
representing the areas relevant to a mission, while accounting 
for the constrained networks, and limited resources of devices at 
the edge traditional network connectivity. LandSAR allows 
users to specify an Area of Interest (AOI) within which the LP 
is likely to be located. Determination of the appropriate area is 
based on the space an LP could cover within the time period of 
interest (e.g., a few days). LandSAR also provides support for 
obtaining elevation and land cover data from a 
mission/deployment-scoped dataset on a GeoServer [13], an 
open-source Java-based software server that allows access to 
geospatial data using open standards. A GeoServer can be co-
resident with the LandSAR gateway, or, for deployments with 
sufficient network connectivity, hosted remotely. LandSAR also 
has a capability to load data directly from local disk to avoid the 
need for additional data servers. In cases where high bandwidth 
Internet connectivity is available, LandSAR can also access data 
directly from public sources, on-demand as needed, without any 
preloading. 

While LandSAR currently relies heavily on elevation data 
and land cover data, the algorithms and models can be further 
tailored to specific scenarios with more data (e.g., weather). 
Additionally, LandSAR has support for a trails-based motion 
model, which requires machine-ingestible trail data.  

The more data available to LandSAR, the more accurate and 
precise the results can be. Getting access to additional data feeds 
where the search teams operate and network connectivity is 
often limitedcan be challenging; however, work is currently 
underway to be able to ingest and employ data that is already 
available at the network edge. LandSAR is positioned within the 
TAK software suite so that it can consume situational awareness 
data already flowing through TAK Server, allowing for 
knowledge of team locations, structures, landmarks, routes, etc., 

 

Figure 3.  LandSAR Input Data. 
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to help refine probability distributions and search results. For 
example, we are currently exploring probabilistically generated 
exclusion zones and LP destination goals, based on existing 
team reported locations, speed and heading data. 

Beyond data acquisition and processing, data dissemination 
presents numerous challenges in the constrained networks in 
which search and rescue often occurs. The aforementioned 
BANDIT capability is able to shape the data that flows through 
each node to meet the constraints of the network. LandSAR 
enhanced this capability to deal directly with the data formats of 
concern in SAR operations, such as KMZs which describe place 
marks, images, polygons, etc. that can be overlaid on a map. 
Format specific KML compression techniques are being 
employed by LandSAR. This is accomplished by compressing 
the points in each line segment described in the KML. Each one 
of these lists is run through the Microsoft Bing point 
compression algorithm [11], which generates a single 
compressed string representing the entire list of points. Each of 
these strings is then stored in a JSON array and then further 
compressed using a simple GZip compression. In early test 
results, a 2MB KML file is initially reduced to 140 KB and after 
final processing including the GZip step, to 30 KB.  

The size of the data dissemination is only one component of 
addressing effective dissemination in search and rescue 
contexts. Radio compatibility is another concern. A search 
team’s effectiveness is in part a function of its size, and thus 
allowing for ad hoc team augmentation is desirable in some 
scenarios. The team members added in this fashion, however, 
may not have devices with compatible radios. LandSAR is thus 
using a QR code transmission mechanism that allows sharing 
search recommendations using only the camera and screen of 
mobile devices. QR codes are ubiquitous for visually 
transferring small amounts of data without a network 
connection, but their bandwidth is limited, especially by the 
displays and cameras of mobile phones. The BANDIT 
technology provides a streaming QR code capability that can be 
thought of as a flip book of QR codes. This went a long way to 
mitigate bandwidth limitations by allowing data to be 
transferred through multiple QR codes, but even this has limits, 
as it requires the sender and receiver to be physically still, and 
in close proximity for extended time periods. To achieve even 
greater bandwidth LandSAR is being extended with the use of 
color in QR codes. Using color allows more data to be stored in 
each pixel, thereby increasing their bandwidth and shortening 
data transfer time. As an example, using 16 colors in a QR code, 
instead of the normal 2 (black/white), would allow a four-fold 
increase in bandwidth, essentially quartering the time required 
to send the same amount of data. It is not without difficulty, 
though, as introducing color increases the computation 
complexity of encoding / decoding the data, and it introduces 
another source of possible errors which must be dealt with, 
especially in a mobile setting where local lighting conditions can 
vary. 

V. ALGORITHMS AND MODELS 

A. Modeling the Lost Person’s Location 

In typical lost person events, the search team decision 
makers have too many unknown variables, limiting their 
confidence of where to search. LandSAR attempts to help the 

decision maker by modeling possible outcomes of where the LP 
could be over time using different combinations of these 
variables in conjunction with land cover, elevation and other 
data to estimate how fast and in what direction the LP might 
travel. 

The system generates a path based on several interrelated 
models and the available elevation and land cover data, 
beginning from an initial distribution of potential starting points.  
It will repeat this procedure many times to produce a sufficiently 
representative collection of possible paths for the LP. Given this 
set of paths, LandSAR can provide an estimate of where the LP 
will be at any time in the future. The simulation ultimately 
generates a heat map that visually depicts the probability 
distribution of the LP at any given point in time. An example of 
this output is shown in Figure 4. On the heat map, red equates to 
50% probability that the LP is in these rasters. If you combine 
red and orange, then 90% of the generated LP paths are in these 
rasters. If you combine yellow on top of orange and red, then 
you have all possible outcomes of where the LP was predicted 
to be according to the simulation. 

LandSAR uses three model types to probabilistically 
estimate the location of the LP: a model of where the person 
starts, a motion model capturing decision processes and 
ultimately impacting the paths they could traverse, and a model 
of how fast they traverse those paths. These are described in 
detail in turn below. 

1) Modeling an LP’s Starting Point and Intial Movement 
To understand where an LP may be at a future point in time, 

it is critical to understand where they may have been at some 
point in the past. An exact time and location may not always be 
known, and thus the starting point model often has incomplete 
information.  There may, therefore, be a distribution of possible 
starting locations based on the last received information from 
the LP. LandSAR allows the user to represent these initial 
distributions via a uniform circle, uniform polygon or several 
other methods. 

Figure 4 shows the likely location distribution from a lost 
person moving towards one of several potential rendezvous 
points (one shown as a  green circle) and avoiding a known 
exclusion zone (red) and discovered exclusion zone (orange). 

2) Motion Models 
LandSAR motion models estimate what an LP is likely to do 

by integrating assumptions about the thought processes of the 
LP with information about the area in which they are isolated. A 
LandSAR user chooses a motion model to best fit the 

 

Figure 4. LandSAR generated probability distribution heatmap. 
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circumstances of the LP. The motion model is used to produce a 
probability distribution for the location of the LP over time. The 
approximation for this distribution is a set of sample paths. 
There is a tradeoff between the number of sample paths (and 
thus the quality of the results) and computational cost. The more 
sample paths available to represent the distribution, the better 
the approximation. The computational cost scales linearly in the 
number of sample paths. There is, of course, significant 
uncertainty in that process and, consequently, a Monte Carlo 
technique is applied to determine the probability distribution of 
where the LP could be over time. 

LandSAR supports a number of motions models, examples 
of which are listed in TABLE I.  

3) Speed of Advance 
The generated sample paths will describe where an LP may 

go, but not when they will be there. Their speed of advance along 
each path is needed to account for the temporal dimension. That 
speed will be a function of the steepness of the path, the type of 
land cover, the physical fitness of the LP and other aspects.  The 
Speed of Advance (SOA) model includes all of these factors. 
After LandSAR determines an initial route that only takes into 
account water features and elevation variation, it will then utilize 
other costs to determine minor variations from this route. As 
LandSAR forms a feasible route, it moves through land cover 
which has the lowest cost available to choose from. A user may 
choose to change the default costs to account for assumed 
choices the LP would make. In the case of an LP moving through 
woods, for example, the user may assume he/she would choose 
to move through less densely wooded areas to provide better 
visibility and thus the user would change the values of 
deciduous, evergreen and mixed forests to be less likely to be 
considered. The adjustment factor for slope is a modified 
version of the formula for walking speed adjustment based on 
slope, also known as Tobler’s Hiking Function [14].  The SOA 
models take into account facts such as a gentle downslope 
increases speed of advance, while a steep downslope decreases 
it. 

Finally, a user can also set a movement schedule for the 
model of the LP, if for example, the LP is likely to only move 
during the daylight hours, or in some cases, only at night. 

B. Search Optimization  

The estimate of location in the future can be used to aid 
attempts to rendezvous with the LP. Maximizing the probability 
that the LP is localized uses elements of search theory such as 

the Koopman random search formula [15]. A probabilistic 
technique is used to find an appropriate search plan. The 
appropriate plan will, of course, depend on the capabilities of the 
search asset. A helicopter can cover more area but a searcher on 
foot might have better probability of detection. Koopman’s 
random search formula is currently used in most of the search 
algorithms in LandSAR.  A more sophisticated approach using 
lateral range curves, similar to that employed in the U.S. Coast 
Guard’s search application SAROPS, could be readily 
implemented.  However, the sensors used for land-based search 
and the environmental conditions affecting their performance 
have not been successfully modeled to the same level as those 
used for maritime searches. Consequently, we employ the 
simpler formula, which takes into account the speed, height 
above ground, and sweep width for the asset.  Obviously, the 
longer an asset can stay on station and search the area, the higher 
the probability of detection. 

LandSAR provides a search area with an associated 
Probability Of Success (POS), given the search assets and the 
time they can search for the LP. To do so, LandSAR generates 
1,000 random search boxes and calculates the probability of 
success for each search box.  It will recommend the search box 
with the highest POS and then make small adjustments (e.g., 
offset, rotate) to improve it. The POS is defined as 
𝑃(success) = 𝑃(containment) ∗ 𝑃(detection) , where the 
probability of containment is the likelihood of the search object 
being contained within the boundaries of some area. It is 
possible to achieve 100% POC by making the area larger and 
larger until all possible locations are covered, though data and 
computation requirements scale as the area considered scales. 
Probability Of Detection (POD) is the likelihood of detecting an 
object or recognizing the search object and the POD generally 
decreases the farther away the asset is from the target. It is 
assumed that the search object is stationary during the search. 
As long as the search duration is no more than a few hours or the 
distribution is no longer changing with time, this is a reasonable 
approximation consistent with the level of detail elsewhere in 
the modeling.  Searches of longer duration can be broken into 
shorter time intervals to account for these constraints. 

VI. EVALUATION 

Our evaluation of LandSAR, like most evaluations, 
considers both efficacy and performance/resource-cost. 
Realtime access to isolating events, which happen at 
unpredictable and stressful times, makes efficacy difficult to 
measure. Below, we present a small instance-based efficacy 
evaluation based on use of LandSAR algorithms in exercises and 
in real LP events where the system was used in parallel to 
existing manual methods as a way to judge early efficacy 
without yet completely relying on the system (and potentially 
putting lives at risk). We next measure the performance of 
LandSAR to understand how fast it can execute (time is often of 
the essence in SAR operations) and what device resources it 
requires for complete and performant operation. 

A. Efficacy 

 Multiple LandSAR evaluations showed the system 
accurately predicting the location of lost persons in the areas that 
they were actually found. The number of available lost person 
incidents during the evaluation were insufficient to provide a 

TABLE I. EXAMPLE LANDSAR MODELS. 
 

Model Description 
Stationary The LP is assumed to be injured 
Lost Hiker 
With 
Destination 

The LP knows where they are and where 
they must go. They move in the terrain that 
best affords success in reaching their goal. 

Trails-
Based 

The LP will move until they reach a trail and 
then follow it in one direction until found. 

Easiest 
Short-Term 
Path 

The person does not know where they are 
nor do they have an idea of where help may 
be, and will take the easiest short-term path  
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true statistical basis, but provided enough evidence of efficacy 
to warrant subsequent evaluations which will begin in the spring 
of 2020. Though successfully finding a lost person is the 
ultimate goal, LandSAR has the secondary effect of reducing the 
man and flight hours committed to searches. In 2018, the U.S. 
Air Force Rescue Coordination Center (AFRCC) reported that 
they responded to 933 SAR mission and the CAP flew 752 
missions. Any reduction of time across so large a number of 
missions has the potential to save lives and to significantly 
reduce costs for the respective government agencies. 

B. Performance 

We measured runtime performance across multiple devices, 
looking at how area of interest size and model selection 
impacted overall execution. Here, we report experiments run on 
an Intel® Xeon® Dual 4-core laptop with 32GB of RAM. 

 

Five geographical areas, listed in TABLE II, were analyzed. 
For each area, the center point was used as the single starting 
point for the LP and bounding boxes of three different sizes were 
considered: 

Large: 107 km east to west by 125 km north to south  
Medium: 35.8 km east to west by 36.6 km north to south  
Small: 12.0 km east to west by 14.0 km north to south  

Figure 5 depicts the overall runtime of the system when 
operating on the MA small, medium, and large data sets for each 
of 8 LandSAR models. As can be seen, simple models, such as 
the stationary model, operate quickly regardless of dataset size. 
More complex models, such as those that must consider 
rendezvous points or exclusion zones are more dependent upon 

the geographic area size (and thus the data size). In the slowest 
configuration – the large dataset with the most complex model, 
the runtime is just over 70 seconds, and thus still a very feasible 
duration for real world contexts. 

Figure 6 and Figure 7 look at CPU and heap memory usage 
respectively, when executing over the MA large dataset. CPU 
usage, after an initial ramp up, consumes the vast majority of the 
system’s compute resource, indicating multiple concurrent 
search executions, or slower processors could likely lead to 
meaningful increases in overall runtime. 

It can be seen that while the operations employ a non-trivial 
amount of RAM (peaking around 2GB), it did not come close to 
consuming the 32GB of available memory on the machine  (here 
we show heap memory; non-heap memory usage was low, 
approximately 25MB).  

 

VII. CONCLUSIONS AND FUTURE WORK 

The LandSAR capabilities described here have shown initial 
promise in both performance evaluation and in early trials. 
Embedding of this technology into the TAK platform enables 
both increased evaluation and increased likelihood that the 
capabilities will be in the hands of those that need them when 
and where they are needed. This work is forming a base on 
which a set of optimized, enhanced, and augmented capabilities 
are being built. Deployment in real SAR contexts is underway, 
and work is being undertaken in a number of areas of technical 
and capability advancement: 

 Enhanced accuracy and precision through the ingestion of 
situational awareness data that is already natively flowing 
through TAK devices. 

 Development of a web-based version to support search 
command centers and teams without ATAK devices. 

TABLE II. EVALUATION GEOGRAPHIC REGIONS 

Area Name Area Description Center Point (lan/lon) 

NM New Mexico / 
Arizona border 

32.0, -109.1 

MA Massachusetts 42.187279, -73.005823 

MI Michigan 44.017543, -84.252951 

NW Near Coeur d'Alene 
National Forest, 
Idaho 

47.75, -116.6 

RockyMs Rocky Mountains 44.268656, -
109.786399 

 
Figure 5.  Execution Times for Specific Motion Models. 

 

 
Figure 6. LandSAR CPU Usage on MA Large Dataset. 

 

Figure 7. LandSAR Heap Memory Usage for the MA Large Dataset. 
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 Automated and semi-automated tasking of small 
unmanned aerial systems (sUAS) based on LandSAR-
generated search recommendations. 

 Employing streaming color-coded QR codes for increased 
bandwidth when sharing search information with joint or 
other forces that may not have compatible radios. 

 Extending the LandSAR format-centric compression 
techniques tailored at reducing size of the KMZ files 
through the use of point reduction algorithms such as [16] 
to decimate a curve composed of line segments to a similar 
curve with fewer points. 

This suite of capabilities, combined with the current 
LandSAR functionality, will result in a SAR- and LP- focused 
tool that has the potential to dramatically reduce the duration of 
LP events, and increase the likelihood of successful rescue 
operations. 
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